
Review Article
Mechanisms of Hydroxyurea-Induced Cellular Senescence: An
Oxidative Stress Connection?

Sunčica Kapor ,1 Vladan Čokić ,2 and Juan F. Santibanez 2,3

1Department of Hematology, Clinical Hospital Center “Dr. Dragisa Misovic-Dedinje”, University of Belgrade, Serbia
2Molecular Oncology Group, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade,
Belgrade, Serbia
3Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile

Correspondence should be addressed to Juan F. Santibanez; jfsantibanez@imi.bg.ac.rs

Received 6 May 2021; Revised 9 August 2021; Accepted 25 September 2021; Published 18 October 2021

Academic Editor: Amit Kumar Nayak

Copyright © 2021 Sunčica Kapor et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Hydroxyurea (HU) is a water-soluble antiproliferative agent used for decades in neoplastic and nonneoplastic conditions. HU
is considered an essential medicine because of its cytoreduction functions. HU is an antimetabolite that inhibits
ribonucleotide reductase, which causes a depletion of the deoxyribonucleotide pool and dramatically reduces cell
proliferation. The proliferation arrest, depending on drug concentration and exposure, may promote a cellular senescence
phenotype associated with cancer cell therapy resistance and inflammation, influencing neighboring cell functions,
immunosuppression, and potential cancer relapse. HU can induce cellular senescence in both healthy and transformed
cells in vitro, in part, because of increased reactive oxygen species (ROS). Here, we analyze the main molecular
mechanisms involved in cytotoxic/genotoxic HU function, the potential to increase intracellular ROS levels, and the
principal features of cellular senescence induction. Understanding the mechanisms involved in HU’s ability to induce
cellular senescence may help to improve current chemotherapy strategies and control undesirable treatment effects in
cancer patients and other diseases.

1. Introduction

Hydroxyurea (HU), also called hydroxycarbamide, is a
simple hydroxylated compound with the molecular for-
mula CH4N2O2, structurally an analog of urea and initially
synthesized in 1869 [1–4]. Although HU can exist in two
tautomeric forms, the drug primarily adopts the keto form
due to its significantly higher stability than the imino form.
Moreover, HU is a weak acid containing three ionizable
protons, with a pKa of 10.6 [5].

HU is a nonalkylating antineoplastic agent used for
hematological malignancies, infectious diseases, and derma-
tology [6]. The first evidence of its antineoplastic effects was
obtained in the late 1950s in experiments conducted on
L1210 leukemia cells and solid tumors [7]. In the 1960s, clin-
ical trials demonstrated the drug’s efficacy mainly against
myeloproliferative disorders [2, 3].

HU has an acceptable short-term toxicity profile in
most patients and is currently used as the first-line of
chemotherapy in hematological malignancies such as
myeloproliferative neoplasm (MPN) characterized by a
mutation in Janus kinase 2 (JAK2), calreticulin (CALR),
and myeloproliferative leukemia virus oncogene (MPL)
genes [8–11]. Also, this agent is indicated to treat
sickle-cell anemia, HIV infection, and thrombocythemia
[2, 3, 12]. Moreover, it is effective for the management
of refractory psoriasis, likely due to inhibition of epithe-
lial proliferation, thus restoring the typical appearance of
the patient’s thickened epidermis [13–15]. In addition,
HU has been used as a palliative treatment for acute
myelogenous leukemia in elderly patients unfit for inten-
sive chemotherapy [16]. Because of its positive effects of
therapy, this drug is defined as an “essential medicine”
by the World Health Organization [17].
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2. Mechanisms of the Inhibition of Cell
Proliferation by Hydroxyurea

HU functions as a radiation sensitizer because of its capacity
to synchronize cancer cells in the radiation-sensitive cell
cycle phase and inhibit the repair response of DNA damage
produced by radiation [18]. This drug abolishes the rela-
tively radioresistant cells at the S phase of the cell cycle,
reducing highly DNA synthesizing cells and increasing the
frequency of the surviving cells at the relatively radiosensi-
tive portion (G1–S interphase) of the cell cycle (Figure 1)
[19, 20]. In addition, HU radio-sensitization in patients with
advanced cervical cancer increases progression-free survival
in the stages III and IVA disease cohort; moreover, HU
activities have been evaluated in high-grade gliomas, non-
small-cell lung cancer, head and neck cancer, and cervical
carcinoma with different grades of success [21].

Furthermore, HU regulates tumor cell resistance to che-
motherapy because it accelerates the loss of extrachromo-
somal amplified genes implicated in therapy sensitivity
(Figure 1) [2, 22]. Moreover, it may induce metaphase chro-
mosome fragmentation by directly affecting DNA integrity
[23, 24]. The drug cytotoxicity seems to be the result of the
DNA damage caused by breaks during DNA synthesis inhi-
bition, which explains its antineoplastic and teratogenic
activity. Nonetheless, HU inhibition of DNA replication is
reversible, indicating that the drug is likely a cytostatic agent
[6]. Indeed, this agent inhibits DNA synthesis in several
organisms and in vitro culture cells; thus, it is mainly active
in the S phase of the cell cycle, and the reversibility of its
action serves as a cell cycle synchronizing agent in cell cul-
tures [25–28].

Mechanistically, the ribonucleotide reductase (RNR),
also known as ribonucleoside diphosphate reductase, is a
well-established primary cellular target of HU (Figure 1).
RNR is an iron-dependent tightly regulated enzyme that cat-
alyzes the reduction of ribonucleoside diphosphates to
deoxyribonucleotide (dNTP) precursors for de novo DNA
replication and DNA repair [29–31]. Three main classes of
RNRs have been described according to their metallocofac-
tor requirements. In eukaryotes and eubacteria, class I RNRs
are oxygen-dependent and contain a dinuclear metal cluster
(Fe or Mn); the other classes II and III are found in aerobic
and anaerobic microbes that require a cobalt-containing
cobalamin (vitamin B12) cofactor and a [4Fe-4S]2+/1+ cluster
coupled to S-adenosylmethionine (SAM) for catalytic activ-
ity, respectively [32]. Particularly, the mammalian RNR con-
sists of two subunits, α and β, that can associate to form a
heterodimeric tetramer, while the human genome encodes
one α (RRM1) and two βs (RRM2 and RRM2B) [33]. The
α subunit contains binding domains for ribonucleotide sub-
strates (NDPs/NTPs) and allosteric effectors, consequently
regulating the RNR complex by nucleotide pools. In con-
trast, the β subunit possesses catalytic activity and consists
of a tyrosyl free radical stabilized by a nonheme iron center
necessary for catalysis.

Moreover, the low cell capacity for RNR protein biosyn-
thesis is the rate-limiting step in the de novo synthesis of
DNA [30, 34]. Since this enzyme catalyzes the rate-limiting

step for DNA biosynthesis, its activity is fine-tuned to gener-
ate a periodic fluctuation of dNTP concentration during cell
proliferation. In addition, maximum enzyme activity and
RRM1 and RRM2 mRNA expression are observed in the S
phase of the cell cycle where dNTPs are required [35, 36].
Conversely, at the G0/G1 phase, the RNR activity is down-
regulated due to RRM2 gene transcriptional repression,
and in the M cell cycle phase, the β subunit is subjected to
degradation pathways by the anaphase-promoting complex
Cdh1 binding and consequent polyubiquitination [37, 38].

HU inhibits the RNR activity in vitro and in vivo, and
the duration of DNA synthesis inhibition correlates with
the level of deoxyribonucleotide pool reduction [39]. For
RNR inhibition, HU, due to its small molecule size, pene-
trates the RRM2 subunit to directly reduce the diferric tyro-
syl radical center via a one-electron transfer mechanism
[40–44]. Interestingly, the electron transfer from HU to the
tyrosyl radical may be mediated by the generation of nitric
oxide-like radicals via H2O2-dependent peroxidation result-
ing from the reaction between this agent and the β subunits
[44, 45].

Because of the inhibition of RNR enzymatic activity by
HU, a reduction of the conversion of ribonucleotides to
dNTP occurs, and the consequent dNTP depletion leads to
an increase in DNA single-strand breaks [46, 47]. Moreover,
the depletion of dNTP pools depends on the exposure length
and drug concentration for the treatment [48, 49]. The cell
arrest in the S phase due to HU-induced dNTP pool reduc-
tion slows down DNA polymerase movement at replication
forks, which, in eukaryotes, activates the S-phase checkpoint
(also called the replication checkpoint kinase pathway). The
S-phase checkpoint is a highly conserved intracellular signal-
ing pathway crucial for the maintenance of genome stability
under replication stress. In fact, the S-phase checkpoint pre-
serves the functionality and structure of stalled DNA replica-
tion forks and prevents chromosome fragmentation [50–52].
When the S-phase checkpoint is activated, it stimulates RNR
activity by increasing RNR β subunit production and regu-
lating its subcellular localization, while the RNR small inhib-
itor protein expression is downregulated. Furthermore, the
activated S-phase checkpoint delays mitosis, suppresses the
firing of late origin, and stabilizes the slowed replication
forks against collapse, and this allows for the recovery of
the regular DNA synthesis rate when the HU effect dimin-
ishes [51–54].

Because of low RNR activity, the deprivation of the
dNTP pool below the threshold required to sustain DNA
replication fork progression may provoke DNA replication
fork collapse, which generates strand breaks and oxidative
stress. In addition, HU can provoke direct DNA damage at
thymine and cytosine residues in vitro, probably because of
the Cu(II)-mediated generation of nitric oxide and H2O2
[55]. Therefore, these HU’s functions may directly cause
the permanent effects observed in several cells and discussed
later in the text [56, 57].

Even though HU inhibits the RNR activity, which is high
in proliferating cells, cells can progress from G1 to the S
phase at a relatively standard rate, where the drug promotes
an accumulation of cells at the early S phase. Consequently,
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HU reduces the replication fork progression and DNA rep-
lication rate [54, 58]. HU selectively eliminates cells in the
S phase of highly proliferative cells that are most sensitive
to the drug; as mentioned above, HU cytotoxic effects also
depend on the dose and duration of exposure [39]. Besides
specifically inhibiting RNR, HU also exerts other inhibitory
functions on the replitase complex in the S phase of the cell
cycle; replitase is a multienzyme complex of mammalian
cells that produce dNTPs and deliver them to DNA synthe-
sis by the DNA polymerase. Replitase complex comprises
thymidine kinase, dihydrofolate reductase, nucleoside-5′
-phosphate kinase, thymidylate synthase, and RNR itself
[59, 60].

3. Mechanism of Cellular Senescence

Cellular senescence, defined as a process that causes an irre-
versible proliferative cell arrest with secretory features in
response to several molecular and biological stressors, is a
significant contributor to aging and age-related diseases
[61–64]. This process was initially described by Hayflick
and Moorhead in 1961 [65] when they observed that pri-
mary cells undergo a limited number of cell divisions
in vitro. This observation allows suggesting a cell-
autonomous theory of aging that implies the depletion of
active replicative cells required for tissue homeostasis and
tissue repair and regenerative processes [62].

Cellular senescence encompasses different biological and
molecular events that result in at least three senescence types
(Figure 2): In replicative senescence (RS), the main mecha-
nism relies on the number of cellular divisions in culture
in vitro and, consequently, telomere shortening due to suc-
cessive cell duplication [65–68]. Oncogene-induced senes-
cence (OIS) is related to a tumor-suppressive mechanism
as a response to oncogene overactivation and overexpres-
sion. Oncogenic activation seems to induce a stable growth
arrest in premalignant cells from senescence expression,
allowing a blockade of genetically unstable cells to progress
to dangerous malignant stages. For instance, H-RAS medi-
ates the induction of cell cycle inhibitor p16INK4A, which
precludes the hyperphosphorylation of RB by the cyclin-D-
and CDK4 and suppresses E2F activity. In addition,
increased c-Myc expression promotes the p14ARF transcrip-
tion that stabilizes p53, thus accelerating cellular senescence
[69–72]. The cellular senescence induced by oncological
agents used at relevant therapeutic concentrations is called
chemotherapy-induced senescence (CIS) [73].

In this last context, “immortal” cancer cells can undergo
senescence from exposure to chemotherapeutic agents, caus-
ing severe cellular stress and displaying both protumorigenic
and antitumorigenic functions [74, 75]. The chemothera-
peutic armamentarium comprises genotoxic and cytotoxic
drugs that target proliferating cells in a variety of cell
cycle-dependent mechanisms (Figure 3) [76]. These drugs
include topoisomerase inhibitors such as doxorubicin,
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Figure 1: Main mechanisms of hydroxyurea cytotoxicity. HU functions as a radiation sensitizer by synchronizing cancer cells in the
radiation-sensitive cell G1-S cycle interphase and inhibition of the DNA damage repair response. Also, HU sensitizes cancer cells to
chemotherapy by promoting loss of extrachromosomal amplified gene elimination, metaphase chromosome, and DNA breaks damage.
Moreover, HU inhibits the ribonucleotide reductase (RNR) that results in a drastic reduction of the deoxyribonucleotide pool necessary
for DNA synthesis. Depletion of dNTPs promotes DNA replication fork collapse, strand break, and oxidative stress. For more details, see
the text.
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Figure 2: Mechanism of cellular senescence. The figure illustrates the main three senescence types that influence tumorigenesis: replicative
senescence (RS) due to telomere shortening from a limited number of cell divisions, oncogene-induced senescence (OIS) due to an aberrant
and sustained antiproliferative response to oncogenic signaling resulting from an oncogene-activating mutation and expression or the
inactivation of a tumor-suppressor gene, and chemotherapy-induced senescence (CIS) due to cell response to severe genotoxic stress
from exposure to a variety of onco-therapeutic agents.
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Figure 3: Chemotherapy-induced senescence. The figure indicates the main types of chemotherapeutic drugs with different mechanisms of
action that induce genotoxic stress, triggering several cellular and molecular changes that result in the acquisition of senescence phenotype
features indicated in the figure, such as increased p21Cip1, p16INK4, and γ-H2Ax expression, senescence-associated heterochromatin foci
formation, expression and activity of senescence-associated β-galactosidase, senescence-associated secretory phenotype, and morphology
changes in flat and enlarger cells.
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etoposide, and topotecan [77–80]; alkylating agents such as
busulfan, cyclophosphamide, and mitomycin C [81–83];
platinum-based agents, including cisplatin, carboplatin, oxa-
liplatin [84–86]; antimetabolites such as methotrexate, gem-
citabine, 5-fluorouracil, and hydroxyurea [87–90];
microtubule inhibitors that comprise paclitaxel, vincristine,
and vinblastine [91–93]; kinase inhibitors such as vemurafe-
nib, dasatinib, and lapatinib [94–96]; and cyclin-dependent
kinase (CDK) 4/6 inhibitors, including palbociclib, abemaci-
clib, and ribociclib [97–99].

Interestingly, besides altering cellular cancer states, CIS
also affects the tumor microenvironment by acting on non-
cancerous tissues and promoting immunosurveillance to
eliminate tumor cells, while it also may contribute to chronic
inflammation and cancer drug resistance [74, 100–102].

With senescence induction, cells display a stable cell
cycle arrest and complex phenotypic and molecular changes,
such as cell enlargement and flattening, altered cellular
metabolism, and dysfunctional mitochondria, and the gener-
ation of the cytoplasmic target of rapamycin- (TOR-)
autophagy spatial coupling compartment (TASCC)
(Figure 3) [103, 104]. Moreover, senescent cells exhibit
increased expression and activity of senescence-associated
β-galactosidase (SA-β-gal), a lysosomal enzyme that in
senescence conditions stains positive at pH6 and is one of
the first characteristic molecular markers for senescence
identification (Figure 3) [105]. Furthermore, because of the
inherent molecular changes during the display of senescence
features, cells suffer persistent damage such as DNA double-
strand breaks that triggers a persistent DNA damage
response (DDR), resulting in permanent cell cycle arrest
[106]. Specifically, DDR is a signaling cascade network that
senses and repairs DNA lesions, thus preserving DNA integ-
rity and preventing the generation of undesirable deleterious
mutations, which under persistent or unrepairable DNA
damage may drive cells toward apoptosis or cellular senes-
cence [107]. In this sense, in higher organisms, the DDR pre-
vents neoplastic transformation, ensuring the termination of
cellular proliferation and the removal of severely damaged
cells [108].

Cells may display senescence-associated heterochroma-
tin foci (SAHF), detectable with immunostaining techniques
(Figure 3), which result from the association of the retino-
blastoma (Rb) tumor suppressor and heterochromatin pro-
tein (HP) 1, DNA methyltransferase (DNMT) 1, or the
suppressor of variegation 3–9 (Suv39) methyltransferase,
which together form repressive complexes for the E2 tran-
scription factor (E2F) 1 gene targets [109]. Moreover, the
DNA damage caused by senescence inducers provokes the
formation of persistent nuclear foci or DNA-SCARS charac-
terized by chromatin alterations that reinforce cellular senes-
cence [110]. In classical or normal reparative conditions, this
process forms early foci that can be detected by γ-H2Ax or
53BP1 staining; in successful normal DNA repair, their
expression rapidly disappears, while in senescence, these
structures persist longer because of the elevated damage to
the DNA, thus allowing the DNA-SCARS formation [111].
Moreover, DNA damage is sensed by ataxia telangiectasia-
mutated (ATM), an essential response kinase coordinating

checkpoint, and senescence responses. ATM is activated by
either DNA breaks or oxidative stress and plays an essential
role in the senescence response by phosphorylating and sta-
bilizing p53 [112–116]. From a molecular viewpoint
(Figure 3), the upregulations of the tumor suppressor Rb-
p16INK4A and p53-P21Cip1 pathways (Figure 3) are molecu-
lar hallmarks that participate in the induction of cellular
senescence by downregulating cyclin/CDK and inhibiting
E2F1 activity [62, 117]. In addition, downregulation of the
nuclear lamina protein lamin B1 has also been postulated
as a feature of the senescent phenotype [118, 119].

Even though cellular senescence implies a permanent
cell cycle arrest, these cells remain metabolically active, earn-
ing the nickname “zombie” cells, and interact with other
cells in the tumor microenvironment by cell-cell interaction
or via the senescence-associated secretory phenotype
(SASP), influencing the fate of neighboring cells via
bystander effects (Figure 3) [120, 121]. The SASP encom-
passes a plethora of cytokines, growth factors, and proteases
such as interleukin- (IL-) 1, IL-6, IL-8, growth-regulated
oncogene (GRO) α/β, granulocyte-macrophage colony-
stimulating factor (GM-CSF), insulin-like growth factor
binding proteins (IGFBPs), matrix metalloproteinases-
(MMP-) 1, MMP-3, and MMP-10, intercellular adhesion
molecule- (ICAM-) 1, and plasminogen activator inhibitor
type 1 (PAI-1) [122, 123].

Nevertheless, a significant challenge is to typify senes-
cence cells accurately. None of the above markers can be
considered universal, and typifying senescence requires dif-
ferent phenotypical, biochemical, and molecular measure-
ments. Recently, a combination of cytoplasmic markers,
such as SA-β-gal, proliferation markers that are nuclear-
localized, including p16INK4AA, p21WAF1/Cip1, Ki67, and
SASP expression, have been recommended to standardize
senescence characterization (Figure 3) [61].

Although CIS often is associated with tumor growth
inhibition and regression [74], senescent cells may remain
after the termination of onco-therapies and promote tumor
progression by the SASP because they promote tumor cell
dormancy, therapy resistance, and cancer relapse [64,
124–128]. In addition, SASPs influence the progression of
surrounding nonsenescent tumor cells and metastasis by
influencing the tumor microenvironment by factors that
may promote the epithelial-to-mesenchymal transition
(EMT), thus accelerating migration, invasion, and cancer
cell malignancy features [129–132].

4. Cellular Oxidative Stress and Hydroxyurea

Reactive oxygen species (ROS) are constantly generated in
normal physiological conditions, and they are eliminated
by scavenging systems, thus maintaining cellular REDOX
homeostasis. Meanwhile, dysbalance of this homeostasis
due to aberrant ROS production or antioxidant decrease
contributes to tumor progression and is a hallmark of several
types of cancer (Table 1) [133, 134]. Moreover, exacerbated
ROS levels result in biomacromolecular damage of proteins,
lipids, and DNA among others, which promotes cellular
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senescence and aging and is associated with the physiopa-
thology of several age-associated diseases [135].

ROS comprise a family of highly reactive molecules that
regulate normal cellular conditions by fine control of the
generation/consuming rate. In contrast, in cancer, a dysreg-
ulated oxidative stress is produced that contributes to the
chemical damage of proteins, lipids, and DNA and tumori-
genesis promotion [136]. From a molecular viewpoint,
ROS are small molecules derived from the oxygen compris-
ing free radical and nonfree radical oxygen intermediates,
ions, or molecules that have a single unpaired electron in
their outermost shell of electrons. Moreover, ROS are con-
stantly generated inside cells by enzyme complexes or as
by-products of REDOX reactions, including those underly-
ing mitochondrial respiration [137, 138]. These molecules
include oxygen radicals, such as superoxide anion, hydroxyl,
peroxyl, and alkoxyl, and nonradical molecules that are
either oxidizing agents or easily converted into radicals, such
as hypochlorous acid, ozone, singlet oxygen, and hydrogen
peroxide. In addition, this oxygen-containing reactive spe-
cies can combine with nitrogen to generate nitrogen-
containing oxidants such as nitric oxide and peroxynitrite
that belong to the family of reactive nitrogen species (RNS)
[136, 138]. Furthermore, the REDOX dysbalance in cancer
cells is generated by increased cellular metabolic activity,
mitochondrial dysfunction, deregulated cellular receptor sig-
naling, peroxisome activity, oncogene activation, cyclooxy-
genase lipoxygenases, and thymidine phosphorylase. In
addition, the contribution to the REDOX dysbalance of
these factors may depend on the malignant stage of the can-
cer cells and their interaction with tumor stroma and infil-
trating immune cells [139, 140]. Furthermore, cellular
superoxide anions form mainly because of the NADPH oxi-

dase (NOX) family [141]. Five forms of NOXs have been
found: the small GTPase Rac1-dependent NOX1, NOX2,
and NOX3, and the small GTPase Rac1-independent
NOX4 and NOX5 [142].

ROS participate in different aspects of tumor development
and progression; they regulate intracellular signaling pathways
involved in cell proliferation and survival while also influenc-
ing cell motility, invasiveness, and metastasis and regulating
inflammatory responses within the tumor stroma and in
angiogenesis [140]. Furthermore, ROS contribute to deter-
mining mammalian cells’ senescent cellular fate [143, 144].
These oxygen-containing reactive species can promote cellular
senescence by telomere-dependent mechanisms and
telomere-independent mechanisms involving unrepairable
single or double-strand DNA breaks [145, 146]. Moreover,
their excessive levels generate DNA lesions by forming 8-
oxo-2′-deoxyguanosine, which accumulates in senescent
human cell cultures and aging mice. Consequently, this
DNA damage generates genomic instability, DNA mutations,
and tumor development [147]. Therefore, ROS produce geno-
mic alterations such as point mutations and deletions, which
may inhibit tumor-suppressor genes while activating and
inducing the expression of oncogenes to further contribute
to the enhancement of cancer cell malignancy [143].

On the other hand, ROS also regulates cellular prolifera-
tion, which depends on their levels and duration of expo-
sure. In this sense, most cytostatic/cytotoxic anticancer
drugs inhibit cancer cell proliferation and cell survival by
promoting ROS generation [148, 149]. For instance, both
H2O2 and its dismutation product superoxide (O2·-) reduce
cancer cell proliferation, while H2O2 may also form, via Fen-
ton reaction, the hydroxyl radical (OH·) that highly inhibits
cell proliferation [149].

Table 1: Reactive oxygen species and hydroxyurea main functions and effects on tumorigenesis.

Function Cellular and molecular effects Ref.

Reactive oxygen species

Intracellular signaling pathway
regulation

Cell proliferation and survival, cell motility, invasiveness, and metastasis [140]

Senescence induction

Telomere-dependent mechanism and telomere-independent mechanism
(i) Double-strand DNA breaks induction
(ii) DNA lesions due to 8-oxo-2′-deoxyguanosine generation
(iii) Genomic instability
(iv) Gene mutations implicated in the following:
(a) Inhibition of tumor suppressor genes
(b) Activation of oncogenes

[143–147]

Regulation of cellular
proliferation

H2O2, superoxide (O2·-), and hydroxyl radical (OH·) reduce cell proliferation [148, 149]

Hydroxyurea and reactive oxygen species

Cytotoxicity
Cytotoxicity and teratogenicity due to radical chain reactions, via H2O2, initiated by HU
hydroxylamine group to form R-HṄOH+ radical and generation of NO

[150, 151]

DNA damage by increasing
oxidative stress

Thymidine and cytosine damage via increasing NO and H2O2 and fork collapse
[6, 45, 55,

152]

Nitric oxide generation RNR enzyme inhibition via NO and nitrosyl radical ·NO production
[45, 153,
154]

Scavenger protein inhibition Downregulation of superoxide dismutase-2, peroxiredoxin-1, and Sirtuins [154–156]
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Although HU can enhance cellular oxidative stress, the
intimate molecular mechanism is not well understood. Some
earlier studies have suggested that this drug may exert cyto-
toxic effects through radical chain reactions via H2O2 and
initiated by its hydroxylamine group. Conversely, radical
scavengers substantially reduce the cytotoxic and teratogenic
HU activities [150, 151]. Moreover, HU causes DNA dam-
age to thymidine and cytosine residues via increasing
H2O2, in part by inducing ROS via provoking a fork collapse.
Moreover, this agent induces mutagenic DNA lesions in V79
Chinese hamster cells, likely due to the generation of H2O2
[6, 45, 57, 152].

Moreover, nitric oxide radical (·NO), generated upon the
3-electron oxidation of the drug, may be responsible for
many of its pharmacologic effects, including the RNR
enzyme inhibition [153, 154]. Nevertheless, recent analyses
indicated that HU might downregulate the expression of
scavenger proteins, such as superoxide dismutase (SOD) 2
and peroxiredoxin-1 (PRDX1), and regulatory oxidative
stress proteins, such as Sirtuin- (Sirt-) 3 (Table 1)
[154–156]. Although the involved molecular mechanisms
by which HU regulates the expression of these proteins have
not been well elucidated so far, the induced deficiency of
these oxidative stress regulatory proteins significantly con-
tributes to the elevation of ROS by HU and the establish-
ment of cellular senescence.

5. Hydroxyurea and Cellular Senescence

HU inhibits proliferation in several organisms and cell lines.
At therapeutically relevant levels, HU mainly induces cell
proliferation arrest in the S cell cycle phase because of the
decrease in dNTPs by RNR enzymatic activity inhibition
[157, 158]; this causes a reduction of DNA polymerase
movement at replication forks that generate a DNA replica-
tion stress [6, 102]. In cancer therapy, this agent is frequently
used as an antitumor agent because of its cytoreduction
functions. Moreover, HU belongs to the family of antime-
tabolite drugs that can induce premature cellular senescence
from interfering with the crucial synthesis pathways
required for DNA duplication (Figure 4) [102, 128].

One of the first observations that HU may promote
senescence-like phenotype in cancer cells was made in the
human erythroleukemia K562 cell line. K562 cells under-
went cell proliferation arrest and positivity to SA-β-gal
activity after seven days of HU treatment. Moreover, the
treatment increased the expression of the cyclin-dependent
kinase inhibitors p16INK4A and p21Cip1 [159]. Interestingly,
since K562 cells are p53-deficient [160], HU-induced senes-
cence can occur independently of p53 activity in these cells.
Additionally, this agent also induces cellular senescence in
rat hepatoma McA-RH7777 cells; after treatment, cells
exhibited enlarged size, increased SA-β-gal positive staining,
and a substantial reduction in cell proliferation as cells were
arrested in the G0/G1 cell cycle phase. In this case, a substan-
tial reduction in the cellular frequency at the G2/M phase
was observed. Cells undergoing HU treatment consistently
expressed elevated levels of p21Cip1 associated with cell cycle
arrest at the G1/S interphase [161]. Likewise, the drug pro-

motes cellular senescence in neuroblastoma cell lines after
a relatively long period of treatment, in part because of HU
concentrations below 200μM. After five weeks of treatment,
more than 50% of the cells stained positive for SA-β-gal, and
in this period, cells exhibited a reduction of telomere length
that was 50% of the cells after ten weeks [162]. Although this
pharmaceutical compound induces neuroblastoma cell
senescence in vitro, it does not promote cell secretion of
unfavorable SASPs, such as MMP-9, the monocyte-
chemotactic protein- (MCP-) 3, the regulated-on activation
normal T cell expressed and secreted (RANTES), and the
vascular endothelial growth factor (VEGF). In contrast, it
induces secretion of IL-6 and platelet-derived growth factor-
(PDGF-) AA, involved in immuno-regulation and angiogen-
esis [80, 163–165].

Besides cancer cells, HU may affect nontransformed
cells. For instance, in a model of foreskin fibroblast cells,
treatment with the drug in the range of 400–800μM pro-
voked a reduction of cell proliferation and morphological
changes similar to the findings in replicative cellular senes-
cence; moreover, these changes were not reversible by
removing the drug treatment. HU treatment induces SA-β-
gal activity and p53 and p21Cip1 expression along with Jun
N-terminal kinase (JNK) activation. Moreover, because of
HU treatment, senescence fibroblasts are protected from
UV light-induced apoptosis [166]. Similar results were
reported in a human embryonic fibroblast cell line; the treat-
ment with this medical agent induced SA-β-gal and p21Cip1;
moreover, the elevated p21Cip1 expression seemed due to
increased protein stability rather than de novo synthesis. In
addition, increased p21Cip1 was independent of increased
p53; thus, suggesting that in these cells, p53 activity was
not implicated [167], which is concordant with the theory
that p53 mainly transcriptionally activates p21Cip1 expres-
sion [168]. In addition, the HU-induced senescence in
mouse fibroblasts, determined by SA-β-gal activity, is
increased by transcription factor c-Jun depletion, while c-
Jun overexpression inhibits the senescence induced by the
treatment and drives cells to cell death.

Meanwhile, the transcription factor JunB enhances HU-
induced senescence by upregulation of their direct target
p16INK4A. These results suggest that the balance between
the c-Jun and JunB transcription factors may determine
the cellular response to the chemotherapeutic HU agent
[169]. In addition, the chronic exposure of rat and human
fibroblasts to low concentrations of the chemotherapeutic
agent induced cellular senescence by a p53-dependent
p21Cip1 expression and increased SA-β-al activity, but inde-
pendent of p16INK4A. Moreover, HU induces reversible
γH2A.X foci, indicating that replicational stress induced by
HU promotes DNA strand breaks [58].

HU treatment also can induce postnatal subventricle
neural stem cells (NSCs) to undergo cellular senescence
[154]. In this case, elevated concentrations of the drug (at
mM levels) cause persistent DNA damage evidenced by
γH2AX foci formation and a consistently increasing number
of SA-β-gal positive cells, as well as increased p16INK4A,
p21Cip1, and p53 expression. Moreover, under HU treat-
ment, cells suffered a reduction of proliferation as a
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consequence of a cell cycle arrest at G0/G1. Furthermore, the
treatment increased intracellular ROS levels along with a sig-
nificant decrease in SOD2 and PRDX1. SOD2 is a main anti-
oxidant enzyme that scavenges ROS in the inner
mitochondrial matrix and acts as the first defense against
mitochondrial oxidative stress [170], while PRDX1 is a
thiol-specific peroxidase that scavenges hydrogen peroxide
[171]. In addition, this pharmaceutical agent provokes a
downregulation of Bcl-2-associated X protein (BAX), a crit-
ical proapoptotic factor that may contribute to the decreased
apoptosis observed in senescent NSCs [154, 172]. In addi-
tion, HU-induced NSC cellular senescence is counteracted
by α-glycerylphosphorylethanolamine (GPE) [173], which
is a precursor biomolecule of phospholipid synthesis and
exerts neuroprotective effects in human hippocampal cells
[174]. For instance, GPE protects NSCs from the induction
of DNA damage caused by phosphorylated γH2AX levels
and rescues cell proliferation from HU inhibition. Further-

more, GPE highly reduces HU-induced SA-β-gal expression
and activity and p53 and p21Cip1 mRNA expression. More-
over, this chemotherapeutic agent increases the ADP/ATP
ratio that indicates mitochondrial energy metabolism
impairment, while GPE restores the physiological ADP/ATP
ratio and significantly reduces HU-induced ROS levels. GPE
also consistently inhibits the ROS-responsive NF-κB signal-
ing [175]. Thus, GPE protects NSCs from HU-induced cel-
lular senescence, indicating that it might function as an
antiaging compound for NSCs [173].

HU can also induce cellular senescence of mesenchymal
stem/stromal cells (MSCs). MSCs are multipotent cells char-
acterized by their ability to differentiate into adipocytes,
chondrocytes, and osteoblasts; their expression of surface
markers CD73, CD90, and CD105; and their lack of hemato-
poietic lineage markers [176, 177]. They are also present in
the tumor microenvironment, where they support the
growth of tumor cells, activate mitogen and stress signaling,

Hydroxyurea

SOD
PRDX1
Sirtuins

ROS

SASP

SA-𝛽-gal

Lysosomes

BAX

Senescent Cell

-Bystander effects
-Immunoregulation
-Tumor promotion/
Inhibition
-Therapy resistance

Transformed cells and
non-transformed cells 

Figure 4: Overview of the main features of hydroxyurea-induced cellular senescence. Hydroxyurea, by inhibition of ribonucleotide
reductase (RNR), dramatically reduces the synthesis of deoxyribonucleotides (dNTPs) from ribonucleotide substrates (NTPs). This dNTP
pool reduction provokes a termination of DNA replication and may result in replication fork collapse. Furthermore, because of
genotoxic HU action, DNA damage is generated, and phosphorylated histone H2AX (γH2AX) binding to DNA breaks is promoted.
Cells may suffer an arrest at the S cell cycle phase, concomitant with increased expression of cell cycle inhibitors p16INK4A, p21Cip1, and
p53, reinforcing the cell cycle inhibition. During senescence induction, cell size is enlarged, and lysosomal biogenesis is increased, as
indicated by elevated levels of expression and senescence-associated-β-galactosidase (SA-β-gal). Along with DNA replication inhibition,
augmentation of oxidative stress occurs as reactive oxygen species (ROS) expression levels are elevated, consistently reducing
antioxidative stress protein superoxide dismutase (SOD) 2, peroxiredoxin (PRDX) 1, and Sirtuins that contribute to maintaining
increased oxidative stress. Moreover, HU-induced senescent cells are refractory to apoptosis, in part from reduced expression of the
proapoptotic BAX protein. Senescent cells are metabolically active, and they express and release a set of factors as part of the senescence-
associated secretory phenotype (SASP). The SASP may profoundly influence surrounding cells and tissues through increased local and
systemic inflammation and regulation of immune response, depending on SASP pattern, positively or negatively affecting tumor growth,
and may also contribute to therapy resistance. Magenta words mean increased expression. Magenta arrows mean induction. Gree T-
shape symbols mean inhibition. Green words mean reduced expression.
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and increase resistance to cytotoxins [178, 179]. HU at rela-
tively high levels inhibits dental follicle-derived MSC prolif-
eration and clone formation capacity along with increased
DNA double-strand breaks indicated by γH2AX foci forma-
tion; additionally, it induces SA-β-gal activity and a higher
expression level of p53, p21Cip1, and p16INK4A. These effects
are accompanied by reducing MSC differentiation toward
adipogenic, chondrogenic, and osteogenic lineages.

Moreover, senescence induction by HU increases ROS
levels along with the downregulation of SOD2 [155]. Simi-
larly, peripheral blood MSCs (PB-MSCs) are also targeted
by this agent [180]. HU induces a senescence-like phenotype
in PB-MSC as it provokes substantial cell morphology
changes accompanied by SA-β-gal and p16INK4A expression
with a discrete effect on p21Cip1 expression. The treatment
with the drug at therapeutically relevant concentrations
(200μM) strongly induces cell cycle arrest to the S cell cycle
phase; consistent with that, in the presence of HU, cells
progress from G1 to the S phase at a normal rate and are
arrested in the early S phase [58]. This pharmaceutical com-
pound also increases intracellular ROS levels that contribute
to senescence induction because oxidative stress scavengers,
N-acetylcysteine, and NOX inhibitor apocynin inhibit cellu-
lar senescence and partially protect PB-MSC proliferation
from inhibition by HU. Furthermore, HU-induced senescent
PB-MSCs significantly inhibit the proliferation of erythro-
leukemia cells by secreting TGF-β1 and elevated ROS pro-
duction. Thus, senescent PB-MSCs may shift from a
tumor-promoter activity to a tumor-suppressive func-
tion [180].

As stated, HU during senescence induction promotes an
elevation of cellular ROS in part because of downregulation
of SOD2, and recently, it was reported that this drug could
also inhibit the expression of Sirt-3 (Figure 4) [156]. Sirt-3
is a mitochondrial deacetylase that regulates major mito-
chondrial biological processes, including ATP generation,
ROS detoxification, nutrient oxidation, mitochondrial
dynamics, and the unfolded protein response [181, 182].
Sirt-3 also deacetylates and thereby activates SOD-2 [183].
HU induces mouse embryonic fibroblast (MEF) senescence
and increases ROS levels and Sirt-3 and SOD2 downregula-
tion. Interestingly, adjudin is a compound derived from the
anticancer drug lonidamine that acts through Sirt-3 activa-
tion [184]. Adjudin delays HU-induced cellular senescence
reducing ROS levels by Sirt-3 upregulation [156]. Although
it reduces the anti-ROS proteins Sirt-3 and SOD-2 expres-
sion during cell senescence induction, no molecular mecha-
nism implicated in their downregulation has yet been
elucidated. Nevertheless, it is important to reveal the under-
lying mechanistic pathways of elevated ROS levels due to
HU treatment. Moreover, adjudin, due to its antisenescence
function, may contribute to the therapy for age-associated
diseases and CIS.

Similarly, 1,5-isoquinolinediol (IQD), a poly (ADP-
ribose) polymerase (PARP1) inhibitor, protects MEF cells
from HU-induced senescence [185]. PARPs perform poly(-
ADP-ribosyl)ation of proteins as an immediate cellular
response to genotoxic insults induced by ionizing radiation,
alkylating agents, and oxidative stress [186]. HU accelerates

the MEF replicative senescence rate by inducing oxidative
stress paralleled to increasing PARP1 and lamin A expres-
sion, while IQD effectively suppresses the senescence rate
by decreasing the activity of PARP1 [185]. Noticeably, the
increased expression and activity of PARP1 rapidly consume
the NAD+ necessary for Sirt-1 function, so the decreased
Sirt-1 activity results in increased oxidative stress. Thus,
pharmacological PARP1 inhibition may restore NAD+
levels and Sirt-1 activity and normalize oxidative metabo-
lism [187], which may help control the prosenescence func-
tion of HU and prevent chemotherapy-associated
accelerated aging in cancer survivors [188].

6. Concluding Remarks

HU as a nonalkylating antiproliferative agent is still used
to manage a variety of disease conditions in both neoplas-
tic and nonneoplastic settings, and it is listed as an essen-
tial medicine by WHO. This drug can function as a
cytoreductive agent because of its cytostatic properties; in
this sense, as is analyzed in this review, HU can induce
cellular senescence in both cancer cells and nontrans-
formed cells, which profoundly affects tumor growth and
homeostatic function of normal cells. Mechanistically, this
compound functions as an antimetabolite agent by acting
on RNR and affecting the generation of the dNTP pools
necessary for DNA synthesis and duplication. The dNTP
deficiency may cause fork collapse associated with DNA
damage and ROS generation, which contributes to estab-
lishing a cellular senescence phenotype. What is the
molecular mechanism by which HU increases ROS? It is
a relevant question to address experimentally; cells under
treatment may exhibit reduced expression of antioxidative
stress, SOD2, PRDX1, and Sirtuins that contribute to the
enhancement and stabilization of elevated ROS levels.
For instance, repression of SOD2 may occur at the level
of epigenetic regulation [189], and HU may promote epi-
genetic modifications along with regulation of several
intracellular signal transductions, such as MAPK, PKG,
and PKA signaling [190], which, in part, may explain the
reduced expression of SOD2 during the increase in ROS
levels and the cellular senescence due to HU treatment.

Different strategies have emerged to eliminate CIS cells
because of the need to eliminate tumor cells and non-
transformed dysfunctional cells. To this end, senolytic
strategies have been developed to target CIS-transformed
cells and, potentially, the nontransformed senescent cells
without affecting normal proliferating cells [191]. In addi-
tion, the increased ROS levels that contribute to HU-
induced cellular senescence are valuable targets for devel-
oping therapeutic strategies to improve the cytotoxic func-
tion of the drug, which may shift cells from the
senescence response toward cell death fate [192]. Under-
standing the delicate balance between cellular senescence
and the beneficial anticancer function of HU is vital to
improving the current therapies to impact the life quality
of patients and control the undesirable premature aging
caused by chemotherapy.
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