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A B S T R A C T   

The lack of detailed COVID-19 cases at a fine spatial resolution restricts the investigation of spatial disparities of 
its attack rate. Here, we collected nearly one thousand self-reported cases from a social media platform during 
the early stage of COVID-19 epidemic in Wuhan, China. We used kernel density estimation (KDE) to explore 
spatial disparities of epidemic intensity and adopted geographically weighted regression (GWR) model to 
quantify influences of population dynamics, transportation, and social interactions on COVID-19 epidemic. 
Results show that self-reported COVID-19 cases concentrated in commercial centers and populous residential 
areas. Blocks with higher population density, higher aging rate, more metro stations, more main roads, and more 
commercial point-of-interests (POIs) have a higher density of COVID-19 cases. These five explanatory variables 
explain 76% variance of self-reported cases using an OLS model. Commercial POIs have the strongest influence, 
which increase COVID-19 cases by 28% with one standard deviation increase. The GWR model performs better 
than OLS model with the adjusted R2 of 0.96. Spatial heterogeneities of coefficients in the GWR model show that 
influencing factors play different roles in diverse communities. We further discussed potential implications for 
the healthy city and urban planning for the sustainable development of cities.   

1. Introduction 

The COVID-19 epidemic has spread worldwide. As of September 30, 
2021, there were 230 million COVID-19 cases with 4.7 million deaths 
across the world (Dong et al., 2020). Urban residents are the primary 
victims of this epidemic as more than 90% COVID-19 cases lived in cities 
(United Nations, 2020; Xu et al., 2021b). Therefore, it is of great sig-
nificance to investigate spatial disparities and determinants of the 
COVID-19 epidemic through an urban lens (Acuto et al., 2020). The 
intra-urban analysis of the COVID-19 epidemic can not only reveal the 
spread of infectious diseases within cities but also support the building 
of a healthy city in the post-pandemic era (Frumkin, 2021; Megahed and 
Ghoneim, 2020). 

Attack rates of the COVID-19 epidemic present apparent spatial 
heterogeneities (Das et al., 2021). Infectious diseases spread through 
human-to-human contact and diffuse with mobility of urban residents. 
Thus, spatial heterogeneities of infectious diseases are strongly corre-
lated with urban population dynamics, including spatial aggregation of 

infected individuals, individual dispersal characteristics, social in-
teractions and contact patterns (Real and Biek, 2007; Sun et al., 2020). 
In addition, the demographic structure strongly influences the 
COVID-19 epidemic in space, because elderly people are more vulner-
able to the virus (Team, 2020). Socioeconomic status, such as income 
and education, are also correlated with COVID-19 outcomes (Chang 
et al., 2021; Drefahl et al., 2020). Low-income people are less likely to 
follow social distancing and other prevention policy, which in turn leads 
to higher morbidity and mortality (Mena et al., 2021). Built environ-
ment and layout of urban form are associated with COVID-19 incidence 
rates (Kashem et al., 2021). Physical environment, such as air quality 
and meteorological factors, also influence the spread of COVID-19 
epidemic (Zhang et al., 2020). 

However, most of these studies are on the country or provincial level, 
while limited studies investigated the spatio-temporal variations of the 
COVID-19 epidemic at the intra-urban scale (Cordes and Castro, 2020; 
Maroko et al., 2020). Intra-urban studies of the COVID-19 epidemic 
require locations of COVID-19 cases at a fine scale, while official 
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statistics of the epidemic are basically released in accordance with 
administrative units (Yang et al., 2021). It is difficult to obtain spatial 
distributions of individual cases. Social media data is an alternative data 
source in intra-urban scale modeling of the COVID-19 epidemic, which 
has been used in COVID-19 related studies (Li et al., 2020; Peng et al., 
2020). 

Wuhan was the first city in China to report the COVID-19 epidemic, 
and also the most affected city in China. The local government of Wuhan 
published confirmed COVID-19 cases in 13 administrative districts in 
the city. However, the district-level data is too coarse to reveal spatial 
disparities of infection intensity within a city. In this study, we collected 
nearly one thousand self-reported COVID-19 cases in Wuhan through a 
Chinese social media platform (Weibo, like Twitter), which was used to 
represent spatial disparities of attack rates of the COVID-19 epidemic 
within the city. We further chose five explanatory variables, namely, 
population density, aging rate, metro station, main roads, and com-
mercial point-of-interests (POIs), to quantify their influences on spatial 
heterogeneities of COVID-19 epidemic in Wuhan. Considering the 
spatial nonstationary of self-reported COVID-19 cases and influencing 
factors, we adopted the geographically weighted regression (GWR) 
model and compared results of the GWR model with the global ordinary 
least squares (OLS) model (Maiti et al., 2021; Mollalo et al., 2020; Xu 
et al., 2021a). 

2. Study area and data 

2.1. Study area 

Wuhan is the capital city of Hubei Province, located in the eastern 
part of the Jianghan Plain and the middle reaches of the Yangtze River 
(Fig. 1). It is the intersection of the Yangtze River and its largest tribu-
tary, the Han River, and thus forms a pattern of three parts (Hankou, 
Wuchang, and Hanyang) (Fig. 1). In 2019, more than ten million people 
lived in Wuhan, with the GDP over 1.6 trillion RMB. Wuhan is the largest 
inland water-land-air transportation hub in Central China, and it is the 
only city in Central China with direct flights to five continents around 
the world. 

Most initial COVID-19 cases reported in Wuhan were exposed to one 
seafood market in Jianghan District, Wuhan (Fig. 1). As of May 18, 2020 
that was the date of the last COVID-19 case in Wuhan, there were a total 
of 50,340 confirmed COVID-19 cases in Wuhan, with 3,869 deaths (http: 
//www.wuhan.gov.cn/zwgk/tzgg/202005/t20200521_1325022.sh 
tml). The overall mortality rate was 7.7% of the whole city. The most 

severely affected areas were Wuchang, Jiang’an, Jianghan and Qiaokou 
districts on both sides of the Yangtze River. Wuchang District had the 
largest number of confirmed cases, reaching 7551 cases, and Jianghan 
District had the highest morbidity that was 1.23%. 

2.2. Self-reported COVID-19 cases 

In the early stage of the COVID-19 epidemic in Wuhan, medical re-
sources and other aspects of responses were not prepared in time. As a 
result, some infected or suspected cases could not be admitted to hos-
pitals in time. One of the China’s largest social media platform, Weibo 
(like Twitter), opened up a channel for help, allowing patients who were 
self-reported as infected cases to post their symptoms and onset time on 
the platform (Li et al., 2020; Peng et al., 2020). The information was 
collected, sorted and sent to the local government to better help patients. 

We collected the information related to the self-reported COVID-19 
cases on Weibo using the Python crawler technology. There were 910 
self-reported cases in total, including the age, time of onset, where they 
live, date of post, and report text. Among them, there were a total of 693 
cases who reported their specific time of illness. We completed part of 
the incomplete information based on the report text. We acquired the 
latitude and longitude of the location according to the text address for 
spatial analysis and modeling. Detailed information (age, location, post 
time, and confirmed time) about 910 self-reported COVID-19 cases was 
shared on the GitHub after removing personal information (https://gith 
ub.com/Inn905/COVID19_Self-reported_Data_Weibo). 

2.3. Explanatory variables 

We choose the following five explanatory variables to explain spatial 
disparities of intensity of self-reported COVID-19 cases, namely, popu-
lation density, aging rate (over 60 years old), metro stations, main roads, 
and commercial point-of-interests (POIs). The population density and 
aging rate are at the street block level, which were from the annual 
population survey in 2014. Transportation is an essential medium for 
disease transmission. We use metro stations and road net to represent 
public and private transportation, respectively. Metro stations and main 
road net were from the Gaode Map (https://www.amap.com) in 2019. 
The metro system counts for more than 50% inter-city commuters in 
Wuhan. Commercial activities correspond to the frequent contact and 
interaction between people within a city, and there is a high probability 
of indirect contact with strangers. We collect more than 120,000 com-
mercial POIs from the Gaode Map, which cover shopping malls, hotels, 

Fig. 1. Spatial distributions of accumulative confirmed COVID-19 cases at the district level in Wuhan, China (a) and in the main urban areas (b).  

G. Xu et al.                                                                                                                                                                                                                                       

http://www.wuhan.gov.cn/zwgk/tzgg/202005/t20200521_1325022.shtml
http://www.wuhan.gov.cn/zwgk/tzgg/202005/t20200521_1325022.shtml
http://www.wuhan.gov.cn/zwgk/tzgg/202005/t20200521_1325022.shtml
https://github.com/Inn905/COVID19_Self-reported_Data_Weibo
https://github.com/Inn905/COVID19_Self-reported_Data_Weibo
https://www.amap.com


Sustainable Cities and Society 76 (2022) 103485

3

restaurants, leisure and entertainment sites, and life service sites. 
The spatial extent is the main urban area of Wuhan with the block as 

the analysis unit. The average size of street blocks is 0.72 km2, with the 
smallest block of 0.012 km2 and the largest block of 15.8 km2. There are 
1107 blocks in total. A block is an area enclosed by main roads. In 
Chinese cities, this is a more refined spatial unit than district-level 
administrative divisions. By using blocks as the analysis unit, we can 
obtain more samples to reveal the spatial heterogeneity of the epidemic 
and the spatial differences of its influencing factors from a more refined 
perspective. The average of the kernel density estimation (KDE, see 
Methods for detailed information) of self-reported COVID-19 cases in 
each block is the dependent variable. Population density and aging rate 
(with their initial values) at the block level are two explanatory vari-
ables. In terms of transportation variables (metro stations and main 
roads) and commercial POIs, we also use the KDE of them in each block 
as the other three explanatory variables. 

3. Methods 

3.1. Kernel density estimation 

Kernel Density Estimation (KDE) takes the sample as the center 
(core) and calculates the density per unit area of the sample point within 
the search radius (bandwidth) to indicate the spatial distribution of 
densities of geographic elements. KDE has a wide range of applications 
in disease mapping. The mathematical expression of kernel density 
estimation is as Equation (1): 

f (x) =
1
nh

∑n

i=1
K
(x − xi

h

)
(1)  

where K() is the kernel function; x-xi represents the distance from the 
value point to the output grid, h is the bandwidth, that is, the radius of 
the circle, and n is the sample size. 

This study uses the kernel density estimation function in ArcGIS 10.3 
software to analyze the spatial intensity of self-reported COVID-19 cases 
and influencing factors at the block level in Wuhan. The adaptive 
bandwidth is used as the search radius. 

3.2. Global linear regression 

We first build the ordinary least square (OLS) linear regression model 
(Equation (2)) to quantify influencing factors of COVID-19 cases. 

y = β0 +
∑k

i=1
βixi + μ (2)  

where y is the KDE of self-reported COVID-19 cases at blocks, xi are five 
explanatory variables, k is the number of explanatory variables, β0 is a 
constant, βi is the regression coefficient of xi, and μ is the error term. 

We use percent changes (PC) of self-reported COVID-19 cases caused 
by the increase of one standard deviation in the explanatory variable to 
compare contributions from different explanatory variables, which is 
defined as Equation (3) (Xu et al., 2020): 

Fig. 2. Temporal variations of self-reported COVID-19 cases and comparisons with official data. (a) Numbers of self-reported COVID-19 cases on each day from 
February 3 to March 7, 2020; (b) Time delays between the time of onset and self-report on the social medial (Weibo in China). (c) Proportions of self-reported COVID- 
19 cases and official published cases at the district level; (d) Frequency distributions of ages between self-reported COVID-19 cases and official published cases. 
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PCi =
βisdi

y
× 100% (3)  

where PCi is the percent change of y caused by the increase of one 
standard deviation of xi, βi is the regression coefficient of xi, sdi is the 
standard deviation of xi, and y is the average of self-reported COVID-19 
cases at all blocks. 

3.3. Geographically weighted regression 

Spatial heterogeneity is a fundamental characteristic of geographical 
variables, leading to a spatial variance in their relationships (Fother-
ingham et al., 2015). The global ordinary least squares (OLS) regression 
model assumes the spatial stationarity in their relationships between 
explanatory variables and the dependent variable, failing in capturing 
the variance in space of relationships among geographical variables. A 
spatially varying coefficient modeling strategy is needed in geographical 
analysis (Murakami et al., 2019). The geographically weighted regres-
sion (GWR) model was proposed and widely used in many disciplines, 
whose generic formulation is shown by Equation (4) (Fotheringham 
et al., 2002): 

yi = βi0 +
∑m

j=1
βijXij + εi, i = 1, 2,…n (4)  

where at block i, yi is the averaged KDE of self-reported COVID-19 cases, 
βi0 is the intercept, βij is the jth regression parameter, Xij is the value of 
the jth explanatory parameter, and εi is a random error term. 

In the GWR model, closer observations have a higher influence in 
estimating the local set of coefficients than distant observations. 
Regression parameters in the GWR model at each block in matrix form 
are as Equation (5) (Fotheringham et al., 2002): 

β̂(i) =
(
XTW(i)X

)− 1XTW(i)y (5)  

where β̂(i) is the vector of parameter estimates for block i, W(i) is the 
diagonal weights matrix specified for block i, X is the matrix of the 
explanatory variable with a first column of 1s for the intercept, y is the 

vector of the dependent variable. 
The weights matrix (W(i)) is calculated with a specified kernel 

function and a bandwidth. The Gaussian function is a widely used kernel 
function. The bandwidth is specified either by a fixed distance or a fixed 
number of nearest neighbors, namely, a fixed bandwidth or an adaptive 
bandwidth, respectively (Lu B, Yang W, Ge Y, & Harris P, 2018). More 
detailed information on kernel function and bandwidth in GWR 
modeling can be found in references (Fotheringham and Oshan, 2016; 
Lu et al., 2017; Lu et al., 2014a; Wheeler and Tiefelsdorf, 2005). In this 
study, the GWR modeling was conducted using the package of 
“GWmodel” in R programming (Gollini I, Lu B, Charlton M, Brunsdon C, 
& Harris P, 2015; Lu, Harris, Charlton, & Brunsdon, 2014b). 

4. Results 

4.1. Spatio-temporal variations of self-reported COVID-19 cases 

The temporal variations of self-reported COVID-19 cases are shown 
in Fig. 2. The self-reported COVID-19 cases started to post their symp-
toms for help from February 3, 2020, and numbers of self-reported cases 
quickly increased in the following days (Fig. 2a). On February 5, there 
were more than 180 self-reported cases who posted their symptoms on 
social media for help. Wuhan had urgently constructed two infectious 
hospitals and also opened up mobile cabin hospitals for the isolation and 
treatment of patients with mild symptoms. As the treatment capacity 
increased, self-reported cases were quickly admitted to hospitals. As a 
result, the number of self-reported COVID-19 cases also dropped 
significantly and there were fewer than 10 self-reported cases after 
February 15. We calculated the interval time from onset to self-report for 
each case and the histogram of the interval time is shown in Fig. 2b. The 
average interval time is 9.87 days and this time for most cases varies in 
0-20 days. According to the interval time, it can be inferred that most 
self-reported COVID-19 cases were ill around January 25, 2020, which is 
close to the date (January 23, 2020) of the lockdown of Wuhan. 

We assess the biases of the self-reported data by comparing it with 
official data. We calculate proportions of self-reported COIVD-19 cases 
in each district in Wuhan, and compare proportions from the official 

Fig. 3. Spatial distributions of self-reported COVID-19 cases and the result of kernel density estimation (KDE) in the main urban area of Wuhan, China.  
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published data (Fig. 2c, 2d). Overall, all districts are scattered around 
the 1:1 line, showing a general consistence of proportions between self- 
reported COIVD-19 cases and official data. The proportion of self- 
reported COIVD-19 cases in highly infected districts (like Wuchang, 
Qiaokou, and Jiang’an districts) is higher than the official published 
proportion (Fig. 2c). By calculating the chi-square value between self- 
reported cases and official statistics (as of May 18, 2020), the result 
shows that the chi-square value is 122.55 (P < 0.001), which shows that 
proportions among districts between the self-reported cases and official 
data are consistent. The average age of the self-reported COVID-19 cases 
is 59.8 years old. We also compare the age distributions of self-reported 
COVID-19 cases with official published data (Team, 2020) (Fig. 2d). The 
overall distribution trends of them are similar, with the peak group 
being 50-70 years old. However, the age distribution of self-reported 
cases is more biased towards the elderly. 

The spatial distribution of more than nine hundred self-reported 

COVID-19 cases is presented in Fig. 3. The result of kernel density 
estimation (KDE) shows the intensity of self-reported cases. Overall, 
most self-reported cases were concentrated in the main urban area of 
Hankou along the Yangtze River and the Han River. Hankou is the 
original birthplace and also the city center of Wuhan that has the highest 
population density and busiest commercial activities across the whole 
city. Apart from the concentrated and continuous cluster of self-reported 
COVID-19 cases in the city center, there are other three clusters of higher 
intensity of self-reported cases in Hankou, which are Zhuyeshan, Bai-
buting, and Gutian (Fig. 3). These three areas are residential areas with 
high population density, resulting in a higher attack rate of COVID-19 
there. In the south bank of the Yangtze River (Wuchang), there are 
five clusters of higher intensity of self-reported cases, among which 
Zhongnan Road and Xudong are sub-centers and mixed commercial and 
residential areas with high population densities and large visitor flows. 
Another three clusters (Qingshan, Baishazhou, and Guanggu) are 

Fig. 4. Spatial distributions of explantory variables and results of kernel density estimation (KDE). (a) Population density; (b) Aging rate; (c) KDE of metro 
stations; (d) KDE of main roads; (c) KDE of commercial POIs. 
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residential areas with concentrated population there. In Hanyang re-
gion, the two clusters of high intensity of self-reported cases are 
Zhongjiacun and Wangjiawan, which are two local commercial and 
residential centers. 

4.2. Correlation analysis 

The spatial distribution of explanatory variables and results of kernel 
density estimation (KDE) are shown in Fig. 4. Blocks with the highest 
population density are concentrated in the core area of Hankou (central 
business district). The core areas of Wuchang District and Qingshan 
District also experience higher population densities (Fig. 4a). The dis-
tribution of the aging rate is relatively discrete. The northeast part of the 
central urban area has the highest aging rate, which is the interface 
between urban and rural areas (Fig. 4b). There are eight metro lines in 
Wuhan (Fig. 4c) and areas with the highest density of metro stations are 
concentrated on the left bank of the Yangtze River, surrounding major 
business districts. The intersections of other metro stations are also hot 
spots. Two banks of the upper reaches of the Yangtze River are areas 
with the highest road density. High-density areas of commercial POIs 
are distributed along both banks of the Yangtze River, with business 
districts as the centers (Fig. 4e). There are many small clusters of the 
KDE of commercial POIs, suggesting that POIs reflect social activities in 
a more detailed resolution. 

Descriptive statistics of self-reported COVID-19 cases and explana-
tory variables at blocks are shown in Table 1. Self-reported COVID-19 

cases, metro stations, main roads, and POIs are aggregated from the KDE 
results of them. Correlation matrix between self-reported COVID-19 
cases and explanatory variables is shown in Fig. 5. The Pearson’s r be-
tween five explanatory variables and self-reported cases at the block 
level varies in 0.32-0.82, and they are all significantly and positively 
correlated (P < 0.001). Among them, the Pearson’s r between com-
mercial POIs and self-reported cases is the strongest, reaching 0.82. The 
scatter plot between aging rate and self-reported cases is relatively 
dispersed, resulting in the lowest correlation. 

4.3. Regression modeling using OLS and GWR 

We take the average KDE of self-reported COVID-19 cases in a block 
as the dependent variable and build the global ordinary least squares 
(OLS) regression model with five explanatory variables (Table 2). The 
adjusted R2 of the OLS model is 0.76, indicating that five explanatory 
variables can explain 76% variance of self-reported COVID-19 cases at 
the block level. In general, all explanatory variables are significantly (P 
<0.001) and positively correlated with the dependent variable. 

We calculate percent changes of self-reported COVID-19 cases when 
the explanatory variable increases by one standard deviation, holding all 
other explanatory variables constant at their arithmetic mean values 

Table 1 
Descriptive statistics of self-reported COVID-19 cases and explanatory variables.  

Variables Min. Median Mean Max. 

Self-reported cases 0 2.923 3.007 7.900 
Pop. Density# 6 12,120 15,600 67,378 
Aging rate 0 0.2091 0.2034 0.9424 
Metro stations 0 0.3381 0.3440 0.8708 
Main roads 0 2.318 2.202 4.456 
Commercial POIs 0 245.0 248.0 647.3  

# Person/km2. 

Fig. 5. Correlation analysis between self-reported COVID-19 cases and explanatory variables. The blue straight line is the regression line with Pearson’s R and 
p value in each plot. 

Table 2 
The result of OLS regression with the KDE of self-reported COVID-19 cases as the 
dependent variable (N = 1071). β is the coefficient of regression model. Standard 
error represents the standard deviation of the regression coefficient. T-value and 
p-value are the significance test results of coefficients.  

Explanatory variables β  Standard error t p VIF 

Intercept − 0.68 0.12 − 5.71 < 0.001  
Population density# 0.031 0. 004 8.78 < 0.001 2.44 
Aging rate 2.28 0.41 5.57 < 0.001 1.05 
Metro stations 2.02 0.20 9.98 < 0.001 2.73 
Main roads 0.28 0.045 6.20 < 0.001 1.63 
Commercial POIs 0.57 0.033 17.47 < 0.001 2.55  

# Thousand people/km2. 
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(Equation (3)), shown in Fig. 6. Commercial POIs show the strongest 
influences on self-reported COVID-19 cases, which increase COVID-19 
cases by 28% with the increase of one standard deviation. In terms of 
transportation, metro stations have stronger influences on COVID-19 
cases than main roads. It is easy to understand that public trans-
portation has a higher risk for infectious diseases. As for population, the 
increase of one standard deviation in population density and aging rate 
increase COVID-19 cases by 14% and 6%, respectively. 

We further investigate influences of explanatory variables on self- 
reported COVID-19 cases using the geographically weighted regression 

(GWR) method. The spatial distribution of coefficients and local R2 in 
the GWR model are presented in Fig. 7. Generally, the adjusted R2 of the 
GWR model is 0.96, which is significantly higher than that of OLS model 
(0.76). It’s clear that the GWR model can explain the dependent variable 
more effectively, indicating that GWR has a high explanatory power and 
better fit ability in most blocks. In this model, the corrected Akaike in-
formation criterion (AICc) value of the GWR model (1305.6) is reduced 
by 57% compared with the global OLS model (AICc = 3052.5). Obvi-
ously, the performance of the GWR model is significantly improved. 

Coefficients of five explanatory variables vary across blocks, showing 

Fig. 6. Percent changes of self-reported COVID-19 cases associated with every one standard deviation increase from mean value of each explanatory 
variable. All other explanatory variables are held at their mean arithmetic values. Error bars are 95% confidence intervals. 

Fig. 7. Spatial distributions of estimated coefficients and local adjusted R2 in the GWR model. (a) population density; (b) aging rate; (c) Metro station; (d) 
Main roads; (e) Commercial POI; (f) Local adjusted R2. 
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obvious spatial heterogeneities of their influences on self-reported 
COVID-19 cases. For population density, blocks in the north of the 
central urban area of Wuhan have higher coefficients, showing stronger 
influences of population density on self-reported COVID-19 cases in this 
region (Fig. 7a). For aging rate, blocks with higher coefficients are 
located in Hankou and the south of the central urban area (Fig. 7b). For 
transportation factors, blocks with higher coefficients of metro stations 
are mainly located in the central urban areas (Fig. 7c), while blocks with 
higher coefficients of main roads are mainly located in faraway subur-
ban areas (Fig. 7d). The highest coefficients of commercial POIs are 
located in the Qingshan District, showing a stronger influence of social 
interactions there (Fig. 7e). Most areas around the central urban area of 
Wuhan have higher local R2 in the GWR model (Fig. 7f). Two clusters of 
lower local R2 are located in the core urban area of Hanyang and 
northwest part of Hankou, which reveals that other influencing factors 
account for local intensity of self-reported COVID-19 cases there. 

5. Discussion 

Numerous studies investigating the COVID-19 epidemic are in a 
large scale like country, province, and state levels, while detailed 
exploration at smaller spatial scales is limited. This study contributes to 
reveal spatial disparities of COVID-19 cases and influencing factors at a 
fine spatial resolution in Wuhan, China. We collected more than nine 
hundred self-reported COVID-19 cases in Wuhan through a large Chi-
nese social media platform (Weibo, like Twitter), compensating for the 
vacancy of detailed confirmed COVID-19 cases at the intra-urban scale. 
The proportions of self-reported cases at the district level are consistent 
with official published data, and they also share a very similar distri-
bution of ages with official published data, suggesting the representa-
tiveness of self-reported cases to quantifying spatial heterogeneities of 
the COVID-19 epidemic in Wuhan. Such social media data and other big 
data have great potential applications in response to disasters and public 
emergencies (Zhou et al., 2020). Nevertheless, self-reported COVID-19 
cases are not final cases after all, and there may be a bias in the spatial 
distribution of final cases. 

Overall, there are obvious spatial clusters of self-reported COVID-19 
cases, showing obvious spatial heterogeneities of the COVID-19 
epidemic, which was demonstrated by previous related studies (Mena 
et al., 2021; Yang et al., 2021). Areas with higher morbidity rates are 
mainly concentrated in commercial centers and populous residential 
areas, where there are higher population densities and a higher fre-
quency of social interactions. The OLS model shows that population 
dynamics, transportation, and social interaction account for 76% vari-
ance in self-reported COVID-19 cases. The GWR model has a better 
performance (adjusted R2 = 0.96) than the OLS model and reveals 
spatial disparities of influences of explanatory variables on self-reported 
COVID-19 cases. 

The COVID-19 epidemic asked us to rethink the city, to reflect on 
urban planning, construction and governance: including city size, urban 
density, and community design (Batty, 2020; Moosa and Khatatbeh, 
2021; Sharifi and Khavarian-Garmsir, 2020). The core of a city is the 
agglomeration of people, which is reflected in two aspects, size and 
density (Li et al., 2021). Size and density support the economic output 
and knowledge innovation of cities, but also provide hotbeds for the 
breeding and spread of infectious diseases (Bettencourt et al., 2007; Lei 
et al., 2021). It is especially necessary to incorporate healthy city in 
urban planning. Firstly, in high-density cities, the focus is on improving 
the accessibility of public facilities and services, and increasing urban 
green space and open space (Liu et al., 2021). Secondly, we should 
improve urban resilience and the ability of cities to deal with emer-
gencies through the improvement of self-sufficiency in resource and 
reducing in ecological footprint (Yang et al., 2021). Finally, local re-
alities should be taken into consideration in community design. 

This study also has limitations. Many other factors may have in-
fluences on the spread of COVID-19 epidemic in cities, such as 

socioeconomic status, occupation, urban structure, housing quality, etc. 
(Hu et al., 2021; Mansour et al., 2021; Megahed and Ghoneim, 2020). In 
addition, those demographical and urban characteristics have complex 
influences on the infectious diseases. For example, the enclosed com-
munity in China is usually criticized for isolation of human mobility and 
increasing in traffic congestion. However, it is the enclosed community 
that allows the stay-at-home order to be implemented well in Wuhan 
and other Chinese cities (Huang et al., 2021). From this point of view, it 
is very meaningful to analyze the COVID-19 infection rate in enclosed 
and open communities in Wuhan. 

6. Conclusions 

Wuhan was the initial epicenter of the COVID-19 epidemic. This 
study used self-reported COVID-19 cases in Wuhan from a Chinese social 
media platform (Weibo) to quantify spatial intensity of COVID-19 
epidemic within the city. The self-reported cases share consistent 
properties with official published data at the macro level but with 
detailed locations. Self-reported cases were mainly concentrated in 
commercial centers and populous residential areas, verifying spatial 
clusters of COVID-19 epidemic there. Population dynamics, trans-
portation, and social interactions strongly determine the spatial dis-
parities of the COVID-19 epidemic at the block level. The GWR model 
characterizes local variations of influences of five explanatory variables 
on the COVID-19 epidemic and performs better than the OLS model. Our 
findings enlighten us to optimize urban design, transform urban infra-
structure, and create a healthy city. 
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