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Abstract

Mucociliary epithelia are composed of multiciliated, secretory and stem cells, and line various 

organs in vertebrates such as the respiratory tract. By means of mucociliary clearance, those 

epithelia provide a first line of defense against inhaled particles and pathogens. Mucociliary 

clearance relies on the correct composition of cell types, i.e. the proper balance of ciliated and 

secretory cells. A failure to generate and to maintain correct cell type composition and function 

results in impaired clearance and high risk to infections, such as in congenital diseases (e.g. 

ciliopathies) as well as in acquired diseases, including Asthma, Chronic Obstructive Pulmonary 

Disease (COPD) and Idiopathic Pulmonary Fibrosis (IPF). While it remains incompletely resolved 

how precisely cell types are specified and maintained in development and disease, many studies 

have revealed important mechanisms regarding the signaling control in mucociliary cell types 

in various species. Those studies not only provide insights into the signaling contribution to 

organ development and regeneration, but also highlight the remarkable plasticity of cell identity 

encountered in mucociliary maintenance, including frequent trans-differentiation events during 

homeostasis and specifically in disease. This review will summarize major findings and provide 

perspectives regarding the future of mucociliary research and the treatment of chronic airway 

diseases associated with tissue remodeling.
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Introduction

The importance of understanding the biology of mucociliary epithelia

A relatively small number of extremely conserved cell-cell signaling pathways is able 

to regulate embryonic development, adult tissue homeostasis, regeneration, and tissue 

remodeling associated with various diseases (Perrimon et al., 2012; Sanz-Ezquerro et 

al., 2017). Those pathways are being reiteratively employed and have to be precisely 

controlled to elicit tissue-, and context-dependent effects. Defective signaling regulation is 

a common reason for pathogenic physiological and morphological changes. The complexity 

of biological signaling regulation, the combinatorial interplay between multiple pathways, 

and the almost unlimited possibilities of dysregulation are making it hard to establish 

unambiguous links between a given change in signaling and a specific phenotype (Weng et 

al., 1999).

In addition to congenital defects caused by mutations in important developmental genes, 

many diseases develop only postnatally or during adulthood. These diseases can have 

predominantly genetic causes, but more often, they are promoted by environmental factors 

in combination with an unfavorable genetic disposition (Renz et al., 2011; Sears and Genuis, 

2012). With the advent of large-scale “big data” studies of individuals and populations, 

we are just starting to elucidate the genetic basis of predispositions to various diseases by 

whole-exome and genome studies (Alyass et al., 2015; Naylor and Chen, 2010). We also 

learn more and more about the chemical and biological basis of various environmental 

factors with pathogenic potential. Nevertheless, it remains difficult to draw a clear 

connection between a common genetic variation, the presence of a common environmental 

factor, and the manifestation of a disease in an individual patient.

Even in cases where the predominant cause can be established, e.g. tobacco use 

and airway diseases, understanding the cause is very different from understanding the 

pathophysiological mechanism (Ballweg et al., 2014; Graff et al., 2012; Heijink et al., 

2013; Rijt et al., 2012; Schamberger et al., 2014; Schamberger et al., 2015; Wang et al., 

2018; Zhang et al., 2014; Zuo et al., 2019). Nevertheless, such a level of understanding 

is necessary for effective prevention, early diagnosis, and especially for establishment of 

successful therapies. This problem is further amplified by the fact that patients often come to 

the clinic only when a chronic disease is already severely impacting on their quality of life, 

and that definitive diagnosis requires interdisciplinary teams or specialized analytics only 

available in major clinics and centers. This can lead to delayed diagnosis, sometimes years 

after the disease onset (Hoyer et al., 2019; Smith, 2015). At this point it is even harder to 

establish what has initially caused a disease and which changes occurred through chronic 

inflammation, tissue remodeling and other secondary causes.

It is therefore extremely important to investigate not only defective patient tissue, but 

also to gain insights into the principle functions of genes and signaling pathways from 

normal development, animal models and in vitro studies employing simplified as well 

as organoid tissue cultures. Such studies have greatly improved our understanding of 

mucociliary epithelial biology over the years and have shed light onto some of the possible 
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pathophysiological mechanisms that contribute to mucociliary dysfunction, especially 

relating to chronic airway diseases.

The following sections will review some important findings from basic as well as clinical 

research on the roles of key signaling pathways in mucociliary development and airway 

diseases, will summarize emerging concepts, and highlight open questions in the field.

Main Text

Mucociliary cell types, their functions, and associated diseases

Mucociliary epithelia line a wide variety of organs in animals, including the epidermis, the 

female reproductive tract and the airways. They usually contain stem or progenitor cells, 

which reside beneath the epithelial layer or at the base of the epithelium and in contact 

with the basement membrane, hence, they were named basal cells (BCs) (Haas et al., 2019; 

Rock et al., 2009; Rock et al., 2010; Zuo et al., 2015) (Figure 1). BCs can give rise to 

all other mucociliary cell types. Their correct regulation, proliferation and differentiation 

is of utmost importance for generating and maintaining correct cell type composition and 

function of the epithelium. Dysregulated BC behavior is found in various diseases affecting 

airway function, including basal cell hyperplasia, and can lead to lack of differentiated cells 

and to alterations in epithelial morphology (Hogan et al., 2014; Rock et al., 2010).

The precise mucociliary cell type composition varies between different organisms and 

organs. Nevertheless, all types of mucociliary epithelia consist of multiciliated cells (MCCs) 

as well as one or more secretory cell type(s) (Figure 1A–D) that provide mucus.

MCCs are highly specialized and form over 100 motile cilia that project from the 

apical surface and that beat in a metachronal-synchronized fashion to produce directional 

extracellular fluid flow over the epithelium (Brooks and Wallingford, 2014; Meunier and 

Azimzadeh, 2016; Walentek et al., 2017). Depending on the organ, ciliary beating and 

mucociliary fluid flow can be employed for locomotion, to circulate water for oxygenation, 

or for directional transport of mucus, oocytes, symbionts and pathogens. Defects affecting 

MCCs or motile cilia lead to breakdown of fluid flow and of mucociliary clearance 

(Tilley et al., 2015). Consequently, diseases affecting cilia, collectively termed ciliopathies, 

frequently include respiratory manifestations, increased susceptibility to airway infections, 

and subfertility in females through increased rates of tubular pregnancies (Ibañez-Tallon et 

al., 2003; Mitchison and Valente, 2017; Roy, 2009; Zariwala et al., 2011).

Cells secreting Mucin glycoproteins, e.g. goblet cells, are another essential part of 

mucociliary epithelia. Mucins are long, gel-forming proteins that form a mobile layer, 

which is transported by ciliary motion (Corfield, 2015; Williams et al., 2006). Due to 

the gel-like properties of mucus, it serves as barrier against pathogen entry and the 

accumulation of harmful particles (Wagner et al., 2018; Zanin et al., 2016). Mucus traps 

and facilitates removal of pathogens, and generates spatial distance to the epithelial cell 

surface. Mucus composition changes in response to inflammation in the mammalian airways 

(Fahy and Dickey, 2010). This alters mucus structure and properties to protect the organism 

from pathogens. On the other hand, excessive secretion of mucus in conditions such 
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a goblet cell hyperplasia, is also a feature of chronic lung diseases, including Chronic 

Obstructive Pulmonary Disease (COPD), Asthma or Idiopathic Pulmonary Fibrosis (IPF) 

(Fahy and Dickey, 2010; Hogan et al., 2014). In these conditions, increased Mucin secretion 

contributes to the pathology by means of impaired airway clearance, obstruction and 

enhanced pathogen accumulation.

Additional secretory cells can exist in mucociliary epithelia that regulate ion balance, secrete 

substances or modulate the behavior of other cells.

Ionocytes are enriched for the transmembrane proton pump vH+ATPase, encoded by ATP6-

family genes. Depending on the ionocytes subtype (α or β), localization of vH+ATPase 

can be either apical or basolateral (Quigley et al., 2011). Together with the expression 

of carbonic anhydrases, vH+ATPase regulates cellular and extracellular pH (Quigley and 

Kintner, 2017). Ionocytes also contain other transporters, to regulate osmotic balance. In the 

mammalian lung, ionocytes are the major site of CFTR (Cystic Fibrosis Transmembrane 

Regulator) expression, an ion channel important for the hydration of the epithelial surface 

through chloride secretion (Montoro et al., 2018; Plasschaert et al., 2018). Mucins rely on 

hydration and increased pH for unfolding and gelling (Abdullah et al., 2017; Ambort et al., 

2012). Thus, CFTR mutations cause Cystic fibrosis and render the resulting mucus more 

dense and sticky, which interferes with its removal through ciliary beating and increases the 

probability for airway infections.

Club cells (formerly known as Clara cells) of the mammalian lung represent another 

specialized secretory cell type (Rokicki et al., 2016; Zuo et al., 2020). They secrete 

surfactant proteins of the Secretoglobin family, most prominently Club Cell Secretory 

Protein (CCSP, also called CC10, CC16 or Uteroglobin). CCSP has anti-inflammatory 

properties and was implicated in modulating the behavior of migratory cells, but its complex 

bioactive functions are not fully understood to date (Mukherjee et al., 2007). Furthermore, 

club cells contribute to detoxification by expression of xenobiotic-metabolizing P450 

cytochromes (CYPs) (Rokicki et al., 2016). They also function as facultative precursors 

to mucus-producing goblet cells as well as to MCCs in airway homeostasis and repair (Rao 

Tata and Rajagopal, 2017; Reynolds and Malkinson, 2010). These properties exemplify the 

range of functions that mucociliary secretory cells can have in mucociliary epithelia.

Pulmonary neuroendocrine cells (PNECs) of the mammalian lung as well as small secretory 

cells (SSCs) of the Xenopus embryonic mucociliary epidermis influence the function of the 

entire epithelium through modulating the behavior of another cell type. PNECs and SSCs 

both synthesize and secrete Serotonin, although PNECs release it from their basolateral 

surface and SSCs secrete Serotonin apically. The main function of this well-known 

neurotransmitter is the regulation of ciliary beating in MCCs in both systems (Dubaissi 

et al., 2014; König et al., 2009; Lommel, 2001; Walentek et al., 2014). The Serotonin-ciliary 

axis is an evolutionary ancient regulatory module frequently employed in animal hypoxia 

response. In the airway epithelium and the Xenopus epidermis, Serotonin was shown to 

increase the rate of ciliary beating (Walentek et al., 2014). A proposed mechanism for this 

effect is the activation of ligand-gated ion channels, which could increase calcium influx 

that in turn speeds up ciliary motion in MCCs (Doran, 2004; Walentek et al., 2014). In 
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addition to Serotonin secretion, SSCs produce mucins while PNECs establish neuronal 

connections and express an oxygen-sensing protein complex of the NADPH oxidase (NOX) 

family (Cutz et al., 2013; Dubaissi et al., 2014). NOX stimulates Serotonin secretion in 

hypoxia conditions through promoting secretory vesicle fusion with the membrane. Hence, 

it is attractive to hypothesize, that in hypoxic conditions, Serotonin-producing cells release 

the neurotransmitter for the direct stimulation of ciliary beating to remove excess mucus and 

potential obstructions.

Collectively, the properties of various cell types and their interactions with each other, 

with non-epithelial cells as well as with the environment determine the correct function 

of mucociliary epithelia. Generating, maintaining and adapting mucociliary cell type 

composition and function are therefore extremely important to coordinate tissue-level 

behavior in development and disease.

One remarkable aspect of mucociliary epithelia is the degree of species- and organ-

specific adaptations to a wide range of physiological needs and morphologies, while at 

the same time maintaining common signaling- and gene-regulatory principles. Another 

surprising feature of mucociliary cells is their ability to directly change fates of mature 

and seemingly “terminally” differentiated cells from one type to another. Such trans-

differentiation behavior is relatively frequently observed in mucociliary cells, especially 

during developmental and pathogenic tissue remodeling.

Wnt Signaling

The Wnt signaling pathway is employed extensively during embryonic development and 

in adult tissue homeostasis, and its key components are conserved throughout evolution 

(Steinhart and Angers, 2018) (Figure 2A). Most commonly, signaling is induced by 

binding of secreted Wnt ligands to transmembrane Frizzled receptors, which then activate 

downstream cytoplasmic Dishevelled molecules. Depending on the Wnt signaling branch, 

e.g. the canonical Wnt/β-catenin pathway or the non-canonical Wnt/planar cell polarity 

(PCP) pathway, Wnt/Frizzled/Dishevelled complexes recruit various transmembrane co-

receptors and cytoplasmic mediators. Through that, Wnt signaling branches can elicit 

distinct cellular responses, ranging from transcriptional activation to the regulation of 

morphogenesis and cell polarity (MacDonald et al., 2007; Semenov et al., 2007). As 

dysregulated Wnt signaling is established to contribute to a plethora of diseases, it is 

not surprising that it was also implicated in mucociliary dysfunction and airway disease 

(Baarsma and Königshoff, 2017; Lehmann et al., 2016).

Many studies have addressed the complex and reiterative functions of Wnt signaling in 

mucociliary epithelia in different models. Collectively, these studies suggest multiple roles 

for canonical Wnt pathway in regulating cell fate specification and differentiation, and a 

role for the PCP pathway in tissue-wide and cell polarity, in particular in MCCs (Vladar 

and Axelrod, 2008; Walentek et al., 2017; Wallingford, 2010). The roles of Wnt/PCP in 

lung development and disease were recently extensively reviewed elsewhere (Vladar and 

Königshoff, 2020), therefore, the focus here will be on canonical Wnt functions.
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Wnt/β-catenin was shown to control stemness and differentiation (Haas et al., 2019). β-

catenin can bind to an alternative promoter (P2) that positively regulates the expression 

of the ∆N-isoform of TP63 in humans, mice and Xenopus (Kjolby and Harland, 2016; 

Ruptier et al., 2011). ∆N-TP63 is a transcription factor required for maintaining BCs. 

Lack or inactivation of ∆N-TP63 expression cause excessive differentiation of epithelial 

cells and a loss of BCs in mucociliary epithelia (Daniely et al., 2004; Haas et al., 2019). 

Interestingly, ∆N-TP63 is not strictly required for the initial establishment of mucociliary 

epithelia in the lung or the Xenopus epidermis. This is in line with its rather late onset of 

expression during mucociliary development. Nevertheless, developmental loss of ∆N-TP63 

leads to abnormally increased numbers of MCCs (Daniely et al., 2004; Haas et al., 2019). 

Tissue culture experiments further demonstrated that knockdown of ∆N-TP63 prevents 

establishment of an epithelium containing goblet cells, impairs proliferation, and leads to 

senescence (Arason et al., 2014). These data align with the pro-proliferative role of Wnt/β-

catenin and ∆N-TP63 in other epithelial systems (Arason et al., 2014; Clevers et al., 2014; 

Haas et al., 2019; Senoo et al., 2007).

Overactivation of Wnt/β-catenin or ∆N-TP63 prevents BCs from exiting the stem cell 

state, which then fail to undergo differentiation towards epithelial cell lineages (Haas et 

al., 2019; Mucenski et al., 2005; Reynolds et al., 2008; Schmid et al., 2017). Such effects 

of increased Wnt/β-catenin were reported in various models of mucociliary epithelia, and 

work in the Xenopus epidermis demonstrated that knockdown of ∆N-TP63 can rescue 

differentiation ability in the presence of high Wnt/β-catenin signaling (Haas et al., 2019). 

These data argue for a role of ∆N-TP63 as master regulator of BC behavior and the switch 

between maintenance and differentiation. Furthermore, these data support the notion that the 

Wnt-induced inhibition of epithelial differentiation is mediated to a significant degree by 

excessive ∆N-TP63 expression in BCs.

In addition to blocking differentiation, high levels of Wnt/β-catenin signaling lead to 

accumulation and multilayer stacking of BCs in mucociliary epithelia due to an increase 

in proliferation (Aros et al., 2020a; Haas et al., 2019). Increased proliferation is also 

normally observed during regeneration of mammalian airway epithelia after injury, when 

BCs transiently express Wnt ligands (Aros et al., 2020b). The source of canonical Wnt 

ligands is not limited to BCs themselves during epithelial repair, as it was shown that 

inhibition of Wnt secretion from BCs could be compensated for by ligand secreting stromal 

cells of the intercartilage zone in the murine trachea (Aros et al., 2020b). Abnormally 

high Wnt signaling, BC over-proliferation and decreased differentiation are also observed 

in premalignant lesions and in squamous lung cancer (Aros et al., 2020a). Similarly, single-

cell RNA-sequencing (scRNA-seq) of the mouse airway revealed highly proliferative and 

less differentiated “hillock” cell clusters (Montoro et al., 2018). These express Krt13, a 

marker associated with proliferating BCs (Goldfarbmuren et al., 2020; Montoro et al., 2018). 

They also express Porcn, which encodes a protein required for Wnt secretion, and that is 

upregulated in premalignant lesions and squamous lung cancer (Aros et al., 2020a; Montoro 

et al., 2018). These data suggest that “hillock” cells might be similar to cells found in early 

stage premalignant lesions, and thereby linking them to locally upregulated Wnt signaling.
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Importantly, over-proliferation and block of epithelial cell differentiation due to Wnt/β-

catenin signaling can be reversed in Xenopus, human tissue culture and in mouse airway 

cells. In Xenopus embryos and in differentiating air-liquid interface (ALI) cultures of 

immortalized human BCs, increased Wnt/β-catenin signaling through inhibition of GSK3β 
or through application of the canonical Wnt agonist R-spondin 2 (RSPO2), respectively, 

prevented differentiation of epithelial cells and increased numbers of BCs. Nevertheless, 

differentiation could be induced simply by removal of the GSK3β inhibitor/RSPO2 even 

after long-term exposure to elevated Wnt signals, and the number of BCs returned to 

seemingly normal levels (Haas et al., 2019). Similarly, in chronic rhinosinusitis with nasal 

polyps that is associated with a failure of MCC differentiation, tissue overgrowth, and 

increased production of Wnt3a in the nasal epithelium, MCCs and ciliation could be rescued 

in vitro by application of a canonical Wnt inhibitor (Dobzanski et al., 2018). Furthermore, 

recent development of a novel canonical Wnt pathway inhibitor that acts downstream of 

GSK3β, WIC1, showed that its application prevented over-proliferation, decreased ∆N-TP63 
expression, and induced MCC differentiation in human and mouse in vitro BC cultures with 

overactivated Wnt signaling (Aros et al., 2020a).

Together, these findings strongly suggest that most changes in mucociliary epithelial cell 

type composition and morphology associated Wnt/β-catenin signaling are due to abnormal 

behavior of BC and loss of their ability to correctly balance maintenance, proliferation 

and differentiation. Especially in diseases where loss of differentiation and an increase 

in BCs are observed, the use of specific inhibitors of canonical Wnt signaling offers an 

attractive entry point for therapeutic interventions. Understanding BC regulation by Wnt is 

also important regarding COPD and IPF, which were both associated with changes in Wnt 

signaling (Baarsma and Königshoff, 2017; Heijink et al., 2013; Shi et al., 2017; Wang et al., 

2011), and for which limited treatment options are currently available.

In addition to the instructive role for Wnt/β-catenin in BCs, data support a permissive 

function during the differentiation of MCCs. Multiple studies have demonstrated that β-

catenin signaling is required for motile cilia formation in MCCs (Aros et al., 2020b; Sun et 

al., 2018; Walentek et al., 2015). Studies in zebrafish and Xenopus have revealed that the 

master regulator of motile ciliogenesis, Foxj1, is positively regulated by β-catenin, and that 

decreased Wnt signaling affected ciliogenesis (Caron et al., 2012; Walentek et al., 2012). 

Similarly, studies in the mouse and in human tissue culture indicate that Wnt signaling can 

have positive effects on MCCs and ciliation (Aros et al., 2020b; Aros et al., 2020a; Schmid 

et al., 2017).

Different effects on different cell types could be attributed to differential functions of 

Wnt ligands, e.g. Wnt7a and Wnt4 in ALI cultured human airway cells (Schmid et al., 

2017). On the other hand, analysis of canonical Wnt-signaling reporter activity in the 

Xenopus embryonic epidermis as well as in the developing mouse airway indicated that 

Wnt signaling levels differ between BCs and differentiating MCCs, with MCCs showing 

lower signaling levels than BCs. Thus, intermediate Wnt signaling levels are compatible 

with successful MCC differentiation from BCs, while at the same time supporting the robust 

expression of foxj1, as one of multiple transcription factors employed in the coordinated 

control of the multi-ciliogenesis program (Walentek and Quigley, 2017). Differential Wnt 
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signaling levels between BCs and MCCs could be generated through cell type specific 

receptor expression levels, as differentiating cells drastically change their transcriptional 

program, a hypothesis also supported by scRNA-seq data (Ruiz García et al., 2019). 

Furthermore, apical-basal asymmetric cell division together with asymmetric distribution 

of the canonical Wnt co-receptor LRP6 were shown to prime basally located cells for high 

Wnt signaling activation during Xenopus mucociliary epidermal development, preceding 

∆N-TP63 expression (Clevers et al., 2014; Huang and Niehrs, 2014). Either way, BCs are 

likely sensitized to percept canonical Wnt signaling and can react to the same amount of 

Wnt ligands by stronger downstream signaling activation than differentiated epithelial cells, 

including MCCs.

In contrast to BCs and MCCs, the precise functions of Wnt/β-catenin in goblet, club and 

other secretory cells are less clear. In club cells, canonical Wnt signaling is dispensable for 

specification, differentiation and maintenance (Zemke et al., 2009). In fact, an increase in 

canonical Wnt signaling disfavors proximal airway and club cell fate during regeneration 

and organoid preparation (Frank et al., 2016). Instead, there is a connection between 

Wnt/β-catenin and the specification of goblet cells as well as with development of a mucus 

hyperplastic phenotype in the mammalian lung. The main sites of Mucin-secretory cell 

specification in the healthy mouse and human lungs are the submucosal glands, where 

these cells are called mucous cells (in contrast to epithelial goblet cells) (Hogan et al., 

2014) (Figure 1B). Those glands are formed in the trachea and bronchi in humans and 

their ducts terminate between cartilage rings. Full development of mouse submucosal glands 

depends on Wnt3a, canonical Wnt signaling, and the transcription factor Lef-1, which in 

turn mediates β-catenin-dependent transcription (Driskell et al., 2004; Driskell et al., 2007; 

Xie et al., 2014). While this is an indirect effect of Wnt on mucous cells, it should be noted 

that loss of developmental Wnt signaling could in principle lead to a deficiency in mucus 

production.

Dysfunction of the Wnt/Frizzled co-receptor Ryk in the mouse airway epithelium was 

shown to decrease airway epithelial canonical Wnt activity, and to lead to goblet cell 

hyperplasia (Kim et al., 2019). The remodeling of the epithelium in this condition was 

associated with a strong increase in Mucin5A/C and 5B, in line with an over-abundance 

of mature goblet cells. Deletion of Ryk also caused a change in Wnt ligand expression, 

i.e. expression levels of Wnt2, Wnt7b, and of the canonical Wnt agonist Rspo2 were all 

decrease, providing an explanation for the overall decreased Wnt/β-catenin activity (but 

not a full loss of signaling) (Kim et al., 2019). The increase in goblet cell numbers was 

inversely correlated to the number of club cells. Together, these data suggest that appropriate 

Wnt signaling suppresses the overproduction of goblet cells, thereby promoting maintenance 

of club cells. This is in line with another report from the mouse airway that revealed an 

enrichment of goblet cell marker expression in low Wnt-positive cells over Wnt-negative or 

high Wnt-positive cells, while such enrichment was not found for club cell markers, and 

MCC markers were enriched in high Wnt-positive cells (Hu et al., 2020). Furthermore, an 

increase in canonical Wnt signaling during ALI differentiation of immortalized human BCs 

was found to increase Mucin5B expression, while the expression of the club cell marker 

SCGB1A1 was strongly decreased (Haas et al., 2019). On the other hand, treatment of such 
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cultures with the canonical Wnt antagonist DKK1 did not change Mucin5B or SCGB1A1 
expression, and did not result in a loss of either secretory cell type.

Although these data are not definitively conclusive regarding the roles of Wnt in secretory 

cells of mucociliary epithelia, they do support the idea that correctly regulated Wnt signaling 

is also required (directly or possibly indirectly) to control proper secretion in mucociliary 

epithelia, and that gain and loss of Wnt can lead to overabundance of goblet cells or to an 

increase in mucus production. This is in agreement with studies on patient-derived material, 

where COPD tissue was associated with goblet cell hyperplasia and reduced Wnt signaling 

(Wang et al., 2011).

In summary, a model emerges that implies an instructive and dominant role for canonical 

Wnt signaling in BC maintenance, proliferation and the inhibition of differentiation, 

while supporting a permissive function for strictly balanced and lower Wnt levels during 

differentiation and maintenance of MCCs and secretory cells (Figure 2B,C). Nevertheless, 

additional studies further clarifying the roles of Wnt signaling in secretory cells and the 

regulation of mucin secretion are urgently needed.

Notch Signaling

Notch signaling is another highly evolutionary conserved cell signaling pathway, but in 

contrast to Wnt, Notch is strictly cell-cell contact dependent (Henrique and Schweisguth, 

2019) (Figure 3A). Both Notch receptors and ligands are transmembrane proteins and 

require processing during signaling activation. Upon Delta-like (Dll) or Jagged (Jag) ligand 

binding to Notch receptors, the activated extracellular portion of the complex is cleaved off 

from the receiving cell by Metalloproteases. Next, γ-Secretase cleaves off the cytoplasmic 

portion of the receptor to release the Notch intracellular domain (NICD). This allows NICD 

to translocate to the nucleus, where it interacts with CSL/RBPJ transcription factors. In 

the absence of NICD, CSL/RBPJ bind co-repressor molecules that can directly suppress 

transcription of target genes. Additionally, the repressive CSL/RBPJ complex also recruits 

chromatin modifying proteins, which cause long-term epigenetic silencing of the genomic 

region (Giaimo et al., 2017; Lake et al., 2014). When NICD binds to CSL/RBPJ, it displaces 

bound co-repressors and facilitates recruitment of co-activators (e.g. Mastermind and p300) 

for target gene transcription (Henrique and Schweisguth, 2019). As Notch signaling does 

not act through an amplifying second messenger cascade, the amount of receptor activation 

directly scales with the resulting level of signaling activity.

The crucial role for Notch signaling in mucociliary epithelia has been the subject of 

extensive studies over the past 20 years (Deblandre et al., 1999). These studies have 

revealed that Notch is the main signaling pathway directing cell fate decisions in 

mucociliary epithelial development, maintenance and disease. While seemingly simple in 

its signaling mechanism and being probably the most extensively studied signaling pathway 

in mucociliary epithelia, not all details of Notch signaling function are fully understood to 

date.

Notch signaling in the mammalian airway as well as in the Xenopus embryonic epidermis 

was shown to play a major role in the specification of MCCs and secretory cells (Rock et 
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al., 2011; Stubbs et al., 2006; Tsao et al., 2009) (Figure 3B,C). In the Xenopus epidermis 

mucociliary epithelium, low Notch signaling favors specification of ionocytes and MCCs. 

Consequently, inhibition of NICD transcriptional activity by a dominant-negative DNA-

binding mutant of the CSF/RBPJ homolog SuH (SuH-DBM) or a dominant-negative form 

of Mastermind leads to excessive production of ionocytes and MCCs, while overexpression 

of a constitutive active NICD suppresses ionocyte and MCC specification (Deblandre et al., 

1999; Quigley et al., 2011; Stubbs et al., 2006; Walentek, 2018). It was further shown 

that overexpression of intermediate NICD levels in Xenopus increases the number of 

SSCs, i.e. a secretory cell type that also produces Mucins (Kurrle et al., 2020; Walentek, 

2018). Similarly, data from the mouse airway demonstrated that low Notch levels lead to 

specification of MCCs, while high Notch levels promote the production of club secretory 

cells (Guseh et al., 2009; Tsao et al., 2009). Accordingly, NICD overexpression in ALI 

cultured human BCs also caused an overproduction of club cells and increased expression 

of SGB1A1 and Mucin5A/C, while simultaneously decreasing the number of MCCs 

and the expression of ciliated cell markers (Gomi et al., 2015). The regulation of the 

mucus-production master transcription factor Spdef was also shown to be positively Notch 

regulated (Chen et al., 2009; Chen et al., 2018; Guseh et al., 2009). Furthermore, excessive 

Notch signaling in the mouse airway causes mucous cell metaplasia (Guseh et al., 2009).

Nevertheless, it is not always clear if Notch-induced Mucin overexpression is due to 

overspecification of goblet cells, or if Mucin production is transiently upregulated in club 

cells, a phenomenon observed upon airway infection and inflammation (Evans et al., 2004; 

He et al., 2020; Méndez et al., 2019). Arguments in favor of Notch-induced overproduction 

of goblet cells as cause for mucous cell metaplasia are derived from studies that have 

shown a requirement for Notch signaling in IL-13 cytokine mediated goblet cell hyperplasia 

models, as well as from studies demonstrating that Spdef is required for both goblet cell 

specification and Mucin5A/C and 5B production (Chen et al., 2009; Chen et al., 2018; 

Danahay et al., 2015). Goblet cell fate can be induced by addition of IL-13, but this effect 

can be blocked by inhibition of Notch signaling (Danahay et al., 2015; Guseh et al., 2009; 

Tyner et al., 2006). IL-13 is upregulated in chronic lung disease, in mouse models for 

airway inflammation, and IL-13 is also known to cause an increase in goblet cells in human 

airway epithelial cell cultures that are usually not producing many goblet cells (Walters et 

al., 2013). IL-13 acts through the transcription factor STAT6, which regulates Spdef in a 

positive fashion and suppresses Foxj1 expression (Gomperts et al., 2007; Yu et al., 2011). 

Spdef, in turn, activates Mucin5A/C and 5B expression (Parker et al., 2013). Therefore, 

synergistic effects between IL-13/STAT6 and Notch signaling are likely, as both pathways 

regulate Spdef and can lead to mucous cell metaplasia. In light of these data it seems 

confusing that expression of Notch ligands and receptors in COPD tissue was found to 

be decreased, although COPD is highly correlated with mucous cell metaplasia (Tilley et 

al., 2009). A possible explanation could be that over the course of the disease, chronic 

inflammation becomes so strong that it can drive SPDEF and MUCIN5A/C, 5B expression 

even when Notch signaling is attenuated. Thus, further studies are urgently needed to gain 

more mechanistic insights into the connections between Notch signaling, goblet/mucous 

cells and chronic airway diseases.
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More data are also needed regarding the Notch regulation of ionocytes in the mammalian 

lung as in contrast to the Xenopus epidermis, where this cell type was initially described, 

Notch inhibition was shown to negatively affect ionocyte abundance (Plasschaert et al., 

2018; Quigley et al., 2011). Conversely, SSCs that share the characteristic Serotonin 

production and secretion with mammalian PNECs are dependent on high Notch signaling 

in the frog, and the opposite is true for mouse PNECs, which are increased in numbers 

upon developmental deletion of multiple Notch receptors in the epithelium (Kurrle et al., 

2020; Morimoto et al., 2012; Walentek, 2018). In Xenopus, Notch inhibition was also shown 

to lead to downregulated expression of ∆N-TP63, while in the mammalian airways, Notch 

seems largely dispensable for BCs and elevated Notch is required for differentiation of 

luminal epithelial cell types (Rock et al., 2011; Sirour et al., 2011).

All these differences could be well due to species-specific aspects or potentially be related 

to the fact that the airway epithelium is derived from the endoderm, while the epidermal 

mucociliary epithelium in Xenopus is derived from the ectoderm. Additional discrepancies 

in studies could arise from different starting points for epithelial development in vivo 
and in vitro. In the airways and in the Xenopus epidermis, ∆N-TP63-positive BCs are 

initially not abundant during early phases of development, while in ALI culture, preparations 

derived from mature BC-containing airway epithelia are used, and BCs most likely represent 

the starting point for differentiation of all epithelial cells. All the above issues require 

further studies, as it seems counterintuitive to assume such fundamental differences between 

systems, while otherwise the principles of Notch-mediated cell fate specification are so 

highly conserved (Figure 3B,C).

BMP signaling

BMP signaling belongs to the TGFβ superfamily of morphogenetic signaling pathways that 

regulate multiple aspects of cell and tissue behavior in development and disease (Dutko 

and Mullins, 2011) (Figure 4A). BMP signaling activation is triggered by binding of 

BMP homo- or heterodimers to a combination of transmembrane type I and type II serine-

threonine kinase receptors. Upon ligand binding, complexes are formed, which facilitate 

intermolecular auto-phosphorylation of the intracellular receptor domains. Type I receptors 

subsequently activate cytoplasmic Smad proteins through phosphorylation of Smad1/5/8, 

which allows heterodimerization with Smad4, nuclear translocation, DNA binding and 

transcriptional regulation of BMP target genes.

While BMP signaling was shown to definitively influence mucociliary epithelia, less is 

known about the precise functions of BMP signaling as compared to Wnt and Notch 

signaling.

In the developing Xenopus epidermis as well as in ALI cultures of human airway cells, 

BMP overactivation was shown to suppress differentiation of mature MCCs and secretory 

cells (Cibois et al., 2015). On the other hand, knockdown of BMPs in Xenopus increased 

the production of MCCs, ionocytes and SSCs, while it decreased the number of BCs (Cibois 

et al., 2015). Similarly, BMP signaling inhibition by application of the antagonist Noggin 

promoted differentiation of MCCs and Mucin5A/C-positive secretory cells in normal ALI 

cultured human airway cells as well as in cell cultures using Cystic Fibrosis patient cells 
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(Cibois et al., 2015). These studies have also identified a positive role for BMP in the 

intercalation of progenitor cells into the epithelial lining. These data suggest that BMP 

signaling could have a dual role in the regulation of BC differentiation into mature cells 

as well as in regulating successful morphogenesis of the epithelium following cell fate 

specification (Figure 4B).

Inhibition of Smad-mediated signaling was further shown to allow for BC expansion in 
vitro, and studies of mouse tracheospheres demonstrated that BMP inhibitors promote 

proliferation without affecting epithelial cell fate decisions, while exogenous Bmp4 

application inhibited proliferation and differentiation (Mou et al., 2016; Tadokoro et al., 

2016; Zuo et al., 2019). Furthermore, BMP activity is transiently increased during airway 

epithelial repair in the mouse, but decreased during differentiation and regeneration of the 

epithelium (Tadokoro et al., 2016). Analysis of Smads in the mouse airway also showed 

nuclear Smad protein localization in differentiated airway cells, but not in BCs, in line with 

the ability of BCs to proliferate (Mou et al., 2016; Tadokoro et al., 2016). The temporal use 

of BMP proteins and subsequent application of BMP antagonists during differentiation was 

also described in protocols for the generation of airway epithelial cells from iPSCs, which 

further supports a dual role of BMP in proliferation and differentiation (Huang et al., 2014; 

Huang et al., 2015).

In mouse lung development, BMP signaling reporter analysis revealed an absence of 

signaling activity during early epithelial development, but onset of reporter signal in the 

epithelium during stages of mucociliary differentiation (Sountoulidis et al., 2012). In the 

adult lung epithelium, BMP activity was attenuated and only found in few epithelial cells, 

possibly labeling newly differentiated cells during homeostatic epithelial cell replacement 

(Sountoulidis et al., 2012). In agreement with the finding that BMP signaling does not affect 

cell fate decisions of different epithelial cell types, BMP reporter activity was found in club 

cell, MCCs and PNECs (Sountoulidis et al., 2012).

BMP signaling was also implicated as positive regulator of epithelial to mesenchymal 

transition (EMT) during regeneration of airway epithelial lesions, in which cells at the edges 

of the injury site migrate to cover the affected area (McCormack et al., 2013; Molloy et 

al., 2008). A positive effect of BMP in cell migration could also represent a parallel to the 

described requirement for BMP during cell intercalation in Xenopus epidermal mucociliary 

development, where cells have to relocate from the deep into the epithelial layer (Cibois et 

al., 2015) (Figure 4B).

Together, data on BMP signaling in mucociliary development and repair indicate a need 

for dynamic, precise, and context-specific regulation of BMP signaling levels in BC 

proliferation and specification, as well as in epithelial cell differentiation and migration. 

While further studies into the roles of BMP signaling in chronic airway diseases are 

necessary, reports on the elevated state of BMP signaling during cigarette smoke-induced 

remodeling of the airway epithelium, associated with COPD, fit the proposed roles for BMP 

derived from animal models (Zuo et al., 2019). Therefore, additional data on BMP functions 

in human airway disease could provide important new insights for the benefit of developing 

treatment options for COPD patients.
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Other signaling pathways in mucociliary epithelia

Additional signaling pathways likely affect mucociliary and airway functions, although 

perhaps by modulating cellular responses to the key signaling pathways, or by modifying 

Notch, Wnt and BMP signaling at the ligand, receptor or co-regulator expression levels. 

Unfortunately, less data are available on the functions of other pathways in mucociliary 

research models and in human disease. FGF and Hedgehog signaling were implicated in 

mucociliary epithelial BC regulation, in the differentiation of epithelial cell types during 

regeneration, and in COPD and IPF (Danopoulos et al., 2019; Hou et al., 2019; Peng et al., 

2015; Wang et al., 2020; Yuan et al., 2018). In part, the observed effects could be traced 

back to subsequent changes in Wnt or Stat6 signaling, which are known to affect BCs, 

differentiation and mucus production more directly (Danopoulos et al., 2019; Hou et al., 

2019; Peng et al., 2015; Wang et al., 2020; Yuan et al., 2018). A recent study also implicated 

Hedgehog signaling in COPD and possibly more directly in MCC ciliation (Belgacemi 

et al., 2020). Clearly, more research is needed to uncover the precise functions of other 

signaling pathways to promote our understanding of developmental, regenerative and disease 

mechanisms. Understanding the modulatory effects of other pathways on airway epithelia, 

even if those turn out to be indirect, could still provide attractive entry points for drug 

development, diagnosis and ultimately for novel therapies.

Trans-differentiation in mucociliary homeostasis and tissue remodeling

In the traditional view, a precursor or stem cell gives rise to a differentiated cell, which does 

not change identity after completing differentiation. This is the general textbook concept 

of “terminal differentiation”. This view has been challenged over the years, perhaps first, 

when John Gurdon was able to show that the transplantation of adult skin cell nuclei 

into denucleated oocytes lead to reprogramming, and that the recombined egg could give 

rise to a fully developed frog (GURDON, 1962). This finding was later followed up 

on in mammalian cells, where the use of Yamanaka’s transcription factor cocktail could 

reprogram cells into induced pluripotent stem cells (iPSCs) (Takahashi and Yamanaka, 

2006). Since then, more and more cases of naturally or disease-induced fate changes in 

fully differentiated cells were reported as well (Merrell and Stanger, 2016; Wells and Watt, 

2018). The direct cell fate change from one differentiated cell type into another is referred 

to as trans-differentiation. In most tissues trans-differentiation in not very common, but in 

airway mucociliary epithelia, trans-differentiation events are rather frequent (Rao Tata and 

Rajagopal, 2017; Rock et al., 2010) (Figure 5). To highlight some aspects of mucociliary 

trans-differentiation processes, relevant findings from developmental and disease models are 

briefly summarized here, especially because they closely relate to signaling regulation of 

mucociliary epithelia.

During normal Xenopus epidermal and mammalian airway epithelial development, all cell 

types are thought to develop from epithelial precursors and BCs (Bilodeau et al., 2014; 

Collins et al., 2020; Dubaissi, 2020; Hogan et al., 2014; Walentek and Quigley, 2017) 

(Figure 5A,D). This seems to hold true in cases where large epithelial lesions occur in the 

airway epithelium (Aros et al., 2020b; Pardo-Saganta et al., 2015a). Furthermore, studies 

suggest that ionocytes and PNECs are derived directly from BCs in adult lung homeostasis 

(Rao Tata and Rajagopal, 2017) (Figure 5B). Hence, it was surprising when club cells were 
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found to be facultative precursor cells for the majority of MCCs during mammalian airway 

homeostasis and repair (Hogan et al., 2014) (Figure 5B). In fact, club cells were proposed 

to be the stem cells of mucociliary airway epithelia, and only relatively recent studies have 

definitely identified multiple populations of adult stem cells along the proximal-distal axis of 

the mammalian lung (Reynolds and Malkinson, 2010; Rock et al., 2009; Zuo et al., 2015).

In the mouse bronchioles, club cells give rise to MCCs and maintain the club cell population 

through self-renewal (Rawlins et al., 2009). In the trachea, club cells also give rise to 

MCCs in homeostatic conditions as well as after injury, but they rarely self-renew (Rawlins 

et al., 2009). Hence, club cells in the trachea are likely predominantly specified from 

BCs in homeostatic conditions, but MCCs are replenished from epithelial club cells. 

Specification of MCCs from club cells is regulated by Notch signaling (Figure 5C). Notch 

reduction by inhibitory antibodies has shown that blocking Jag1/Jag2 leads to massive 

trans-differentiation of club cells into MCCs (Lafkas et al., 2015). When this treatment 

was terminated, club cells slowly reappeared in the epithelium. This phenomenon could 

be related to the specific decoration of the different mucociliary cell types by different 

Notch ligands, i.e. Jag1 and Jag2 were shown to be enriched in MCCs (Lafkas et al., 

2015). On the other hand, Notch1 and 2 receptor blocking could elicit the same effect 

on mucociliary composition, and Notch1 and 2 were shown to be enriched in club cells 

(Lafkas et al., 2015). Further studies revealed that secretory cells, MCCs and BCs each 

show specific enrichment of Notch ligands and receptors (Pardo-Saganta et al., 2015b). 

Thus, it is attractive to speculate that this allows the mucociliary system to maintain correct 

cell type composition during homeostasis by providing Notch-mediated information to the 

surrounding epithelial cells and BCs.

Upon airway infection or allergen sensitization, club cells can also express Spdef, start 

Mucin production, and change their morphology towards goblet cells (Chen et al., 

2009; Evans et al., 2004). Furthermore, these changes are reversible. Like in the trans-

differentiation from club to ciliated cell, club to goblet cell change is Notch dependent and 

can be inhibited by blocking Notch signaling (Lafkas et al., 2015) (Figure 5C). Infection and 

allergen sensitization were shown to induce cytokine secretion, and the IL-4/IL-13/STAT6 

pathway promotes Spdef expression together with Notch.

Similar to club cells, inflammation and IL-4/IL-13/STAT6 pathway activation can induce 

cellular changes and mucus production in MCCs through STAT6 (Tyner et al., 2006) 

(Figure 5C). Furthermore, MCCs were reported to loose cilia through STAT6-mediated 

repression of Foxj1 during trans-differentiation (Gomperts et al., 2007). These effects were 

co-dependent on the anti-apoptotic effect EGF signaling in MCCs (Tyner et al., 2006). 

Changes induced by IL-13 could be blocked by inhibition of Notch signaling, further 

supporting the dominant role for Notch in cell fate specification and maintenance (Danahay 

et al., 2015; Guseh et al., 2009; Lafkas et al., 2015). MCC to goblet cell trans-differentiation 

is highly controversially debated in the airway field, in part because it is hard to imagine 

that such an extremely differentiated cell type could change fate and remodel its highly 

specialized morphology. Furthermore, lineage tracing experiments in mice failed to confirm 

maintenance of goblet cells that were derived from MCCs, and it was observed that goblet 
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cells can trans-differentiate into MCCs as well (Pardo-Saganta et al., 2013; Ruiz García et 

al., 2019; Turner et al., 2011).

In the Xenopus epidermis, MCCs are lost at the onset of metamorphosis, and MCC to goblet 

cell trans-differentiation was proposed in this system as well based on co-staining of cells 

for both cilia and mucus markers (Nishikawa et al., 1992). A recent study has provided 

additional evidence for MCC trans-differentiation in Xenopus, where it was demonstrated 

that during trans-differentiation, MCCs downregulate foxj1 gene expression, begin Mucin 

production as well as cilia retraction, and where loss of basal body proteins was observed 

in the course of the process (Tasca et al., 2021). In contrast to the inflammatory response of 

MCCs in the mammalian airways, this process in Xenopus was induced by an upregulation 

of Notch ligand expression in the mesoderm underlying the mucociliary epidermis, and 

cell fate change could be blocked by inhibition of Notch in this system as well (Tasca 

et al., 2021). Jak/Stat signaling also had a similar anti-apoptotic effect as in mammals 

(Figure 5C,E).(Tasca et al., 2021). Furthermore, overexpression of NICD specifically in 

cells committed to MCC cell fate could induce identity change to goblet cells during initial 

development of the epidermis (Tasca et al., 2021). Thus, these data support the possibility 

of MCC trans-differentiation into goblet cells in the mammalian airway, and suggest that the 

basis for such changes in disease could be the reactivation of an evolutionarily conserved 

mechanism normally employed during developmental tissue remodeling.

Equally remarkable as trans-differentiation of MCCs into goblet cells is the ability of 

club cells to trans-differentiate into BCs under conditions where a majority of endogenous 

BCs were lost (Tata et al., 2013) (Figure 5C). Ablation of more than 80% of BCs lead 

to in vivo dedifferentiation of club cells into BCs that could function like normal stem 

cells and self-renewed over an extended period of time. Similarly, BCs derived from club 

cells were observed in organoid-formation assays in vitro (Tata et al., 2013). Upon severe 

injury, myoepithelial cells lining the submucosal glands were further shown to function as 

stem cells for submucosal mucous cells and to migrate to the airway surface mucociliary 

epithelium to trans-differentiate into BCs, which then gave rise to MCCs, club cells and 

goblet cells (Lynch et al., 2018) (Figure 5C). This change depended on the activation of 

canonical Wnt signaling and Lef-1 activation, and overexpression of Lef-1 in myoepithelial 

cells was sufficient to induce fate change into BCs.

In summary, data from mammalian and Xenopus mucociliary epithelia have demonstrated 

a remarkable flexibility of cell fates and frequent trans-differentiation events during normal 

homeostasis, developmental tissue remodeling, airway epithelial repair upon injury, and in 

chronic airway diseases. In most cases, these cell fate changes could be linked to a changing 

signaling environment, especially in Wnt and Notch signaling, as well as to inflammation 

and cytokine response that likely cooperate with or alter these two pathways.

Conclusion

Extensive work has revealed many links between Wnt, Notch, BMP, and other signaling 

pathways to normal development as well as to pathogenesis of mucociliary epithelia, most 

prominently in the airways. Further understanding of signaling functions in regeneration and 
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tissue remodeling in association with chronic lung disease will be instrumental for the future 

development of better treatment options for patients. Hence, additional studies are necessary 

to shed more light on these signaling mechanisms under normal conditions and during 

disease. As airway infections and chronic lung diseases are among the most common causes 

for death worldwide, increasing our mechanistic understanding of the signaling control of 

mucociliary epithelia should remain a priority in basic biological and airway pathogenesis 

research.
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Figure 1: Mucociliary cell types and epithelial cell type compositions
(A) Schematic representation of cell types in the mammalian trachea. Basal cells (BCs), 

multiciliated cells (MCCs) and club cells are abundant, while ionocytes and goblet cells 

are rare. (B) Schematic representation of cell types in the mammalian submucosal glands. 

Mucous cells are very abundant, while BCs, MCCs and ionocytes are missing. Additionally, 

myoepithelial cells function as stem cells. (C) Schematic representation of cell types in the 

mammalian bronchioles. MCCs and club cells are abundant and pulmonary neuroendocrine 

cells (PNECs) are found in clusters. BCs, ionocytes and goblet cells are less abundant 

than in the trachea. (D) Schematic representation of cell types in the Xenopus embryonic 

mucociliary epidermis. Basal cells are located in the deep cell layer. MCCs, ionocytes, 

small secretory cells (SSCs) are present in equal proportions, while goblet cells are more 

abundant. (E) Key to cell types and commonly used cell type markers.

Walentek Page 24

Cells Tissues Organs. Author manuscript; available in PMC 2022 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: Wnt/β-catenin signaling requirements in mucociliary cell types
(A) Simplified schematic representation of the canonical Wnt/β-catenin pathway. Wnt 

ligands bind to Frizzled receptor and recruit LRP6 co-receptor. Intracellular mediators, e.g. 

Dishevelled, are recruited to the ligand-receptor complex, which then leads to inhibition 

of GSK3β and the stabilization of β-catenin. β-catenin can then enter the nucleus, bind 

to TCF/LEF transcription factors, and activate Wnt target gene expression. (B) Schematic 

representation of cell types in the mammalian trachea and their proposed requirement levels 

for active Wnt/β-catenin signaling. Basal cells need high Wnt levels, while MCCs need 

elevated Wnt but at lower levels than basal cells. Goblet cells also require Wnt, but at low 

levels that heva to be precisely controlled. (C) Schematic representation of cell types in 

the Xenopus embryonic mucociliary epidermis and their proposed requirement levels for 

active Wnt/β-catenin signaling. Basal cells require high Wnt levels, while MCCs also show 
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elevated Wnt activation. Ionocytes and small secterory cells do not seem to strictly rely on 

Wnt signaling, and the role for Wnt in goblet cells remains unresolved.
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Figure 3: Notch signaling requirements in mucociliary cell types
(A) Simplified schematic representation of the Notch pathway. Transmembrane Notch 

ligands from the Delta or Jagged families bind to transmembrane Notch receptors. Upon 

activation, Matrix metalloproteases (MMPs) cleave the extracellular portion of the complex, 

and γ-secretase cleaves off the Notch intracellular domain (NICD). NICD can then 

enter the nucleus, displace repressors from the RBPJ DNA-binding complex, and recruit 

transcriptional co-activators to initiate gene transcription. (B) Schematic representation of 

cell types in the mammalian trachea and their proposed requirement levels for active Notch 

signaling. Goblet, club cells and ionocytes show elevated Notch signaling, although at 

different levels, while MCCs and basal cells were proposed to be Notch independent. (C) 
Schematic representation of cell types in the Xenopus embryonic mucociliary epidermis 

and their proposed requirement levels for active Notch signaling. Basal and goblet cells 

show high Notch levels, and small secretory cells also require higher Notch levels for 

Walentek Page 27

Cells Tissues Organs. Author manuscript; available in PMC 2022 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



specification. Ionocytes and MCCs require low/no Notch signaling for specification and 

maintenance.
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Figure 4: BMP signaling requirements in mucociliary cell types
(A) Simplified schematic representation of the BMP pathway. BMP ligand dimers bind Type 

I/Type II transmembrane receptors. Activated Type II receptor cross-autophosphorylates 

Type I intracellularly, which, in turn, activates Smad proteins by phosphorylation. Activated 

Smad1/5/8 then binds Smad4 and the complex can enter the nucleus, bind to DNA and 

activate target gene expression. (B) Schematic representation of proposed BMP regulated 

events in vertebrate mucociliary epithelia. Yellow triangle indicates increasing BMP levels 

in migration and differentiated cells. Low/no BMP signaling is required in basal cells for 

maintenance and proliferation, while elevated BMP signaling levels are observed during 

migration and insertion of cell types into the epithelial cell layer during differentiation.
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Figure 5: Mucociliary cell lineages and signaling in development, homeostasis and remodeling
(A-E) Simplified schematic representation of mucociliary cell types (cf. Figure 1 E for 

legend) and their specification or trans-differentiation during normal development and 

homeostasis as well as in experimental models of inflammation, remodeling and severe 

injury. (A) In mammalian airway development, basal cells can self-renew and generate 

all epithelial cell types. (B) In mammalian airway homeostasis and repair, basal cells, 

club cells, PNECs and goblet cells can self-renew. Additionally, MCCs and goblet cell 

populations can be maintained by trans-differentiation from club cells. In the submucosal 

glands, mucous cells are generated from myoepithelial cells. (C) Trans-differentiation events 

in mammalian airway inflammation, tissue remodeling (e.g. in chronic airway disease), and 

after experimental manipulation. Club cells can trans-differentiate into MCCs, goblet cells, 

and can de-differentiate into basal cells upon severe basal cell loss. After severe injury, 

PNECs can also trans-differentiate into club cells. Trans-differentiation between MCC and 
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goblet cell fates were reported in both directions. Myoepithelial cells in the submucosal 

glands can generate mucous cells, but also trans-differentiate into epithelial basal cells after 

severe basal cell loss. (D) Mucociliary development in the Xenopus embryonic mucociliary 

epidermis. All epithelial cell types are derived from precursor cells that mature into basal 

cells. Basal cells and goblet cells can both divide and self-renew. (E) Multiciliated to goblet 

cell trans-differentiation at the onset of Xenopus metamorphosis was demonstrated in the 

Xenopus epidermis, is triggered by increased Notch signaling and modulated by thyroid 

hormone and Jak/Stat signlaing. Black arrows = cell type transitions from stem/precursor 

cells; blue arrows = proliferation/self-renewal; red arrows = trans- and de-differentiation 

events. * = in the bronchiole only; ** = in the submucosal glands only.
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