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Aging power spectrum of membrane protein
transport and other subordinated random walks
Zachary R. Fox 1,2, Eli Barkai3 & Diego Krapf 1,4✉

Single-particle tracking offers detailed information about the motion of molecules in complex

environments such as those encountered in live cells, but the interpretation of experimental

data is challenging. One of the most powerful tools in the characterization of random pro-

cesses is the power spectral density. However, because anomalous diffusion processes in

complex systems are usually not stationary, the traditional Wiener-Khinchin theorem for the

analysis of power spectral densities is invalid. Here, we employ a recently developed tool

named aging Wiener-Khinchin theorem to derive the power spectral density of fractional

Brownian motion coexisting with a scale-free continuous time random walk, the two most

typical anomalous diffusion processes. Using this analysis, we characterize the motion of

voltage-gated sodium channels on the surface of hippocampal neurons. Our results show

aging where the power spectral density can either increase or decrease with observation time

depending on the specific parameters of both underlying processes.
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A very large class of biological and physical systems exhibit
correlations that extend across multiple time scales. This
feature is also found in social networks as well as in

complex systems made of interacting components like glasses.
Such correlations manifest themselves as a broad spectrum of
relaxation times and in the practically universal emergence of 1/f
decay in the power spectrum, which points to self-similarity in
the dynamics at different timescales1,2. The effect is pre-
dominantly found at low frequencies where the contributions of
each frequency ω= 2πf to the overall power spectral density
(PSD) exhibit a power law S(ω) ~ 1/ωβ, with 0 < β ≤ 23–7. To
name a few diverse examples, 1/f spectra are observed in
nanoscale devices8,9, network traffic10, earthquakes11, heartbeat
dynamics12, DNA base sequences13, climate14, and ecology15.
Mandelbrot and later Bouchaud et al. suggested that the processes
involved are inherently non-stationary leading to the idea that the
spectrum should depend both on the frequency and the mea-
surement time5,16,17. Indeed, the very basic formula describing
these ubiquitous phenomena was recently replaced with a more
general one6. Based on experimental data of blinking quantum
dots18, nanoelectronic devices9,19, and fluctuations of interfaces7,
the basic spectrum must be described with a new formula
Sðω; tmÞ � ω�βtzm, where tm is the measurement time. These
developments, in turn, motivated a new theoretical framework,
called aging Wiener–Khinchin theorem20–22. This new theorem
replaces the celebrated Wiener–Khinchin theorem valid for sta-
tionary processes, which is widely applicable to systems that do
not exhibit 1/f noise23.

Notwithstanding previous advances, many questions remain
open. First, the aging Wiener–Khinchin theorem relates the aging
power spectrum with z ≠ 0 to a non-stationary correlation func-
tion (soon to be discussed). However, how can one find this
correlation function? As for the standard Wiener–Khinchin the-
orem, the correlation function is specific to the system. In the
context of diffusion in cells as well as in many other complex
systems, Mandelbrot’s fractional Brownian motion (fBM)24 and
the Montroll–Weiss continuous time random walk (CTRW)25 are
two widely investigated models of anomalous transport. While
the fluctuations in fBM are stationary, the CTRW process is
inherently non-stationary. However, both models, when standing
alone, are usually non-sufficient to describe the transport of
particles that alternate between a trapping phase (like in CTRW)
and correlated motion (like in fBM), as is the case in live cells, for
example due to interactions in a viscoelastic medium26. The open
questions begin with how to create a marriage between these
models? Then, can we obtain the correlation functions and 1/f
spectrum? Achieving these goals will show how the exponents β
and z depend on the underlying processes, and will determine
which of the processes is dominating the PSD. Finally, most
importantly, these goals can elucidate whether the whole
approach to the PSD is useful in experiments. Specifically, we
demonstrate the applicability of aging Wiener–Khinchin theorem
and the corresponding calculation of the correlation function
with experimental recording of the power spectra of the motion
of ion channels in the plasma membrane of mammalian cells.

The emergence of 1/f noise has triggered notable interest in
biological environments both from a fundamental point of view
and due to its relevance in pathologies and disease27. Self-similar
temporal characteristics are observed in biological systems of
broadly different length scales. Recent molecular dynamics
simulations in combination with previous experimental results
have shown that the internal dynamics in globular proteins are
self-similar and the autocorrelation function is aging over an
astonishing 13 decades in time2,28. These fluctuations play
essential roles in cell functions that involve molecular interactions
such as gene regulation. In fact, this behavior is widespread and

found from the dynamics of proteins within cell membranes to
the scaling behavior of heartbeat time series27,29. Nevertheless, it
still remains a challenge to measure how aging affects the spec-
trum of recorded 1/f noise in real systems.

Single molecule tracking in the cell environment has been used
extensively to shed light on the functions and interactions of the
molecules that make life possible30–33. Spectral analyses are
emerging as a key tool in the characterization of individual
molecule trajectories in biological systems because it informs on
features that are difficult to infer using other traditional
statistics6,34–38. It has been observed that among traditional sta-
tistical approaches, e.g., analyses based on the mean squared
displacement, the PSD appears to be less sensitive to external
noises39. Following previous work, we promote a theory that
shows how the most basic formula of 1/f noise needs modifica-
tions, namely that Sðω; tmÞ � ω�βtzm as mentioned. The question
that still needs to be addressed is what the physical meaning of
the new exponent z is, to explore cases where it is negative
(corresponding to a decrease of the PSD with time and, hence,
aging) and cases where it is positive (corresponding to a PSD
increasing with time and, hence, rejuvenation). Further, beyond
the development of the theory, it is important to show how these
effects are found experimentally.

Traditionally, the PSD of a time-dependent signal is defined as
the average over an infinitely large ensemble in the limit of
infinite time (Supplementary Eq. 1). In practice, when analyzing
either experiments or numerical simulations, one does not have
access to infinite measurement time, nor to a large ensemble of
trajectories, and the PSD is estimated by using the periodogram.
For stationary processes, the PSD can be directly calculated from
the autocorrelation function, using the relation provided by the
Wiener–Khinchin theorem (Supplementary Eq. 2)23. The
Wiener–Khinchin theorem holds for a large class of time-
invariant processes, where the concept of a time-independent
limiting power spectrum is useful. One could wonder how to
extend the Wiener–Khinchin theorem to non-stationary pro-
cesses, but, due to the extensive variety of such processes, this
general approach appears a priori to be a futile direction of
research. Nonetheless, this first assessment turns out to be wrong.
There exists a large class of stochastic processes describing sys-
tems that are non-stationary but scale invariant. Specifically, the
autocorrelation function explicitly depends on time t via the
expression CEA(τ, t)= 〈x(t) x(t+ τ)〉 ~ tγϕEA(τ/t), where ϕEA(τ/t)
is a scaling function. As mentioned, a new theoretical framework
was developed for this very large class of scale invariant processes,
the aging Wiener–Khinchin theorem20–22. The PSD that emerges
in this case is, in turn, directly related to 1/f noise and depends on
the observation time.

Here, we address the spectral content of processes with scale free
relaxation times, using both theoretical modeling and experimental
validation. We show how the aging Wiener–Khinchin theorem is a
useful tool and, more importantly, demonstrate how the aging
exponent z and the spectral exponent β are related to the underlying
processes. To reach this goal, we obtain the non-stationary correla-
tion function of the subordinated fBM, which combines two well
known approaches to anomalous diffusion. Depending on whether
the process is negatively or positively correlated, we get vastly dif-
ferent frequency decays of the power spectrum. Thus, the aging
Wiener–Khinchin theorem can be used to classify widely different
classes of dynamics. Finally, by analyzing the dynamics of voltage-
gated sodium channels (Nav) on the somatic membrane of hippo-
campal neurons, we demonstrate the usefulness of the approach, and
prove that its basic principles work in the laboratory. These experi-
mental data reveal how one can use a few long trajectories and
estimate the exponents characterizing the dynamics with high pre-
cision. Our work, thus, not only validates the aging Wiener-Khinchin
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theorem as an emerging tool in spectral analysis, but it also unravels
the meaning of the exponents describing the aging and the
frequency decay.

Results
Aging Wiener–Khinchin theorem. In any stationary process x(t),
the PSD is related to the autocorrelation function (ACF) CEA(τ)=
〈x(t)x(t+ τ)〉 via the fundamental Wiener–Khinchin theorem
(Supplementary Eq. 2). Throughout the manuscript we employ the
subscripts EA and TA to denote ensemble averages and time
averages, respectively. However, diffusive processes are intrinsically
non-stationary and thus the Wiener–Khinchin theorem is invalid. In
recent years, power spectrum theory has been expanded with a tool
called the aging Wiener–Khinchin theorem20–22. This theorem cov-
ers a broad class of non-stationary processes that possess an auto-
correlation function with the long-time asymptotic CEA(t, τ)= 〈x(t)
x(t+ τ)〉 ~ tγϕEA(τ/t). Such correlation functions are common22,40,41

and they are called scale invariant. An alternative analysis of the
autocorrelation function is performed in terms of its time average
CTA of individual trajectories, where

CTAðtm; τÞ ¼
1

tm � τ

Z tm�τ

0
xðtÞxðt þ τÞdt; ð1Þ

with tm being the measurement time. For ergodic processes, CTA

converges to CEA in the long time limit. However, when the process is
not ergodic, such as a scale-free CTRW, CTA of individual trajectories
remain random variables even in the long time limit42,43. Thus, one
analyzes the ensemble-average of the TA-ACF, 〈CTA(tm, τ)〉. Further,
ergodicity breaking leads to a difference in the two averages,
〈CTA(tm= t, τ)〉≠CEA(t, τ). Each of these formalisms (ensemble vs.
time averages) has its own advantages and disadvantages. Never-
theless, when the number of trajectories is small and the measure-
ment time is long, the time averages lead to better statistics and it is,
thus, the more commonly used method in single-particle tracking.
When CEA(t, τ)= tγϕEA(τ/t), the time-average ACF has also the
scaling form hCTAðtm; τÞi ¼ tγmϕTAðτ=tmÞ20. The scaling function
ϕTA(τ/tm) is directly related to the ensemble average via the relation

ϕTAðyÞ ¼
y1þγ

1� y

Z 1

y
1�y

ϕEAðzÞ
z2þγ

dz; ð2Þ

where y= τ/tm, which implies 0 ≤ y ≤ 1.
For a measurement time tm the power spectrum can be only

obtained for the discrete set of frequencies ωktm= 2πk with k
being a non-negative integer. That is, the frequencies can be
resolved down to Δω= 2π/tm, which decays to zero in the limit of
large measurement time tm. The aging Wiener–Khinchin theorem
relates the average power spectrum for this set of frequencies to
the time-averaged autocorrelation function20,22,

hSðω; tmÞi ¼ 2t1þγ
m

Z 1

0
ð1� yÞϕTAðyÞ cosðωtmyÞdy: ð3Þ

A relation between the PSD and the ensemble-averaged
correlation function also exists, but we will employ the relation
to the time average because of its more common use in single-
particle tracking experiments.

The model for subordinated random walks. A useful way to
model the diffusive transport in live cells is via the combination of
two stochastic processes: the CTRW and fBM. On one hand, the
CTRW constitutes the quintessential diffusion process with
heavy-tailed immobilization times and has been extensively used
to describe transport in disordered environments44,45, protein
dynamics in mammalian cells30–32,46, and even to model financial
markets47. On the other hand processes with correlated incre-
ments such as fBM or diffusion in fractal environments have been

often observed to lead to anomalous transport with memory
effects48–50. fBM is the only Gaussian self-similar process with
stationary increments, of which Brownian motion constitutes a
special case. Technically the combination of these widely
observed models is made possible with a subordination
technique32,51,52. In a subordination scheme, the steps of a ran-
dom walk take place at operational times tn defined by a directing
stochastic process. For example, antipersistent motions accom-
panied by heavy-tailed immobilization times, have been observed
in live cells in the motion of ion channels53, insulin granules54,
membrane receptors55, and nanosized objects in the cytoplasm56,
as well as for tracer particles in actin networks in vitro57. Sub-
ordinated processes constitute one of the most general classes of
random walks and are widespread beyond the dynamics in the
cell4,7,19,58. This scheme allows to evaluate processes with short-
range or long-range memory and non-stationarity, leading to
complex aging properties.

We consider a fBM-like process at discrete times, n= 0, 1, 2,
3,…, with Hurst exponent H, such that its autocorrelation
function at the discrete times n is given by24

hxnxnþΔni ¼ Δx2 n2H þ ðnþ ΔnÞ2H � Δn2H
� �

; ð4Þ
where the coefficient Δx is a scaling parameter with units
of length. We place the process defined by Eq. (4) under the
operational time of a CTRW, so that the particle is immobilized
during sojourn times with a heavy-tailed distribution. Such
immobilizations arise, for example, from energetic disorder where
a particle has random waiting times at each trapping site25,29,59,60.

The operational times are defined by a random process {tn}
with non-negative independent increments τn= tn− tn−1. The
time increments τn between renewals are, in the long time limit,
asymptotically distributed according to a probability density
function61

ψðτnÞ �
α

Γð1� αÞ
tα0

τ1þα
n

; ð5Þ

where 0 < α < 1, t0 is a constant with units of time, and Γ(⋅) is the
gamma function. At time t, the position of the particle is x(t)= xn
where n is the random number of renewals in the interval (0, t).
Given n, the position xn is determined by the discrete fBM
process defined by Eq. 4. Three representative trajectories of such
a process are shown in Fig. 1. The ensemble-averaged
autocorrelation function of x(t) is then

CEAðt; τÞ ¼ hxðtÞxðt þ τÞi
¼ E E xðtÞxðt þ τÞjnt ; ðnþ ΔnÞtþτ

� �� �
;

ð6Þ

where E½gðxÞ� ¼ hgðxÞi represents the expected value of g(x) and
E½gðxÞjy� is the conditional expected value of g(x) given y. In
particular, the last term indicates the iterated expectation of x(t)
x(t+ τ), given that n steps have taken place up to time t and
n+ Δn steps have taken place up to time t+ τ. Further, we define
χn,Δn(t, τ) as the joint probability of taking n steps up to time t
and Δn steps in the interval (t, t+ τ). Combining Eqs. (6) and (4),
we obtain

CEAðt; τÞ ¼ E Δx2 n2Ht þ ðnþ ΔnÞ2Htþτ � Δn2Hτ;t

� �h i

¼ Δx2 ∑
1

n¼0
∑
1

Δn¼0
n2H þ ðnþ ΔnÞ2H � Δn2H
� �

χn;Δnðt; τÞ:
ð7Þ

Once the ensemble-averaged autocorrelation function is found,
we can obtain the time-averaged CTA(tm, τ) via Eq. (2) and,
subsequently, the PSD using the aging Wiener–Khinchin theorem
(Eq. 3).
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Continuous time random walk (2H= 1). The fBM reverts to
Brownian motion when 2H= 1 and, thus, the process becomes a
traditional CTRW25,62. The ensemble-averaged autocorrelation
function in Eq. (7) becomes (see Supplementary Note 3)

CEAðt; τÞ �
2Δx2

tα0Γð1þ αÞ t
α; ð8Þ

which, given the memoryless property of Brownian motion, boils
down to the ensemble-averaged autocorrelation function being
independent of lag time τ and equal to the mean squared dis-
placement (MSD), CEA(t, τ)= 2Δx2〈n(t)〉= 〈x2(t)〉. The MSD
solution for the CTRW is 〈x2(t)〉 ~ tα, that is, it exhibits sub-
diffusion with anomalous exponent α61.

The ensemble-averaged autocorrelation function in Eq. (8), for
2H= 1, implies that CEA= tαϕEA with ϕEA being a constant. The
time-averaged autocorrelation function is hCTAi ¼ tαmϕTAðτ=tmÞ
and we find (Supplementary Eq. 17)

hCTAðtm; τÞi ¼
2Δx2tαm

tα0Γð2þ αÞ 1� τ

tm

� 	α

: ð9Þ

Next, we use the time-averaged autocorrelation function (Eq. 9)
in conjunction with the aging Wiener–Khinchin theorem to
obtain the PSD of the CTRW. We find the exact solution of the
sample power spectral density by solving the integral in Eq. (3).
The PSD (Supplementary Eq. 18) is a function of both frequency
ω and realization time tm. Expanding the PSD for ωtm≫ 1, it is
found that the leading term scales in frequency as ω−2 and in
time as t�ð1�αÞ

m ,

hS2H¼1ðω; tmÞi �
4Δx2

tα0Γð1þ αÞ
1

t1�α
m ω2

; ð10Þ

which is related to the MSD via the relation

hS2H¼1ðω; tmÞi �
2

αω2

∂

∂tm
hx2ðtmÞi: ð11Þ

This is a useful relation that connects the fluctuations in the
trajectory (the PSD) to transport properties (the MSD) for the
CTRW. Importantly, the MSD is proportional to the mean
number of renewals, thus Eq. (11) provides a connection between
the PSD and the number of renewals. While Eq. (11) applies to

the CTRW, we will see later that it is not universal for the scale
free processes under study.

Figure 2 shows a comparison of these analytical results to
numerical simulations of 10,000 realizations with α= 0.7. The
MSD exhibits a power law, 〈x2(t)〉 ~ tα (Fig. 2a). The power
spectral density is presented in Fig. 2b for five different
measurement times from tm= 28 to 216 and shows good
agreement with the power law asymptotic ω−2. As shown in
Supplementary Note 3, using hypergeometric functions we can
get the exact PSD; however, the power law asymptotics show
highly accurate results. The spectra also exhibit aging with an
amplitude that scales as t�ð1�αÞ

m (Fig. 2c). Intuitively, as the
measurement time increases, we encounter longer stagnation
periods and, hence, the PSD decays with measurement time.
Physically, this effect is due to the broadly distributed trapping
times in the system.

Subordinated process involving fBM (0 <H < 1). We now deal
with subordinated random walks where the increments exhibit
correlations. When 2H ≠ 1, the process has positively correlated
increments for H > 0.5 and negatively correlated increments for
H < 0.5. The autocorrelation function CEA in Eq. (7) is

CEAðt; τÞ ¼ Δx2 hn2HðtÞi þ hn2Hðt þ τÞi � hΔn2Hðτ; tÞi� �
; ð12Þ

where Δn(τ; t) is the number of steps between the aged time t
and t+ τ. Using renewal theory and the power law waiting time
distribution in Eq. (5), the terms in Eq. (12) can be expressed
via hypergeometric functions (Supplementary Eqs. 21 and 22).
The ensemble-averaged autocorrelation function (Supplemen-
tary Eq. 25) has the form CEA(t, τ)= tγϕEA(τ/t), which implies
the time-averaged autocorrelation function is of the form
hCTAðtm; τÞi ¼ tγmϕTAðτ=tmÞ22. Following Eq. (2), we find the
scaling function ϕTA(τ/tm). The exact analytical results for the
time-averaged ACF (Supplementary Eq. 27) were compared to
numerical simulations. The simulations are observed to agree
with analytical results for both H < 0.5 and H > 0.5 in Supple-
mentary Fig. (1a, b), respectively.

The calculation of the PSD with the correlation function
involves two steps. Our approach uses the scale invariant
correlation function, which was tested versus numerical results,
and the aging Wiener–Khinchin theorem, Eq. (3). The calculation
essentially leads to PSDs that are expressed in terms of
hypergeometric functions (Supplementary Eq. 33) and can be
simplified. The idea is to use the large frequency limit to obtain
approximate results of the aging 1/f noise type. These work well,
as we show later in the figures. By expanding the PSD in the limit
ωtm≫ 1 and noting that the spectrum is evaluated at frequencies
ωtm= 2πk, we obtain the leading term, which depends on the
specific values of α and H. In the case that the increments are
anticorrelated, i.e., H < 0.5,

hSH < 1=2ðω; tmÞi � 2ct�ð1�αÞ
m ω�2þα�2αH ; ð13Þ

where c is a constant defined explicitly in Supplementary Eq. (38).
An example of this antipersistent case is shown for numerical
simulations with α= 0.4 and H= 0.3 in Fig. 3a. The scaling of the
PSD both in tm and ω agrees with Eq. (13).

When the increments of the random walk are positively
correlated (i.e, H > 1/2), the leading term is

hSH > 1=2ðω; tmÞi � 2Dt2αH�1
m ω�2; ð14Þ

with D being a generalized diffusion coefficient (Supplementary
Eq. 26). This PSD is related to the mean square displacement in a

Time, t/t0

-6

-4

-2

0

2

4

6
x 

(t)
  

(a
.u

)

0 20,000 40,000 60,000

Fig. 1 Representative trajectories for a subordination fractional Brownian
motion process. The Hurst exponent in these trajectories is H= 0.3 and
the CTRW anomalous exponent is α= 0.8. Long immobilization times are
observed within the fractional Brownian motion.
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similar way as the CTRW, via the relation

hSH > 1=2ðω; tmÞi �
1

2αHω2

∂

∂tm
hx2ðtmÞi; ð15Þ

which is similar to Eq. (11), albeit with a factor 1/2. When H > 1/
2, the PSD decreases with observation time for small α and H,
namely when 2αH < 1. Otherwise (shaded regime III in Fig. 3d),

the PSD increases with observation time. Figure 3b shows the
power spectra for numerical simulations where the underlying
fBM is superdiffusive with H= 0.7 and α= 0.4, which falls in the
regime that 〈S(ω, tm)〉 decays with tm (regime II in Fig. 3d).
Figure 3c shows simulations with H= 0.75 and α= 0.8 where
〈S(ω, tm)〉 indeed is observed to increase with tm. In this regime of
increasing S, the convergence to Eq. (14) is very slow and appears
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Fig. 2 Numerical simulation of the CTRW, i.e., Brownian motion with power-law waiting times. The simulations were performed for α= 0.7 and 10,000
realizations were obtained. a The MSD shows subdiffusive behavior 〈x2(t)〉 ~ tα, while a linear regression of log ðMSDÞ vs. log ðtÞ indicates 〈x2(t)〉 ~ t0.69. The
times and displacements are unitless, i.e., the simulation sampling time is 1. b PSD at five different measurement times exhibits aging. The power law
asymptotic S ~ω−2 is indicated with a dashed line. The arrow shows the decay in the PSD with measurement time tm. c The amplitude A(tm) of the PSD,
where 〈S〉= A(tm)/ω2, shows AðtmÞ � t�0:31

m , highlighting the aging effect, in excellent agreement with theory which predicts AðtmÞ � t�ð1�αÞ
m .
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superdiffusive (H > 1/2) and the PSD is, thus, predicted to scale as hSðω; tmÞi � t�ð1�2αHÞ

m ω�2 (Eq. (14)). The dashed line shows the scaling ω−2 and the
arrow shows the decay in the PSD with measurement time tm. c Simulations for five different measurement times with α= 0.8 and H= 0.75, N= 5,000
realizations. Given that 2αH > 1, the power spectrum increases with measurement time as indicated by the arrow. The dashed black line indicates ω−2.
d The shaded region (regime III) indicates the set of values for α and H that yields a PSD 〈S(ω, tm)〉 that increases with measurement time. In the rest of the
plane, the power spectrum decays with tm. Within this part of the plane, regime I is characterized by hSðω; tmÞi � t�ð1�αÞ

m ω�2þα�2αH and regime II by
hSðω; tmÞi � t�ð1�2αHÞ

m ω�2. The red crosses indicate the pairs (H, α) used in the examples in a–c, and the CTRW in Fig. 2.
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to converge only for realization times tm > 105. The increase of
〈S(ω, tm)〉 with time is directly related to the persistent property
of the fBM36.

We now focus on two important limits of our results, namely,
the limits 2H→ 1 and α→ 1. In the first one, the process reverts
to the traditional CTRW, for which the result is given by Eq. (10).
Here, the two leading terms in the exact result for the PSD
(Supplementary Eq. 33) converge to the same exponent yielding
the simple asymptotic approximation 〈S2H=1(ω, tm)〉 ≈ 2(D+ c)/
ω2. The agreement with Eq. (10) serves as a basic test to evaluate
the results. The second limit (α→ 1) is expected to converge to
the known results for the standard fBM. In this limit, the PSD
becomes (i) 〈S(ω, tm)〉 ~ 1/ω1+2H when 2H < 1 and (ii)
hSðω; tmÞi � t2H�1

m =ω2 when 2H > 1. These expressions are in
agreement with the known formulas for subdiffusive and
superdiffusive fBM, respectively (see e.g.,36).

Experimental results. The derivation of the PSD of subordinated
random walks enables us to characterize the motion of membrane
proteins that typically interact with heterogeneous partners. These
trajectories are obtained using single molecule tracking of labeled
proteins in living cells. An example of a transmembrane protein
that exhibits heterogeneous interactions is the voltage gated sodium
channel Nav1.6. It was previously found that in the somatic plasma
membrane of hippocampal neurons, Nav1.6 channels are tran-
siently confined into cell surface nanodomains63. Because these
nanodomains are only of the order of 100 nm in size, we can
neglect the motion within an individual domain without altering
the long time statistics of the process. Further, it was reported that
the motion of these channels displays ergodicity breaking due to
their transient confinement64. These effects lead to the idea of
trapping and the CTRW type of dynamics. Thus, we model the
confinement (immobilization) times using Eq. (5). An important
property of heavy-tailed renewal processes is that they depend on
the time that lapsed since the system started65. In the case of single
molecule tracking of Nav channels, measurements start when the
channel is delivered to the plasma membrane and, thus, the time
t= 0 is well-defined. Besides transient immobilizations, Nav1.6 also
show antipersistent fBM-like motion, leading to a non-linear time-
averaged MSD. Here, we evaluate 87 Nav1.6 trajectories of 256 data
points each, with a sampling time Δt= 50 ms.

Before digging into the PSD analysis of Nav channels, we
consider their mean square displacement, which is a familiar
statistical tool that helps us understand some basic properties of
their motion. Furthermore, we can evaluate the validity of our

model for the motion of membrane proteins by analyzing the
relations between the exponents that characterize the mean
squared displacement and the power spectrum. Figure 4a shows
the ensemble-averaged MSD (EA-MSD, 〈x2(t)〉) together with its
95% confidence interval and the ensemble-average of the time-
averaged MSD (EA-TA-MSD) for three different observation
times, tm= 64Δt, 128Δt, and 256Δt. The EA-TA-MSD is defined
in its usual way,

hδ2ðτ; tmÞi ¼
1

tm � τ

Z tm�τ

0
xðt þ τÞ � xðtÞ½ �2dt


 �
; ð16Þ

where, using the same notation as in the autocorrelation function,
τ denotes the lag time. The difference between the EA-TA-MSD
and the EA-MSD (Fig. 4a) is a direct indication of ergodicity
breaking in the motion of Nav channels30,64. In the context of our
model, the ergodic hypothesis breaks down since α < 1. In theory,
it should be possible to use the ensemble-averaged MSD to extract
information about the exponents that characterize the motion.
However, when the number of trajectories is not very large (as is
usually the case in live cell experiments), the estimation of
exponents from this metric is very poor due to statistical errors.
This effect can be directly seen in the confidence interval of the
MSD in Fig. 4a. Thus, we propose here to employ in addition to
the TA-MSD a robust metric such as the PSD.

The EA-TA-MSD of the subordinated process scales as66

hδ2ðτ; tmÞi �
τ1�αþ2αH

t1�α
m

: ð17Þ

We have measured both the EA-TA-MSD (Fig. 4a) and the PSD
(Fig. 4b), with different observation times tm. From the MSD,
using Eq. (17), we extract exponents α= 0.54 ± 0.02 and
H= 0.32 ± 0.08. Remarkably, this is nearly identical to the
estimation based on the PSD, where, using Eq. (13), we obtain
α= 0.50 ± 0.02 and H= 0.25 ± 0.11. The agreement is not a
coincidence and it indicates that the underlying model of a
subordinated process is consistent with two independent
measurements. In other words, we can use one set of
measurements (e.g., PSD) to predict the exponents of the other
(e.g., MSD) and show that the selected model works. From a
single set of data we cannot make this conclusion. Namely, if we
record β and z, we can easily estimate the exponents α and H, but
that, as a stand alone, is not informative, since the number of
fitting parameters (two) is the same as the number of linear
equations given in the relations between the exponents (β, z) and
the exponents (α, H). Hence, extraction of these exponents with
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Fig. 4 Analysis of Nav1.6 experimental trajectories in the soma of hippocampal neurons. a The time-averaged MSD is different from the ensemble-
averaged MSD (gray upper line). The shaded region indicates the 95% confidence interval for the ensemble-averaged MSD. The time-averaged MSD
scales with the lag time as τ0.81±0.05 (dashed lines), while exhibiting aging as it decays with experimental time as 1=t1�α

m , from which α is estimated to be
0.54 ± 0.02. b Average spectra are presented for three measurement times. The dashed lines show a scaling 1/ω1.75. Besides the power-law scaling, the
spectra exhibit white noise evident at large frequencies, likely due to localization error. The arrow shows the decay in the PSD with measurement time tm.
The inset shows the amplitude of the PSD as a function of measurement time in a log-log plot. It shows that the spectrum exhibits aging with a power law
scaling 1=t1�α

m , from which α is estimated to be 0.50 ± 0.02. The combined measurements provide four different ways to determine the two relevant
parameters, indicating the consistency of the model.
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an additional measurement is required to find a consistent theory,
beyond merely fitting parameters.

A key aspect of these measurements is that the PSD is obtained
for different observation times. By increasing the measurement
time, we indeed observe the aging power spectrum, an effect that
could have been missed, as the natural tendency in experiments is
simply to use the longest available trajectories. The PSD decays
with observation time, i.e., z < 0, as predicted for a process with
Hurst exponent H < 1/2 (see Eq. 13). The PSD amplitude as a
function of measurement time tm is shown in the inset of Fig. 4b,
indicating z=− 0.50 ± 0.02. This spectral analysis in combina-
tion with the MSD confirms the predictions stating that the
motion of Nav channels is a subordinated process and lets us
obtain accurate estimates of the waiting time distribution and the
Hurst exponent. While the goal of this work pertained to the
dynamics of proteins, it is directly applicable to any process where
a correlated random walk coexists with a non-ergodic CTRW.

Discussion
We characterize subordinated random walks via two exponents,
the Hurst exponent H and the exponent that describes the heavy-
tailed waiting time distribution α. The Hurst exponent governs
the correlations between increments and the memory effects of
the random walk, while the exponent α is responsible for the long
waiting times. We observe that the PSD is found to be accurately
described by the formula Sðω; tmÞ � ω�βtzm, where the exponents
β and z are uniquely defined by H and α (see Eqs. 13 and 14).

Our results can be divided into two large classes depending on
whether the increments are positively or negatively correlated,
that is H > 1/2 or H < 1/2. The case H < 1/2 is associated with the
tracer’s interactions with a viscoelastic medium which lead to
subdiffusion, while H > 1/2 is associated with persistent walks that
can lead to superdiffusion, which is, in turn, related to active
transport. Let us discuss first our results for antipersistent ran-
dom walks (H < 1/2) because this is the relevant regime for the
dynamics of the membrane proteins we studied. In this situation,
β= 2− α+ 2αH, i.e, it is influenced by both the properties of the
fBM and the CTRW, and it falls in the range 1 < β < 2. In contrast,
the exponent z is dictated solely by the power law trapping times
of the CTRW and it shows aging, that is z < 0. Specifically, the
PSD decays with measurement time with an exponent z= α− 1.
As such, the aging process in this regime does not contain any
information about the fBM. For the Nav1.6 ion channels we
recorded aging power spectra with z=−0.50 and β= 1.75, from
which we estimated the Hurst index H of the fBM-like process
and the exponent α that characterizes the tail of the distribution
of immobilization times. Then, it is possible to use the measured
exponents z and β (which give α and H) to predict the exponents
of the time- and ensemble-averaged MSD, and compare these
predictions to the experimental data. An agreement between
predicted and measured exponents would show that the model is
working well without any fitting to the MSD measurements.
Indeed, the experimental results with Nav channels provide a very
strong validation of our hypothesis, in which these channels can
be described by an antipersistent random walk (H < 1/2) in the
presence of traps caused by interactions with heterogeneous
partners at the plasma membrane (α < 1). The antipersistent walk
is a signature of spatial heterogeneity and self similar obstructions
in the membrane, while the heavy tailed waiting times are caused
by trapping events, e.g. energy disorder. Our findings that sub-
ordinated fBM is the relevant model for ion channels is sig-
nificant. The slow dynamics can rationalize the organization of
these membrane proteins, as practically immobile, but still have
some dynamics which is important for allowing interactions with
cytoskeletal components and other reaction partners. We expect

that our model can be used to determine diffusion-limited
reaction rates.

The case of positively correlated increments H > 1/2 leads to
much richer phenomena, and we encounter both aging (a decay
of the fluctuations) and rejuvenation (increase of the fluctuations)
with measurement time. In this situation, β is a constant β= 2
independent of the exponents of either the fBM or the CTRW.
Note that this is the same frequency scaling as that of Brownian
motion and the traditional CTRW. Nevertheless, the exponent z,
given by Eq. (14), presents intriguing properties and, hence, it is
the aging that informs about interesting physical effects. The
smaller α, the faster the fluctuations are inhibited over time. This
effect is due to the particles becoming more and more immobile,
i.e., they find deeper and deeper traps the longer the time that
lapses since the preparation of the setup. However, when H is
increased, the fBM becomes more superdiffusive and, strikingly,
the PSD can be observed to rejuvenate, i.e., the fluctuations
become more prominent over time. Precisely, the turnover from
aging to rejuvenating takes place when H > 1/(2α). Thus, one can
infer the region in phase space to which the process belongs by
noting whether the fluctuations increase or decay (see Fig. 3d for
a full phase diagram). The special case z= 0, that is so often
tacitly implied in the 1/f literature, is actually rare in subordinated
diffusive processes and it only takes place when H= 1/(2α). Note,
however, that normal Brownian motion takes place in the limit
that H= 1/2 and α= 1, which also implies z= 0, namely the
absence of an aging effect.

Our analytical results describe the spectral content of a wide
class of non-stationary processes with scale invariant correlation
functions. The derivations are obtained using the aging
Wiener–Khinchin theorem and we demonstrate the applicability
of this theory with experimental trajectories of molecules in live
cells. The class of processes that we study involves the coexistence
of a fractional process with correlated increments and power-law
distributed sojourn immobilization times. Beyond the motion of
proteins, which was studied here in detail, these processes are
encountered in vastly diverse scientific fields, such as
hydrology45,67 and movement ecology68, and thus our results are
expected to be widely applicable. The PSD analysis is very robust,
particularly in noisy systems where it is impossible to obtain a
very large number of experimental trajectories. Thus, the analysis
is useful in elucidating the statistical properties of trajectories
obtained by single-particle tracking in living cells, opening a new
avenue in the analysis of protein transport.

Methods
Numerical simulations. We performed all simulations in MATLAB. To generate a
CTRW (H= 1/2), we synthesized increments drawn from a standard normal
random variable, i.e., Δx2= 1/2. Subsequently, the times between steps were drawn
from a Pareto distribution ψ(t)= αt−(1+α) for t ≥ 1. For the subordinated random
walk with H ≠ 1/2, we obtained the increments using the MATLAB function wfbm
to generate fBM. In this case, Δx is a constant that depends on H. For each case, a
total number of 10,000 realizations were obtained with either tm= 216 or tm= 218

and a sampling time of 1.

Live cell imaging and single-molecule tracking. Experimental details for cell
culture, transfection, labeling, and imaging have been published previously63.
Briefly, E18 rat hippocampal neurons were plated on glass-bottom dishes that were
coated with poly-L-lysine. Neurons were grown in Neurobasal medium (Gibco/
Thermo Fisher Scientific, Waltham, MA, USA) with penicillin/streptomycin anti-
biotics (Cellgro/Mediatech, Inc., Manassas, VA, USA), GlutaMAX (Gibco/Thermo
Fisher Scientific, Waltham, MA, USA), and NeuroCult SM1 neuronal supplement
(STEMCELL Technologies, Vancouver, BC, Canada). For imaging, the cultures
were incubated in imaging saline consisting of 126 mM NaCl, 4.7 mM KCl, 2.5 mM
CaCl2, 0.6 mM MgSO4, 0.15 mM NaH2PO4, 0.1 mM ascorbic acid, 8 mM glucose,
and 20 mM HEPES (pH 7.4). Neurons were transfected with a Nav1.6 construct
containing an extracellular biotin acceptor domain (Nav1.6-BAD,63), using Lipo-
fectamine 2000 (Invitrogen, Life Technologies, Grand Island, NY, USA). pSec-BirA
(bacterial biotin ligase) was co-transfected to biotinylate the channel. Labeling of
surface channels was performed before imaging. Neurons were rinsed with imaging

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26465-8 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6162 | https://doi.org/10.1038/s41467-021-26465-8 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


saline and then incubated for 10 min at 37 °C with streptravidin-conjugated
CF640R (Biotium, Hayward, CA, USA) diluted 1:1000 in imaging saline. Total
internal reflection fluorescence images were acquired at 20 frames/s using the 647
nm laser line of a Nikon Eclipse Ti fluorescence microscope equipped with a
Perfect-Focus system, an Andor iXon EMCCD DU-897 camera, and a Plan Apo
TIRF 100×, NA 1.49 objective. Imaging was performed at 37 °C using a heated
stage and objective heater. Nav trajectories were obtained by single-molecule
tracking using the U-track algorithm69.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets generated during the current study have been deposited in the Zenodo.org
database under https://doi.org/10.5281/zenodo.5528301.
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