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Genetic determinants of blood-cell traits
influence susceptibility to
childhood acute lymphoblastic leukemia
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Summary
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Despite overlap between genetic risk loci for ALL and he-

matologic traits, the etiological relevance of dysregulated blood-cell homeostasis remains unclear. We investigated this question in a

genome-wide association study (GWAS) of childhood ALL (2,666 affected individuals, 60,272 control individuals) and a multi-trait

GWAS of nine blood-cell indices in the UK Biobank. We identified 3,000 blood-cell-trait-associated (p < 5.03 10�8) variants, explaining

4.0% to 23.9% of trait variation and including 115 loci associated with blood-cell ratios (LMR, lymphocyte-to-monocyte ratio; NLR,

neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio). ALL susceptibility was genetically correlated with lymphocyte

counts (rg ¼ 0.088, p ¼ 4.0 3 10�4) and PLR (rg ¼ �0.072, p ¼ 0.0017). In Mendelian randomization analyses, genetically predicted in-

crease in lymphocyte counts was associated with increased ALL risk (odds ratio [OR] ¼ 1.16, p ¼ 0.031) and strengthened after account-

ing for other cell types (OR ¼ 1.43, p¼ 8.83 10�4). We observed positive associations with increasing LMR (OR ¼ 1.22, p¼ 0.0017) and

inverse effects for NLR (OR ¼ 0.67, p ¼ 3.1 3 10�4) and PLR (OR ¼ 0.80, p ¼ 0.002). Our study shows that a genetically induced shift

toward higher lymphocyte counts, overall and in relation tomonocytes, neutrophils, and platelets, confers an increased susceptibility to

childhood ALL.
Introduction

The hematopoietic system is remarkably orchestrated and

responsible for some of the most important physiological

functions, such as the production of adaptive and innate

immunity, nutrient transport, clearance of toxins, and

wound healing. Genetic factors contribute significantly

to inter-individual variation in blood-cell phenotypes,

and heritability estimates for most blood-cell traits range

from 50%–90% in twin studies to 30%–40% in popula-

tion-based studies of array-based heritability.1–4 Genome-

wide association studies (GWASs) conducted in large

population-based studies have revealed the highly poly-

genic nature of blood-cell traits, and over 5,000 indepen-

dently associated genetic loci have been identified to

date.4–6 Results from these studies have also provided in-

sights into the genetic regulation of hematopoiesis and

how dysregulation in blood-cell development can lead to

disease.7 Genetic variants associated with blood-cell varia-

tion have been implicated in the risk of immune-related

conditions, such as asthma, rheumatoid arthritis, and

type 1 diabetes, and in rare blood disorders.4–6 Positive ge-

netic correlation was found between counts of varying

blood-cell types and the risk of myeloproliferative neo-
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plasms, a group of diseases primarily of older age and char-

acterized by the overproduction of mature myeloid cells.8

However, the contribution of heritable variation in

blood-cell traits to the risk of other hematologic cancers

has not been examined.

Acute lymphoblastic leukemia (ALL [MIM: 613065]) is a

malignancy of white blood cells, developing from imma-

ture B cells or T cells, and is the most common cancer

diagnosed in children under 15 years of age.9 Despite sig-

nificant advances in treatment in recent decades and the

corresponding improvements in survival rates,10 ALL re-

mains one of the leading causes of pediatric cancer mortal-

ity in the United States.11 In addition, childhood ALL

patients may endure severe toxicities during treatment,

and survivors face long-term treatment-related morbidities

and mortality.12,13 Thus, understanding the etiology of

ALL remains important for identification of avenues for

disease prevention as well as potential novel treatment

targets.

In most cases, the development of ALL is thought to

follow a two-hit model of leukemogenesis; in utero forma-

tion of a preleukemic clone and subsequent postnatal

acquisition of secondary somatic mutations that drive pro-

gression to overt leukemia.14 Epidemiological studies have
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identified several genetic and non-genetic risk factors for

ALL (reviewed in Williams et al.15 and Greaves14), but

the biological mechanisms through which they promote

leukemogenesis are largely unknown. GWASs of childhood

ALL have revealed at least 12 common genetic risk loci to

date, including at genes involved in hematopoiesis and

early lymphoid development,16 such as ARID5B (MIM:

608538), IKZF1 (MIM: 603023), CEBPE (MIM: 600749),

GATA3 (MIM: 131320), BMI1 (MIM: 164831), IKZF3

(MIM: 606221), and ERG (MIM: 165080).17–24 Intriguingly,

several childhood-ALL-risk regions have also been associ-

ated with variation in blood-cell traits4,6,22,23,25 and a

recent phenome-wide association study (PheWAS) of

childhood ALL identified platelet count as the most en-

riched trait among known ALL-risk loci.26 A comprehen-

sive study of the role of blood-cell-trait variation in the

etiology of childhood ALL is, therefore, warranted.

In this study, we utilize genome-wide data available from

the UK Biobank (UKB) resource27 to perform a GWAS of

blood-cell traits and apply the discovered loci to a GWAS

of childhood ALL in 2,666 affected individuals and

60,272 control individuals of European ancestry. We

assess the shared genetic architecture between blood-cell

phenotypes and childhood ALL and conduct Mendelian

randomization (MR) and mediation analyses to disen-

tangle putative causal effects of variation in blood-cell

homeostasis on ALL susceptibility.
Subjects and methods

Development of genetic instruments for blood-cell traits
The UKB is a population-based prospective cohort of over 500,000

individuals aged 40–69 years at enrollment in 2006–2010 who

completed extensive questionnaires on health-related factors, un-

derwent physical assessments, and provided blood samples.27

Blood samples collected in 4 mL EDTA vacutainers were analyzed

with four Beckman Coulter LH750 instruments. The LH750 in-

strument is a quantitative, automated hematology analyzer and

leukocyte differential counter for in vitro diagnostic use in clinical

laboratories. Samples were analyzed at the UKB central laboratory

within 24 h of blood draw.

Quality control (QC) steps for this dataset have been previously

described.28 Briefly, genetic association analyses were restricted to

individuals of predominantly European ancestry identified on the

basis of self-report and refined by excluding samples with any of

the first two genetic ancestry principal components (PCs) outside

of 5 SD of the population mean. We removed samples with discor-

dant self-reported and genetic sex, as well as one sample from each

pair of first-degree relatives identified by using KING.29 Using a

subset of genotyped autosomal variants with minor allele fre-

quency (MAF) R 0.01 and call rate R 97%, we filtered samples

with call rates < 97% or heterozygosity > 5 SD from the mean,

leaving 413,810 individuals available for analysis.

We applied additional exclusions to optimize our dataset for

developing genetic instruments for studies of cancer etiology by

removing subjects with medical conditions that would alter

blood-cell proportions by pathophysiological conditions (n ¼
13,597), such as pre-malignant myelodysplastic syndromes
1824 The American Journal of Human Genetics 108, 1823–1835, Oct
(MDS [MIM: 614286]), autoimmune diseases (MIM: 109100),

and immunodeficiencies, including HIV (Figure S1). Blood counts

(109 cells/L) outside of the LH750 reportable range and extreme

outliers (>99th percentile) were excluded. Remaining values were

converted to normalized Z scores with mean ¼ 0 and SD ¼ 1. In

addition to overall blood-cell counts, we also examined relative

concentrations: lymphocyte-to-monocyte ratio (LMR), neutro-

phil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio

(PLR).

UKB participants were genotyped on the UK Biobank Affymetrix

Axiom array (89%) or the UK BiLEVE array (11%) with imputation

performed with the Haplotype Reference Consortium (HRC) and

the merged UK10K and 1000 Genomes (1000G) phase 3 reference

panels.27 We excluded variants that were out of Hardy-Weinberg

equilibrium in cancer-free individuals (pHWE < 1 3 10�5) or had

low imputation quality (INFO < 0.30). Analyses were restricted

to 10,369,434 variants with MAF R 0.005.

Genome-wide association analyses were conducted with linear

regression in PLINK 2.0 (October 2017 version). Blood-cell traits

were analyzed via a two-stage GWAS with a randomly sampled

70% of the cohort used for discovery and the remaining 30%

reserved for replication followed by multi-trait analysis of GWAS

(MTAG).30 Models for each trait were adjusted for age, age2, sex,

genotyping array, the first 15 PCs, cigarette pack-years, blood-

count device ID, and assay date. The resulting summary statistics

were analyzed viaMTAG, which has been shown to increase power

to detect associations for correlated phenotypes by distinguishing

between genetic correlation and correlations due to sample over-

lap or biases in GWAS effect sizes due to population stratification

or cryptic relatedness.30 Genetic instruments were selected from

MTAG results and defined as independent variants (linkage

disequilibrium [LD] r2<0.05 in a clumping window of 10,000

kb) with p < 5 3 10�8 in the discovery stage and p < 0.05 and

consistent direction of effect in the replication stage.

The functional relevance of the genetic instruments for blood-

cell traits was assessed with in-silico functional annotations:

combined annotation-dependent depletion (CADD) scores31 and

RegulomeDB.32 We also explored associations with gene expres-

sion in whole blood in eQTLGen,33 a meta-analysis of 31,684 sub-

jects, and immune-cell specific effects in DICE (Database of Im-

mune Cell Expression),34 a dataset of 91 healthy blood donors;

BLUEPRINT35 (n¼ 197 healthy blood donors); and CEDAR (Corre-

lated Expression and Disease Association Research)36 (n ¼ 322

healthy individuals from a cancer screening cohort). Gene expres-

sion datasets were accessed from the FUMA platform.37
Childhood acute lymphoblastic leukemia datasets
Genetic associations with childhood ALL were obtained from a

meta-analysis of 2,666 affected individuals and 60,272 control in-

dividuals from two separate genome-wide scans38 (details in sup-

plemental subjects and methods). The first GWAS consisted of a

pooled dataset of 1,162 affected individuals and 1,229 control in-

dividuals from the California Cancer Records Linkage Project

(CCRLP)21 with 56,112 additional control individuals from the

Kaiser Permanente Genetic Epidemiology Research on Aging

(GERA) cohort. Details of the CCRLP study and combined

CCRLP/GERA GWAS have been previously described;21 the pre-

sent analysis includes additional GERA control individuals and

imputation with the HRC reference panel (version r1.1 2016).38

All CCRLP and GERA participants were genotyped on the Affyme-

trix Axiom World Array. The second ALL GWAS included 1,504
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ALL-affected individuals from the Children’s Oncology Group

(COG) and 2,931 cancer-free control individuals from the Well-

come Trust Case-Control Consortium (WTCCC), genotyped on

either the Affymetrix Human SNP Array 6.0 (WTCCC, COG trials

AALL0232 and P9904/9905)25 or the Affymetrix GeneChip Hu-

man Mapping 500K Array (COG P9906 and St. Jude Total Therapy

XIIIB/XV).39 GWAS meta-analysis was restricted to individuals of

predominantly European ancestry.

Standard QC steps were implemented,38 removing variants with

pHWE < 1 3 10�5 in control individuals and imputation INFO <

0.30. We applied additional filters to minimize potential for bias

due to the inclusion of external control individuals (Figure S1).

Variants associated with control group (CCRLP versus GERA) at

p < 1 3 10�5 were removed (n ¼ 443). We also excluded variants

if their MAF differed by >50% or R0.10 from the average MAF

across CCRLP, GERA, and WTCCC control individuals (MAF R

0.05, n ¼ 3,029; MAF < 0.05, n ¼ 198,632). Lastly, allele fre-

quencies in CCRLP/GERA and WTCCC control individuals were

compared to the gnomAD non-Finnish European reference data-

set and variants with absolute MAF differences R 0.10 were

filtered out (n ¼ 21,863).
Heritability and genetic correlation
We used LD score regression40 to estimate heritability (hg) for each

blood-cell phenotype and for ALL, as well as the genetic correla-

tion (rg) between each blood-cell phenotype and ALL. We used a

reference panel of LD scores generated from all variants that

passed QC with MAF > 0.0001 via a random sample of 10,000 Eu-

ropean ancestry UKB participants. We used UKB LD scores to esti-

mate hg for each blood-cell-trait phenotype and rg with ALL.
Mendelian randomization
We carried out Mendelian randomization (MR) analyses to inves-

tigate the potential causal relationship between blood-cell-trait

variation and ALL. Genetic instruments excluded multi-allelic

and non-inferable palindromic variants with intermediate allele

frequencies (MAF > 0.42). To minimize potential for bias due to

differences in allele frequencies between exposure (UKB) and

outcome (ALL) populations, we restricted analyses to variants

with MAF R 0.01 and MAF difference < 0.10. For instruments

that were unavailable in the ALL dataset (n ¼ 294), LD proxies

(r2 > 0.95) were obtained. MR analyses estimated odds ratios

(ORs) and corresponding 95% confidence intervals (CIs) for a

genetically predicted 1-SD increase in the normalized Z score for

lymphocytes, monocytes, neutrophils, basophils, and eosino-

phils. For LMR, NLR, and PLR, effects were estimated per 1-unit in-

crease in the ratio.

We used multiple MR estimators to strengthen inference by

evaluating consistency in the observed effects. Maximum likeli-

hood (ML) provides unbiased estimates in the absence of any hor-

izontal pleiotropy, while inverse-variance weighted multiplicative

random-effects (IVW-mre) accounts for non-directional pleiot-

ropy.41,42 Weighted median (WM)43 provides unbiased estimates

when up to 50% of the weights are from invalid instruments.

Shrinkage-based MR RAPS (robust adjusted profile score)44,45 in-

corporates a robust loss function to limit the influence of invalid

instruments. MR pleiotropy residual sum and outlier (PRESSO)46

regresses variant effects on the outcome on their exposure effects

and compares the observed distance of all instruments to this

regression line with the expected distance under the null hypoth-

esis of no horizontal pleiotropy.46
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To assess potential violations of MR assumptions, we examined

the following diagnostic tests: (1) deviation of the MR Egger inter-

cept from 0 (p < 0.05), indicative of directional horizontal pleiot-

ropy; (2) I2GX < 0.90, indicative of regression dilution bias due to

violation of the nomeasurement error (NOME) assumption;47 and

(3) Cochran’s Q-statistic pQ < 0.05 or MR PRESSO pGlobal < 0.05,

indicative of heterogeneity due to balanced horizontal pleiotropy.

We also report MR PRESSO distortion p values, which test for sig-

nificant differences between the original and pleiotropy-corrected

effect estimates.

Next, we conducted multivariable MR (MVMR) analyses to esti-

mate direct effects of specific blood-cell traits on ALL after ac-

counting for related phenotypes. MVMR regresses SNP effects for

all instruments across all exposures against the outcome together,

weighting for the inverse variance of the outcome (MVMR-IVW).

We also applied a modified analysis where the instruments are

selected for each exposure on the basis of p < 5 3 10�8 and

then all exposures for those SNPs are regressed together (MVMR-

IVWmod). Feature selection was also performed via MV LASSO.

For ratios, we conducted summary-based mediation analysis to

decompose the observed total MR effects into direct and indirect

effects mediated by each of the component traits.48 For instance,

for LMR, we quantified indirect effects on ALL risk that were medi-

ated through regulation of lymphocyte and monocyte counts, as

well as direct LMR effects on ALL.

Lastly, we applied MR-Clust,49 a heterogeneity-based clustering

method for detecting distinct values of the causal effect that are

evidenced by multiple genetic variants. MR-Clust assigns variants

to K substantive clusters where all variants indicate the same

causal effect, a null cluster, and a ‘‘junk’’ cluster, which includes

non-null variants that do not fit into any of the substantive clus-

ters. This approachmay reveal different causal or pleiotropic path-

ways and identify previously undetected ALL-risk variants because

of a reduced burden of multiple testing compared with GWASs.

Variants were assigned to a cluster if their conditional probability

of cluster membership was greater than 0.50. Clusters were formed

with a minimum of four variants.

All statistical analyses were conducted with R (version 4.0.2).

MR analyses were conducted with the TwoSampleMR R package

(version 0.5.5).
Results

Genetic determinants of blood-cell traits

Genome-wide analyses revealed a substantial genetic

contribution to blood-cell-trait variation. Heritability (hg)

estimated from GWAS summary statistics on the full ana-

lytic cohort (median n ¼ 335,030) ranged from 3.1% for

basophils to 21.8% for platelets (Figure 1, Table S1). There

was significant genetic correlation between all blood-cell

populations, which supports our rationale for using

MTAG to leverage this shared genetic basis (Figure 2, Table

S2). Among non-composite traits, the largest correlations

were observed between pairs of white blood cells: mono-

cytes and neutrophils (rg ¼ 0.45, SE ¼ 0.023, p ¼ 1.8 3

10�83), basophils and neutrophils (rg ¼ 0.44, SE ¼ 0.037,

p ¼ 4.0 3 10�33), and lymphocytes and monocytes (rg ¼
0.41, SE ¼ 0.023, p ¼ 1.3 3 10�68). Platelet counts were

also significantly correlated with neutrophils (rg ¼ 0.24,
urnal of Human Genetics 108, 1823–1835, October 7, 2021 1825



Figure 1. Heritability for acute lymphoblastic leukemia and
blood-cell subtypes
Array-based heritability (hg) for lymphocytes, monocytes, neutro-
phils, eosinophils, basophils, platelets, lymphocyte-to-monocyte
ratio (LMR), neutrophil-to-lymphocyte ratio (NLR), platelet-to-
lymphocyte ratio (PLR), and acute lymphoblastic leukemia (ALL)
estimated via LD score regression.

Figure 2. Genetic correlation between blood-cell traits
Genetic correlation (rg) heat plot for lymphocytes, monocytes,
neutrophils, eosinophils, basophils, platelets, lymphocyte-to-
monocyte ratio (LMR), neutrophil-to-lymphocyte ratio (NLR),
and platelet-to-lymphocyte ratio (PLR) estimated via LD score
regression. Associations with p < 1.4 3 10�3 were considered sta-
tistically significant after Bonferroni correction for 36 pairs tested,
and corresponding rg estimates are labeled in black font.
SE ¼ 0.022, p ¼ 1.7 3 10�26), lymphocytes (rg ¼ 0.22, SE ¼
0.018, p ¼ 3.8 3 10�35), and monocytes (rg ¼ 0.21, SE ¼
0.020, p ¼ 6.8 3 10�26). Cell-type ratios LMR and NLR

were primarily correlated with their component traits

and with each other. PLR was significantly correlated

with all phenotypes, including monocytes (rg ¼ �0.20,

SE ¼ 0.021, p ¼ 2.5 3 10�20), neutrophils (rg ¼ �0.16, SE

¼ 0.029, p ¼ 2.7 3 10�8), basophils (rg ¼ �0.21, SE ¼
0.032, p ¼ 1.1 3 10�10), and eosinophils (rg ¼ �0.11, SE

¼ 0.023, p ¼ 6.3 3 10�7).

After applying our instrument selection criteria (discov-

ery pMTAG < 5 3 10�8, replication pMTAG < 0.05; LD r2 <

0.05 within 10 Mb), we identified 3,000 variants that

were independent within, but not across, hematological

phenotypes (Table S3). Of these, 2,500 were associated

with a single phenotype, 378 were associated with two,

and 122 were instruments for three or more blood-cell

traits. The number of available instruments ranged from

157 for basophils to 692 for platelets (Table S4). The pro-

portion of trait variation accounted for by each set of in-

struments was estimated in the replication sample

(100,284 to 100,764 individuals) and ranged between

5.1% for basophils to 24.4% for platelets (Table S4). Previ-

ous GWASs have not examined cell-type ratios, while we

identified 770 instruments specifically for ratio pheno-

types: LMR, NLR, and PLR. To assess whether these signals

are captured by existing associations with cell counts or

proportions, we performed clumping (LD r2 < 0.05 within

10 Mb) with loci reported in Vuckovic et al.,6 a meta-anal-

ysis of UK Biobank and Blood Cell Consortium cohorts.

This yielded 225 independent, ratio-specific variants in

115 cytoband loci, including six missense mutations

(Figure 3, Table S5).

In-silico functional annotations identified overlap with

multiple regulatory elements among all genetic instru-
1826 The American Journal of Human Genetics 108, 1823–1835, Oct
ments. A total of 324 variants were predicted to be in the

top 10% of deleterious substitutions genome wide

(CADD scores > 10),31 and 138 had significant (p < 0.05)

evidence of overlap with open chromatin (FAIRE, DNase,

Pol-II, CCCTC-binding factor (CTCF) [MIM: 604167], and

MYC [MIM: 190080]) on the basis of ENCODE data from

up to 14 cell types. Over 80% of all instruments (n ¼
2,405) were expression quantitative trait loci (eQTLs) in

whole blood (false discovery rate [FDR]< 0.05) on the basis

of results from eQTLGen33 (Table S6). Fewer immune cell

eQTLs were identified, although these reference datasets

were much smaller. The highest proportion of eQTLs was

observed in monocytes (27.0%), T cells (23.6%), and neu-

trophils (21.1%), followed by B cells (11.4%) (Table S6).

The proportion of immune-cell eQTLs was broadly similar

across categories of instruments, ranging from 26% for

neutrophils to 16% for platelets (Figure S2). For every in-

strument class, T cell eQTLs were the most common. Lym-

phocytes were the most prevalent instrument class among

cell-specific immune eQTLs.

Among instruments specific to one phenotypewith eQTL

effects in >2 cell types (Figure S3), the largest number of

target genes was observed for platelet-specific and mono-

cyte-specific instruments. Instruments for >4 blood-cell

traits with eQTL effects in >3 cell types (Figure S3) had a

predominance of immune function genes in the human

leukocyte antigen (HLA) region and a previously identified
ober 7, 2021



Figure 3. Manhattan plots for cell-type ratios and their component traits
Truncated Manhattan plots showing genome-wide significant (p < 5 3 10�8) associations for lymphocyte-to-monocyte ratio (LMR),
neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR) and their component cell types. Points with black borders
denote variants that were selected only as instruments for the given ratio trait and are not in linkage disequilibrium (r2 < 0.05 within 10
Mb) with previously reported loci for its component cell-type counts or proportions. Labeled genes contain variants with specific func-
tional features (CADD score > 10, RegulomeDB rank 1–3a, missense mutations) and/or p < 1 3 10�20.
ALL-risk gene, BAK1 (MIM: 600516). Among instruments

for >5 blood-cell traits with eQTL effects in a single cell/tis-

sue type (whole blood) (Figure S4), notable findings

included multiple ALL-risk genes (IKZF3, CDKN2A [MIM:

600160], CDKN2B [MIM: 600431], IRF1 and [MIM:

147575]) and FLT3 (MIM 136351), a receptor tyrosine ki-

nase that serves as a key regulator of hematopoiesis and is

frequently mutated in ALL and acute myeloid leukemia

(AML [MIM: 601626]).

Impact of blood-cell variation on ALL risk

Associations between genetic determinants of blood-cell-

trait variation and ALL susceptibility were investigated

via a GWAS meta-analysis comprised of 2,666 affected

individuals and 60,272 control individuals. Heritability

of ALL was 18.1% (hg ¼ 0.181, SE ¼ 0.013), converted
The American Jo
to the liability scale via Surveillance, Epidemiology, and

End Results (SEER) Program estimates of ALL lifetime risk

in non-Hispanic whites (0.15%) (Figure 1). At

the genome-wide level, we observed positive correlations

with ALL risk for increasing lymphocyte counts (rg ¼
0.088, SE ¼ 0.025, p ¼ 4.0 3 10�4), LMR (rg ¼ 0.065, SE

¼ 0.026, p ¼ 0.012), and neutrophils (rg ¼ 0.051, SE ¼
0.023, p¼ 0.027). Increasing PLR, corresponding to higher

levels of platelets compared to lymphocytes, was inversely

correlated (rg ¼ �0.072, SE ¼ 0.023, p ¼ 1.7 3 10�3) with

ALL risk (Figure 4).

Next, we conductedMR analyses by using genetic instru-

ments developed in the UKB to assess the putative causal

relevance of blood-cell-trait variation in childhood ALL eti-

ology (Figure 5, Table S7). We did not detect evidence of

directional horizontal pleiotropy for any blood-cell traits
urnal of Human Genetics 108, 1823–1835, October 7, 2021 1827



Figure 4. Genetic correlation between
blood-cell subtypes and acute lympho-
blastic leukemia
Circos plot depicting genome-wide genetic
correlation (rg) estimates. The colors
correspond to the direction of genetic cor-
relation; warm shades depict positive cor-
relations between increasing blood-cell
counts or ratios and acute lymphoblastic
leukemia risk, cool tones correspond to in-
verse associations, and faded gray shades
correspond to null correlations. The width
of each band in the Circos plot is propor-
tional to the magnitude of the absolute
value of the rg estimate.
(Table S8). However, there was indication of balanced hor-

izontal pleiotropy for all phenotypes on the basis of Co-

chran’s Q (pQ < 0.05) and the PRESSO global test (pGlobal

< 0.05). Among white blood cells, a 1-SD increase in

lymphocyte counts was associated with a modest increase

in ALL risk (ORML ¼ 1.16, 95% CI 1.01–1.33, p ¼ 0.035;

ORIVW-mre ¼ 1.15, 0.99–1.34, p ¼ 0.061). This effect

was slightly attenuated in pleiotropy-corrected analyses

(ORPRESSO ¼ 1.14, 0.98–1.32, p ¼ 0.087; ORRAPS ¼ 1.16,

1.01–1.34, p ¼ 0.033), but the effect size distortion was

not significant (pDist¼ 0.88). There was no significant asso-

ciation between counts of other white-blood-cell types

(monocytes, neutrophils, basophils, eosinophils) or plate-

lets and ALL risk (Figure 4, Table S7).

Considering ratios, which indicate a genetic predisposi-

tion to a shift in the counts of one cell type relative to

another, revealed several associations. An increase in

LMR was associated with an approximately 22% increase

in ALL risk (per 1-unit increase: ORML ¼ 1.23, 1.07–1.41,

p ¼ 4.5 3 10�3; ORIVW-mre ¼ 1.22, 1.00–1.50, p ¼ 0.052).

Accounting for the influence of potentially pleiotropic

outliers slightly attenuated this effect (ORRAPS ¼ 1.14,

0.99–1.32; ORPRESSO ¼ 1.18, 1.01–1.38). An inverse associ-

ation with ALL risk was observed for increasing NLR (ORML

¼ 0.67, 0.54–0.83, p ¼ 3.13 10�4; ORIVW-mre ¼ 0.67, 0.49–

0.92, p ¼ 0.012), denoting a shift to higher levels of

neutrophils compared to lymphocytes. Increased PLR was

also associated with a lower risk of ALL (ORML ¼ 0.80,

0.70–0.92, p ¼ 2.0 3 10�3; ORIVW-mre ¼ 0.80, 0.67–0.96,

p ¼ 0.012). Associations with ALL for both phenotypes re-

mained stable in sensitivity analyses correcting for pleiot-

ropy (NLR: ORPRESSO ¼ 0.77, 0.66–0.98, p ¼ 0.036; PLR:

ORPRESSO ¼ 0.82, 0.70–0.96, p ¼ 0.014) and outliers

(NLR: ORRAPS ¼ 0.73, 0.58–0.91, p ¼ 5.6 3 10�3; PLR:

ORRAPS ¼ 0.85, 0.73–0.98, p ¼ 0.025).

In addition to analytically correcting for pleiotropy, we

also conducted analyses by using a filtered set of genetic in-

struments excluding variants that showed evidence of

heterogeneity on the basis of Cochran’s Q (Table S9).
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These sensitivity analyses confirmed

our previous findings showing that

an increase in lymphocyte
counts (ORIVW-mre ¼ 1.18, p ¼ 7.4 3 10�3) and LMR

(ORIVW-mre ¼ 1.19, p ¼ 0.016) conferred a modest increase

in ALL risk, while increased NLR (ORIVW-mre ¼ 0.67, p ¼
7.4 3 10�3) and PLR (ORIVW-mre ¼ 0.82, p ¼ 5.8 3 10�3)

were associated with lower risk.

Assessment of additional diagnostic tests indicated that

our analysis was robust against main threats to validity,

including weak instrument bias (mean F-statistic > 60)

and NOME violation (I2GX > 0.98) (Table S8). We used

the MR Steiger directionality test50 to orient the causal ef-

fects and confirmed that instruments for blood-cell traits

were affecting ALL susceptibility, not the reverse for all

traits, including lymphocytes (p ¼ 5.0 3 10�135), LMR (p

¼ 5.4 3 10�98), NLR (p ¼ 2.1 3 10�10), and PLR (p ¼
1.2 3 10�109). Our analyses were powered to at least 80%

to detect a minimum OR of 1.17 (equivalent to 0.85) for

LMR and PLR, OR of 1.20 for lymphocytes, and OR of

1.28 (equivalent to 0.78) for NLR (Figure S5).

Next, we conducted multivariable MR analyses to esti-

mate independent direct effects on ALL for each blood-

cell subtype (Table S10). Among lymphocytes, monocytes,

neutrophils, and platelets, only lymphocytes were inde-

pendently associated with ALL (ORMVMR ¼ 1.18, 1.06–

1.31, p ¼ 3.3 3 10�3) on the basis of all variants and

when restricting to instruments associated with each expo-

sure (ORMVMR-mod ¼ 1.43, 1.16–1.76, p ¼ 8.8 3 10�4). This

was confirmed via MV LASSO, which only retained lym-

phocytes. Among cell-type ratios, PLR was associated

with ALL when considering all variants for all traits

(ORMVMR ¼ 0.90, 0.82–0.99, p ¼ 0.033) but not in the in-

strument-specific analysis. PLR was the only trait selected

by MV LASSO. Lastly, we explored the degree to which

causal effects observed for ratio phenotypes were mediated

by any of their component traits. We did not observe any

statistically significant indirect effects, which suggests

that the impact on ALL susceptibility observed for LMR,

NLR, and PLR could not be attributed to effects on the

counts of lymphocytes, monocytes, neutrophils, or plate-

lets (Table S11).



Figure 5. Forest plots depicting Mendelian randomization results
Visualization of odds ratios (ORs) and 95% confidence intervals (CIs) for the effect of increasing blood-cell counts or blood-cell ratios on
the risk of acute lymphoblastic leukemia (ALL). For each phenotype, association results based on five differentMendelian randomization
estimators are shown.
Exploring mechanisms of ALL susceptibility

We applied MR-Clust49 to blood-cell traits associated with

ALL to identify subgroups of variants with homogeneous

causal effects and novel ALL-risk variants (Figure S6; Table

S12). Clustering instruments for lymphocytes identified

ten variants indicating a large effect of increasing lympho-

cyte counts on ALL (OR ¼ 7.63). LMR instruments con-

tained a cluster of nine variants (OR ¼ 3.64). The largest

cluster was identified for PLR, which had 18 variants (OR

of 0.27 per 1-unit increase in the ratio). A cluster comprised

of ten variants implied an extremely large inverse effect of

NLR on ALL (OR ¼ 0.039). The substantive clusters were

largely distinct, but one variant was shared by all four traits

(rs28447467: pALL¼ 0.026). Across all clusters, two variants

were statistically significantly associated with ALL after

correcting for the number of independent variants across

all phenotypes tested (pALL < 5 3 10�5): rs6430608-C

(OR ¼ 1.28, 1.15–1.41, pALL ¼ 2.5 3 10�6) near CXCR4

(MIM: 162643) on 2q22.1 and rs76428106-C (OR ¼ 1.79,

1.36–2.35, PALL ¼ 3.2 3 10�5) in FLT3 on 13q12.2. The

former is an intergenic variant specific to NLR with cis ef-

fects on whole-blood gene expression of MCM6 (MIM: 60

1806) (peQTL ¼ 4.0 3 10�28) and DARS1 (MIM: 603084)

(peQTL ¼ 3.7 3 10�37), based on data from eQTLGen.33
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On the other hand, rs76428106, an intronic variant in

FLT3 and an eQTL for FLT3 in whole blood (peQTL ¼
1.03 10�11)33 was included in substantive clusters for lym-

phocytes and PLR but assigned to the ‘‘junk’’ cluster for

LMR. Annotation of variants in substantive clusters via

PhenoScanner51 revealed a predominance of previously re-

ported associations with blood-cell-trait variation, as well

as autoimmune and allergic conditions, such as type 1

diabetes (MIM: 222100), Crohn disease (MIM: 266600),

asthma (MIM: 600807), and IgA deficiency (MIM:

137100) (Table S12).

Notable instruments assigned to ‘‘junk’’ clusters for LMR,

PLR, and NLR included established ALL-risk variants

rs4948492 and rs4245597 (ARID5B, 10q21.2), rs2239630

(CEBPE, 14q11.2), rs78697948 (IKZF1, 7p12.2), and rs747

56667 (8q24.2). These variants were also classified as out-

liers on the basis of Cochran’s Q, suggesting that their ef-

fects on ALL susceptibility are predominantly mediated

through pathways other than regulation of blood-cell pro-

files. We formally tested this hypothesis via mediation

analysis52 by decomposing the total SNP effect on ALL

into direct and indirect (mediated) effects. For variants

that were instruments formore than one blood-cell pheno-

type, mediation was only explored for phenotypes
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significantly associated with ALL. Mediator-outcome ef-

fects were obtained fromMR results excluding outliers (Ta-

ble S9). For rs4245597 (ARID5B), only a small proportion of

its effect on ALL risk was mediated by blood-cell traits;

1.65% (0.79–2.51) was attributed to NLR and 0.84%

(0.23–1.44) to PLR (Table S13). Mediated effects attributed

to LMR were not statistically significant for rs4245597

(ARID5B; 0.75%), rs2239630 (2.16%; CEBPE), and

rs78697948 (1.72%; IKZF1).

Modest, but statistically significant, mediated effects

were observed for ALL-risk variants rs6430608 (NLR:

4.72%, 2.26–7.20) and rs76428106 (PLR: 2.43%, 0.68–

4.19; lymphocytes: 2.51%, 0.67–4.35). The LMR-mediated

effect of rs76428106 was larger (11.39%) but in the oppo-

site direction from the effect of LMR on ALL, indicating

pleiotropic effects consistent with the assignment of

rs76428106 to the ‘‘junk’’ cluster for LMR. Of the six traits

linked to this variant, its effect onmonocytes (rs76428106-

C: b ¼ 0.484, p ¼ 1.33 10�310) was by far the strongest. In

MR analyses, monocyte counts were not implicated in ALL

susceptibility, suggesting that rs76428106 may be influ-

encing ALL via other pathways or broad effects on

hematopoiesis.
Discussion

Hematopoiesis is a tightly regulated hierarchical process

designed tomaintain optimal physiological ranges. Abnor-

malities in blood counts may be indicative of systemic

inflammation or the presence of infections and serve as in-

dicators for a wide range of potentially adverse health con-

ditions, including inborn defects in hematopoiesis. While

the responsive and sensitive nature of blood-cell counts

makes them useful clinical biomarkers, this poses a chal-

lenge for etiological studies. Elevated white-blood-cell

counts are an established diagnostic feature of childhood

ALL, reflecting the overproduction of immature lympho-

cytes, or lymphoblasts, in the bone marrow. However,

blood counts at a single time point, particularly in can-

cer-affected individuals, may not be representative of the

individual’s stable, pre-diagnostic blood-count profile,

making it difficult to disentangle disease correlates from

risk factors.

In this study, we leveraged the highly heritable nature of

blood-cell variation to evaluate its role in ALL pathogenesis

without the limitations inherent in observational blood-

count measures. Our overarching finding is the conver-

gence of genetic mechanisms resulting in increased

lymphocyte counts and increased ALL susceptibility. Using

genetic correlation and Mendelian randomization, we

observed a significant positive relationship between a

genetically predicted increase in lymphocyte counts and

ratio of lymphocytes to monocytes (LMR) and risk of

ALL. Conversely, genetic predisposition to an increased ra-

tio of platelets to lymphocytes (PLR) and neutrophils to

lymphocytes (NLR) was inversely associated with ALL
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risk. These effects were largely robust to analytic correc-

tions for horizontal pleiotropy, and in some cases, the

removal of instruments contributing to heterogeneity

strengthened the observed associations. Taken together,

these results reveal insights into ALL etiology and point

to a specific shift in blood-cell homeostasis that confers

an increased susceptibility.

However, the ways in which a genetic predisposition to

over-production of lymphocytes may confer ALL risk are

most likely multifactorial. Stable and consistent causal ef-

fect estimates for lymphocytes, PLR, and NLR do not imply

a single biological mechanism, even if they are estimated

with valid instruments that primarily regulate the target

blood-cell trait. Acknowledging this, we propose two

distinct, though not necessarily mutually exclusive, bio-

logical mechanisms related to the two-hit model of child-

hood ALL development that warrant further investigation.

First, the initiating genetic lesions in childhood ALL, such

as ETV6-RUNX1 (MIM: 600618 and 151385) gene fusions,

arise prenatally in most cases and require additional so-

matic mutations to progress to overt leukemia.14,53 The

presence of common alleles across the spectrum of variants

that subtly tune lymphocyte production may lead to an

elevated risk of ALL by increasing the reservoir of preleuke-

mic cell clones, which in turn, may increase the chances of

acquiring ‘‘second-hit’’ oncogenic events and progression

to ALL.

Second, the ‘‘delayed infection’’ hypothesis posits that

children who lack early microbial exposures may have an

unmodulated immune network that results in dysregu-

lated immune responses to infectious stimuli later in child-

hood and an increased risk of ALL.14 This is supported by

epidemiological evidence, such as that proxies for early-

life infectious exposure, including daycare attendance

and higher birth order, are associated with a reduced risk

of ALL,54,55 and by experimental models that demon-

strated higher ALL incidence in mice with delayed expo-

sure to pathogens.56,57 Further, children who develop

ALL have been found to have different cytokine profiles

at birth.58,59 Genetic variants that influence the blood-

cell phenotypes associated with ALL risk in our study

may confer their effects via modulation of neonatal im-

mune development and of immune responses to infec-

tions in childhood that may trigger ALL development. A

shift toward increased lymphocytes to neutrophils is

suggestive of increased adaptive immunity and lympho-

cyte activation in response to infections. This is consistent

with our findings for NLR, a marker of increased inflamma-

tion, which was associated with reduced ALL risk. Simi-

larly, reduced immune-inflammatory responses and

increased activation of lymphocytes would be denoted

by a higher ratio of lymphocytes to monocytes and lym-

phocytes to platelets,60 both of which were associated

with increased ALL risk in our study.

Previous studies have noted an overlap between ALL-risk

loci and genomic regions associated with blood-cell

phenotypes,21–24 however in this study, we have
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systematically analyzed the contribution and causal effects

of genetic variation across blood-cell traits in ALL etiology.

In a recent PheWAS, ALL-risk variants were found to be en-

riched for regulation of platelet levels, but the overall

association between platelet counts and ALL was null in

Mendelian randomization and genetic score analyses

with 223 platelet-associated variants.26 This is consistent

with our findings via over 600 genetic instruments for

platelets, which indicate that variation in platelet counts

alone does not influence ALL susceptibility, whereas PLR,

which captures dysregulation of platelets in relation to

lymphocytes, has a significant impact.

Indeed, we identified the cell-type ratios LMR, NLR, and

PLR as independent risk factors for ALL and found evi-

dence that these ratios have distinct genetic mechanisms

that are not captured by their component traits. In multi-

variableMR analyses that concurrentlymodeled the effects

of lymphocyte, monocyte, neutrophil, and platelet counts

on ALL, lymphocytes remained as the only independent

risk factor and this association with ALL strengthened

compared to univariate analyses. However, there was no

evidence that the total MR effects for LMR, NLR, and PLR

were mediated either by lymphocytes or by the other cell

populations. This implies that while dysregulation of

lymphocyte homeostasis seems to be a key factor, it should

be considered in the broader context of other blood-cell

subtypes.

In addition to identifying novel susceptibility pathways,

our study also provides insights into the underlying mech-

anisms of several established ALL-risk variants in ARID5B,

CEBPE, and IKZF1 and at chromosome 8q24. Despite sig-

nificant associations with LMR and, in the case of ARID5B,

with NLR and PLR, these variants were flagged as pleio-

tropic outliers in MR analyses, which mediation analyses

subsequently confirmed. This supports that the overall ef-

fects of these loci on ALL risk are largely mediated by path-

ways other than regulation of blood-cell-trait variation,

although we cannot rule out potential effects of these var-

iants on early stages of hematopoiesis that may influence

ALL development. Our MR-clustering analysis also identi-

fied two putative novel ALL-risk variants among genetic in-

struments for various blood-cell traits: rs6430608 on

2q22.1 and rs76428106 in FLT3 on 13q12.2.

Although additional studies are needed for confirmation

of their association with ALL, the locus at FLT3 is of partic-

ular interest because this same variant was recently associ-

ated with an increased risk of autoimmune thyroid disease

(MIM: 608173) and AML.61 The AML/ALL-risk-increasing

allele, rs76428106-C, has a frequency of approximately

1% in the general population (1.3% in UKB, 1.4% in

ALL GWAS) and is reported as a splicing QTL in GTEx

(psQTL ¼ 1.3 3 10�8). Indeed, rs76428106-C was shown

to generate a cryptic splice site resulting in truncation of

FLT3 but an increase in FLT3 ligand levels.61 Gain-of-func-

tion somatic mutations in FLT3 are relatively frequent in

childhood ALL,62 and although rs76428106 has greater ef-

fects on the production of myeloid cells than lymphocytes
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in our analyses, its putative effects on ALL risk may largely

occur via activation of the RAS/MAPK pathway. This acti-

vation is likely to be restricted to key developmental deci-

sions of hematopoietic cells given the delimited expression

of FLT3 to hematopoietic stem and progenitor cells.63 Less

is known about the 2q22.1 variant, rs6430608, which is an

eQTL for MCM6 in blood and CXCR4 in multiple tissues.

MCM6 is upregulated in multiple cancers and is believed

to regulate DNA replication and activate MAPK/ERK

signaling.64 CXCR4 is a chemokine receptor that facilitates

HIV-cell entry and regulates immune-cell migration,

including retention of B cell precursors in the bone-

marrow, and is being pursued as a therapeutic target in

ALL and AML.65,66

Several limitations of this study should be acknowl-

edged. First, genetic instruments were developed for

blood-cell phenotypes measured in adult participants in

the UK Biobank because of a paucity of adequately pow-

ered GWASs of blood-cell traits in newborns or children.

Environmental exposures throughout the life course influ-

ence blood-cell dynamics, which has implications for the

accuracy of genetic association estimates at different time

points across the lifespan. Although studies of blood-cell

development in pediatric populations should be pursued,

the true underlying genetic architecture is not affected by

age. This is also supported by studies of other complex

traits, such as BMI, which showed that genetic risk scores

developed in adults accurately predict weight gain in early

childhood.67 Therefore, we would expect any error in our

genetic instruments developed in adults to bias MR results

toward the null.

Second, our analysis was limited to broad classes of cell

types, such as lymphocytes, and in future studies, it will be

important to distinguish between subpopulations of B cell

and T cell lymphocytes. B cell precursor ALL, the most com-

mon subtype,most likely has distinct etiologicmechanisms

from Tcell ALL.15 Of relevance to our findings, the epidemi-

ological evidence for the two-hitmodel of leukemogenesis is

more compelling for B cell ALL than for T cell ALL14 and

GWASs have revealed that hematopoietic transcription fac-

tor genes confer stronger effects on B cell ALL risk.24 We

were also unable to characterize the effect of blood-cell traits

on B cell ALL versus T cell ALL or on specific molecular sub-

types or to explore the potential for germline-somatic inter-

actions with specific ALL mutational signatures.

Finally, MTAG assumes that the variance-covariance ma-

trix of effect sizes is homogeneous across all variants,

which may be violated for SNPs that are null for one trait

but non null for other traits.30 Replication is the best way

to assess the credibility of observed associations; therefore

our two-stage discovery and replication approach should

minimize false positives. Furthermore, in a two-sample

setting, false-positive instruments would biasMR estimates

toward the null, not induce a spurious signal.

Despite some limitations, this study has important

strengths that support the robustness of our findings.

Our instrument development approach was optimized
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for Mendelian randomization studies of cancer etiology.

The large sample size of the UK Biobank cohort allowed

us to apply appropriate exclusions while retaining a suffi-

cient number of participants for a two-stage discovery

and replication analysis. Furthermore, applying the

MTAG framework increased statistical power for identi-

fying genetic determinants of specific blood-cell traits

while taking into account the correlation between these

phenotypes. This resulted in a set of strong genetic instru-

ments explaining between 5% and 24% of variation in the

target blood-cell trait. These variants were enriched for

multiple regulatory features, and over 80% had significant

effects on gene expression in whole blood and up to 27%

of instruments were classified as eQTLs in immune-cell

subtypes, albeit with a limited degree of cell-type speci-

ficity in the eQTL effects across instrument classes. In

addition, we characterized the genetic determinants of

blood-cell ratios, specifically LMR, NLR, and PLR, which

have received considerably less attention in genetic associ-

ation studies. A GWAS of PLR and NLR was conducted in

5,901 healthy Dutch individuals, which identified one sig-

nificant locus for PLR.68 Examining these ratio phenotypes

revealed additional ALL susceptibility pathways and

helped contextualize the observed results for lymphocytes

and platelets. Finally, the causal interpretation of our

results depends on the credibility of fundamental MR as-

sumptions, and to this end, we employed a range of MR-

estimation methods and conducted multiple diagnostic

tests to interrogate the robustness of our results with

respect to confounding, horizontal pleiotropy, and weak

instrument bias.

In conclusion, we demonstrate that a genetic propensity

for overproduction of lymphocytes, particularly in relation

to other blood-cell types, is associated with an increased

risk of childhood ALL in individuals of predominantly Eu-

ropean ancestry. It will be important to elucidate the un-

derlying biological mechanisms of our findings and to

assess their transferability to admixed and non-European

ancestry populations.
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