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Summary
Complex traits and diseases can be influenced by both genetics and environment. However, given the large number of environmental

stimuli and power challenges for gene-by-environment testing, it remains a critical challenge to identify and prioritize specific disease-

relevant environmental exposures. We propose a framework for leveraging signals from transcriptional responses to environmental

perturbations to identify disease-relevant perturbations that can modulate genetic risk for complex traits and inform the functions of

genetic variants associated with complex traits. We perturbed human skeletal-muscle-, fat-, and liver-relevant cell lines with 21 pertur-

bations affecting insulin resistance, glucose homeostasis, andmetabolic regulation in humans and identified thousands of environmen-

tally responsive genes. By combining these data with GWASs from 31 distinct polygenic traits, we show that the heritability of multiple

traits is enriched in regions surrounding genes responsive to specific perturbations and, further, that environmentally responsive genes

are enriched for associations with specific diseases and phenotypes from the GWAS Catalog. Overall, we demonstrate the advantages of

large-scale characterization of transcriptional changes in diversely stimulated and pathologically relevant cells to identify disease-

relevant perturbations.
Introduction

Genome-wide association studies (GWASs) have identified

thousands of genetic variants associated with complex dis-

eases and traits.1 The majority of these variants fall into

non-coding regions of the genome and, as a result, their

mechanism of action remains largely unknown.2 In recent

years, researchers have gained an increasingly clear picture

of which parts of the genome are active in a range of tissues

and cell types.3–6 Integrating such information with results

fromGWASs has identified cell types, tissues, and regulato-

ry elements relevant to specific diseases and phenotypes

and moved the field toward a mechanistic understanding

of GWAS hits.7–9 In addition, genomic colocalization and

transcriptome-wide association studies combining results

from GWASs and expression quantitative trait locus

(eQTL) studies have identified candidate causal genes and

their mechanisms of action.10–12

Despite these advances, a modest fraction of GWAS-asso-

ciated variants and eQTLs colocalize for any trait13,14

providing the perspective that many disease-relevant ef-

fects are modulated by yet-to-be-discovered environ-

mental factors. To address this challenge, multiple studies
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havemapped eQTLs in vitro that are responsive to the envi-

ronment.15–26 For example, the Immune Variation Project

identified eQTLs in human CD4þ T lymphocytes with

different effects across distinct immune states.17 These

previously unknown, immune-state-specific eQTLs were

enriched for autoimmune-disease-associated variants,

underscoring the importance of exploring contexts

beyond tissues and cell types to reveal the specificity of ge-

netic associations. Although there is mounting evidence

that the environment modulates genetic effects, GWASs

and eQTL studies rarely measure and test for genetic inter-

actions with environmental exposures. This is, in part, due

to the difficulty of identifying and collecting information

on the most relevant environmental exposures in GWAS

cohorts and performing eQTL studies in contexts that are

relevant for the specific trait or disease.

In this study, we extend the current understanding of in-

herited variation in complex traits by implementing a

framework to model signals from transcriptional responses

to environmental perturbations to catalog and prioritize

disease-relevant environments that can modulate genetic

risk for complex traits and inform the functions of genetic

variants and genes associated with complex traits.
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Specifically, we first assessed environmental effects on gene

expression levels in three metabolic human cell lines by

performing RNA sequencing (RNA-seq) in muscle-, fat-,

and liver-relevant cell lines treated with 21 different envi-

ronmental perturbations related to aspects of glucose and

insulin metabolism, kinase inhibitors, inflammation, fatty

acid metabolism, etc. (n ¼ 234 samples). We identified

thousands of environmentally responsive genes underly-

ing disease-associated response pathways and character-

ized the specificity and sharing of these effects across

perturbations and cell lines. Next, to identify disease-rele-

vant perturbations, we coupled our gene expression data

with GWAS summary statistics of 31 complex traits and

diseases as well as associations from the GWAS Catalog.

We confirmed several well-established environmental-

phenotype associations, e.g., the role of TGF-b1 on

asthma,27 and provided additional evidence for recent

and less well-understood associations, e.g., the role of lep-

tin onmajor depressive disorder.28 Last, to further illustrate

how perturbation experiments inform the functions of

complex trait-associated variants, we integrate our pertur-

bation data with genomic colocalization studies and

show that the effects of these perturbations in the relevant

tissues identify context-specific molecular mechanisms of

GWAS hits for diverse cardiometabolic traits.

This resource characterizes the dynamic transcriptional

landscape in metabolic tissues and provides a framework

for identification and prioritization of disease-relevant

perturbations and disentanglement of the complex gene-

environment interactions that determine disease suscepti-

bility, which is particularly relevant for complex traits such

as insulin resistance (IR), diabetes, and obesity.
Material and methods

Cell culturing and perturbations
Experiments were conducted with human skeletal muscle29,30

(HMCL-7304 myocytes; provided by Institute of Child Health,

University College London), fat31 (terminally differentiated Simp-

son-Golabi-Behmel syndrome [SGBS] pre-adipocytes; provided by

Dr. Martin Wabitsch, Ulm University, Ulm, Germany), and liver32

(HepG2; ATCC) cell lines. SGBS and HMCL-7304 cells were differ-

entiated as described previously.30,31 Each cell line was starved for

6 h in Eagle’s minimal essential medium (EMEM) with no fetal

bovine serum (FBS) (HepG2), Dulbecco’s modified Eagle’s medium

(DMEM)/F12 supplemented with pan/bio and penicillin/strepto-

mycin but no FBS (SGBS adipocytes), or HMCL growth medium

(PromoCell) without supplements. For the glucose condition

DMEM, no glucose medium (Thermo) was used. After starvation

and washing with PBS, the cells were exposed for 2 h to one of

the 21 perturbations shown in Figure 1A in triplicate for each

cell-line-perturbation combination. We selected a stimulation

window of 2 h to allow enough time for transcriptional changes

to occur and, at the same time, to minimize potential secondary

responses that are not direct transcriptional effects of the selected

perturbations, as previously assayed for insulin in the liver and

skeletal muscle cells frommice.33 In addition, we selected the con-

centrations of use, shown in Data S1, on the basis of consensus
The American Jo
research of available literature, particularly in the cells of interest.

Last, we prepared triplicate control samples for glucose (no glucose

medium) and four sets of triplicate control samples (no stimula-

tion) for all other perturbations in each cell line, resulting in a sam-

ple size of 234.

RNA isolation and sequencing
After stimulation, the cells were washed with PBS and collected in

PureLink RNA extraction lysis buffer supplemented with 1%

2-mercaptoethanol, flash-frozen in dry ice, and stored at �80�C.
RNA extraction was performed with the PureLink RNA Mini kit

(Thermo). 260/280 and RNA integrity number (RIN) values were

assessed before sequencing for sample purity and integrity. Library

preparation was performed at Novogene company. Liver samples

were sequenced in HiSeq 4000 (Illumina), and fat and muscle

were sequenced in Novaseq 6000 (Illumina) at 150 bp paired-

end reads.

RNA-seq quality control
Reference genome (hg19) and gene model annotation

(GRCh37.p13) files were downloaded from the UCSC Genome

Browser website directly. Indexes of the reference genome were

built with STAR,34 and paired-end clean reads were aligned to

the reference genome via STAR (v.2.6.0; with default option

mismatch ¼ 10). Bam files were filtered for uniquely mapped

reads, sorted, and indexed via SAMtools35 (v.1.4.1). We used

HTSeq36 (v.0.11.0) to count the read numbers mapped to each

gene (with option -m union).

For all subsequent analyses, we focused only on expressed genes,

i.e., genes that have median expression counts above 10 in at least

one of the conditions (perturbation or control) within each cell

line, i.e., 17,660, 17,140, and 16,722 genes for fat, muscle, and

liver cells, respectively. As a measure of quality control, we looked

at several RNA-seq technical metrics (Figures S1–S3), e.g., RNA

integrity number, percent guanine-cytosine (GC) content, percent

of uniquely mapped reads, etc. One sample (TGF-b1 in fat) was

dropped because of failing these quality control metrics. All re-

maining samples had RIN above 8, at least 16 million reads, GC

content, an average of 36% of reads marked as PCR duplicates,

at least 84% of their reads mapped uniquely, and an average of

95%, 4%, and 98% exon, intron, and transcript overlapping reads,

respectively (Figure S1). Moreover, for all samples, their median

Spearman expression correlation (D-statistic) with other samples

was at least 0.96 (Figure S1). We used principal-component anal-

ysis (PCA) to identify gene expression outliers. After removing

the low-quality sample mentioned above and adjusting for major

components of variability (see below), no outliers are present

based on the first two principal components (Figure S3).

Identifying major components of variability in RNA-seq

data
We identified and adjust for major components of gene expression

variability by computing the percent of gene expression variance

for each gene explained by technical and biological variables via

the linear mixed models implemented in the R package variance-

Partition37 (Figure S2). Prior to computing the percent of variance

explained, we variance stabilized and log2-transformed the

expression of each gene within cell lines by using the R package

DESeq2. Then, we centered and scaled each gene to have zero

mean and unit variance. For each gene expressed in each cell

line, we used a linear mixed model with the effect of medium,
urnal of Human Genetics 108, 1866–1879, October 7, 2021 1867



Figure 1. Perturbations induce large-
scale changes in gene expression in mus-
cle, fat, and liver
(A) Number of DE genes for each perturba-
tion in each cell line (FDR < 5%). See Data
S2, S3, and S4 for extended DE summary
statistics.
(B) Proportion of DE genes that change in
response to up to ten perturbations in
each cell line. See Data S4 for extended re-
sults on sharing of DE genes.
(C) Proportion of perturbation-specific DE
genes, i.e., genes that change in response
to a single perturbation, for each perturba-
tion and within each cell line.
(D) Correlation of DE patterns between
different perturbations within each cell
line. Each square is Spearman’s correlation
between the DE test statistic of a pair of
perturbations across all genes.
DE, differentially expressed; FDR, false dis-
covery rate.
number of cells plated, plate number, sequencing batch, cell

collection, differentiation, RNA extraction, starvation, and treat-

ment date as random and the effects of all other variables as fixed.

Sequencing batch and number of cells plated only differed and

were modeled for liver samples, while differentiation date only

differed and was modeled for fat and muscle samples. We correct

all subsequent analyses for all variables that explain, on average,

more than 1% of expression variability in either cell line, i.e.,

percent GC content, percent exon overlapping reads, RNA con-

centration, percent of reads marked as PCR duplicates, RNA 260/

280 ratio, RIN, and percent uniquely mapped reads. For analyses

done in liver cells, we also correct for sequencing batch. The num-

ber of cells plated, plate number, and cell collection, starvation,

differentiation, and RNA extraction date are highly correlated

with the treatment and could act as confounders of the treatment

effect. To account for this, for liver cells we matched treated and

untreated samples by the number of cells plated, collection and

starvation date, and plate number (for most but not all treatments,

see Data S1). Because of this matching, we could not correct our

analyses for RNA extraction date because it was collinear with

treatment status within each treated-untreated pair of samples.

For fat and muscle, we matched treated and untreated samples
1868 The American Journal of Human Genetics 108, 1866–1879, October 7, 2021
by differentiation date and, within that,

by RNA extraction date, cell collection,

and starvation date, and plate number

(for most but not all treatments, see Data

S1). To adjust for all other variables, we

include them in the model when testing

for differential expression by treatment.

Principal-component analysis
To identify gene expression outliers, we

run principal-component analysis (PCA)

within cell lines (Figure S3). Prior to

applying PCA, we variance stabilized and

log2-transformed the expression of each

gene within cell lines by using the R pack-

age DESeq2.38 Then, we centered and

scaled each gene to have zero mean and
unit variance. We also applied PCA to expression data corrected

for all major components of expression variability, as defined in

the previous section. After removing the outlier sample

mentioned above and after we regress out all major components

of expression variability, we do not see any outliers based on the

two first principal components.

Differential expression analyses
We characterize transcriptional responses to each perturbation in

each cell line by using the negative binomial models implemented

in the R package DESeq2,38 adjusting for major technical compo-

nents of expression variability identified in the last section. To ac-

count for multiple testing across cell lines, perturbations, and

genes, we use the hierarchical error control strategies implemented

in the R package TreeBH39 with cell line, genes, and treatments in

levels 1, 2, and 3, respectively. This hierarchical procedure adjusts

for all the tests performed and allows us to make statements about

the differential expression at the gene, gene-perturbation, and

gene-perturbation-cell-line level. We call a gene perturbation spe-

cific within a cell line if the gene is differentially expressed (DE) in

that specific perturbation but not in any other perturbation in that

cell line (false discovery rate [FDR] < 5% at each level). A gene is



assumed perturbation and cell line specific if the gene is DE in that

specific perturbation but not in any other perturbation in that or

the other cell lines or that specific perturbation in the other cell

lines (FDR < 5% at each level). To assess agreement between our

DE results and external studies listed in Table S1, we extracted lists

of DE genes from each study and computed the proportion of

those DE genes that validated in our study either by using the p1

statistic40 (when the list was large enough to allow this) or by

computing the proportion of those DE genes that were also DE

in our study at 5% FDR.

Correlation and hierarchical clustering of the

transcriptional response to perturbations
We computed correlation and performed hierarchical cluster anal-

ysis of the transcriptional response to perturbations in each cell

line by using the test statistics from the DE analyses for all genes

that were significant (FDR < 5%) in at least one perturbation

and cell line. We used the R package corrplot41 to get a graphical

display of the correlation matrix and hierarchical clustering of

the perturbations.

Enrichment analyses for biological pathways
We performed over-representation analysis42 by using the R pack-

age clusterProfiler43 and pathways from the ConsensusPathDB

database.44 We adjust for multiple testing within each perturba-

tion and cell line by using the Benjamini-Hochberg45 procedure.

Linkage disequilibrium score regression analysis
We downloaded the baseline model linkage disequilibrium (LD)

scores, regression weights, and allele frequencies from Kundaje

et al.3 Annotations for each perturbation and cell line were built

with the pipeline described on the LD score regression wiki and

according to Finucane et al.9 Specifically, for each of the 63 com-

binations of 21 perturbations and three cell lines, we add 100 kb

windows (default LDSCreg threshold) on either side of the tran-

scribed region of each DE gene in that combination to construct

a genome annotation corresponding to that perturbation-cell-

line combination. Due to its unusual genetic architecture and

LD pattern, we excluded the human leukocyte antigen (HLA)

region from all analyses. Z scores for the significance of the esti-

mated total heritability for each trait were computed as h2/se(h2),

where h2 and se(h2) are the SNP-based heritability estimated and

standard errors from LDSCreg. Z scores and p values for the sig-

nificance of the partitioned and conditional heritability for

each trait-perturbation-cell-type combination were obtained via

the option –h2-cts flag. We adjust for multiple testing within

each trait and cell line by using the Benjamini-Hochberg

procedure.

Enrichment for diseases and traits in the GWAS Catalog
We downloaded the entire GWAS Catalog (v.1.0.2) with Experi-

mental Factor Ontology (EFO) annotations, including the parent

category of each trait, from the European Bioinformatics Institute

(EBI) (see web resources). We assume the ‘‘MAPPED GENE’’, i.e.,

the gene mapped to the strongest SNP as reported in the GWAS

Catalog, is the GWAS gene. For the enrichment of groups of

GWAS traits, i.e., EFO parent terms, we only keep the unique

GWAS genes reported across all traits within each EFO parent

term. We excluded all results annotated with ‘‘other measure-

ment,’’ ‘‘other disease,’’ and ‘‘other trait’’ EFO parent terms as

well as duplicated entries. For the enrichment of specific traits,
The American Jo
we only test traits with at least 100 reported associated genes. To

test for the significance of the enrichment, we used Fisher’s exact

test. For each perturbation-cell-line combination, we use an equal

number of non-DE genes matched for length and median gene

expression by using the R package optmatch.46 We adjust for mul-

tiple testing across all (parent) traits, cell lines, and perturbations

by using the Benjamini-Hochberg procedure.
Colocalization analysis of GWAS and eQTL effects and

combination with DE signal
We performed colocalization analysis by using our custom integra-

tion of the FINEMAP47 and eCAVIAR11 methods. For each GWAS

and eQTL overlap (GWAS and eQTL p < 5 3 10�8 for at least

one SNP in each), we narrowed our summary statistics to the set

of SNPs tested for association with both the given GWAS trait

and the given QTL trait and removed all sites containing less

than ten SNPs after this filter. Using the full 1000 Genomes dataset

from phase 3 as a reference population,48 we estimated LD be-

tween every pair of SNPs. We then ran FINEMAP independently

on the GWAS and the eQTL summary statistics to obtain posterior

probabilities of causality for each of the remaining SNPs. Because

the canonical colocalization posterior probability (CLPP) score

described in the eCAVIAR method is highly conservative in re-

gions with densely profiled, high-LD SNPs, we use the following

LD-modified CLPP score, CLPPmod ¼ SN
i¼1S

N
j¼1 gi ej LDij, where N

is the total number of variants at the locus, gi is the probability

that the ith variant is the causal variant for the GWAS trait, ej is

the probability that the jth variant is the causal variant for the

eQTL trait, and LDij is the estimated LD (r2) between the ith and

the jth variant in a reference population (we use 1000 Genomes

Phase 3 data here). CLPPmod represents the sum of causal probabil-

ities across all pairs of GWAS-eQTL variants at the locus, and each

pair’s contribution to the final score is weighted by the LD be-

tween these two variants. Like the original CLPP score, CLPPmod

takes values between 0 and 1, and high values indicate higher co-

localization probabilities. Subsequent visual inspection of juxta-

posed GWAS and eQTL LocusCompare plots at high- and low-

CLPPmod-score loci confirmed that our LD-modified CLPP score

detects true colocalized loci but without disproportionately penal-

izing high-LD loci.

To test whether the genes DE in at least one of our perturbations

and cell lines are enriched for candidate causal IR genes for at least

one IR-related trait and GTEx tissue, we used Fisher’s exact test.

Candidate causal IR genes, denoted as ‘‘High P(Causal),’’ are

defined as genes with CLPPmod above 40%, which corresponds

to the 80th CLPPmod percentile. To test for the significance of the

difference in median CLPPmod between DE and non-DE genes

for each combination of perturbation and cell line, we used the

two-sample Wilcoxon rank-sum test. We adjust for multiple

testing by using the Benjamini-Hochberg procedure.
Results

Transcriptome map of 21 perturbations across human

skeletal muscle, fat, and liver cell lines

We generated a transcriptome map of multiple chemical

and environmental perturbations in well-established

human skeletal muscle, fat, and liver cell lines (n ¼ 234

samples). Specifically, we studied 21 environmental pertur-

bations covering multiple aspects of glucose and insulin
urnal of Human Genetics 108, 1866–1879, October 7, 2021 1869



metabolism, inflammation, and fatty acid metabolism and

including both low-density lipoprotein (LDL)-lowering

and anti-diabetic drugs (Figure 1 and Data S1). For each

perturbation and cell line and matched controls, we con-

ducted assays in triplicate and applied differential expres-

sion analysis. We observed that most perturbations

induced broad gene expression changes in at least one

cell line at FDR < 5% (Figures 1A and S4A, Data S2, S3,

and S4). Several perturbations induced broad changes

across all cell lines; for example, insulin and IGF1 altered

the gene expression of 1,500–2,000 genes in each cell

line. Other perturbations had broad changes only in spe-

cific cell lines. For example, IL-6, lauroyl-l-carnitine, and

glucose had more pronounced effects in fat, muscle, and

liver, respectively, impacting the expression of 3,161,

2,051, and 2,724 genes. A limited number of studies have

examined the effect of some of the perturbations in cell

lines similar to the ones considered here. Despite several

differences in study design, e.g., exposure time or concen-

tration of use, we see a high agreement (56.48%–89.69%)

in the list of DE genes (Table S1).

Despite the broad effects for each perturbation, multiple

DE genes showed perturbation-specific effects within each

cell line, highlighting a unique molecular response to each

perturbation. We observed 1,883 genes in muscle, 1,813

genes in fat, and 2,231 genes in the liver altered by only

a single perturbation in their respective cell lines

(Figure 1B and Data S5). The largest proportions of pertur-

bation-specific DE genes were found in glucose-stimulated

liver cell lines and TGF-b1-stimulated fat cell lines. For

these perturbations, 32.6% and 26.4% of DE genes were

not altered by any of the other 20 perturbations in the

same cell line (Figure 1C). By further stratifying across

these cell lines, we identified 627, 742, and 808 genes

that were both perturbation- and cell line-specific DE genes

in muscle, fat, and liver (FDR < 5%; Figure S4B and Data

S5). Glucose-stimulated liver cells also provided the largest

amount of perturbation- and cell-line-specific DE genes;

9.8% of DE genes were not altered by any of the other 20

perturbations in any cell line or by glucose stimulation in

fat or muscle.

To identify the relationships between perturbations on

the basis of their overall transcriptional responses, we

assessed the correlation of DE genes between each pair of

perturbations within the same cell line (Figures 1D). The

correlation of the effect of some perturbations was similar

across cell lines, e.g., the effects of insulin and IGF1 were

positively correlated in all three cell lines, i.e., Spearman’s

r ¼ 0.88, 0.76, and 0.71 in muscle, fat, and liver, respec-

tively. The relationship of other perturbations, however,

was dependent on the cellular context, e.g., while the ef-

fects of glucose and wortmannin were moderately corre-

lated in fat (Spearman’s r ¼ �0.63), their correlation in

muscle and liver was low (Spearman’s r ¼ 0.02 and 0.2,

respectively).

To explore the shared and specific pathways altered by

each perturbation, we performed enrichment analysis of
1870 The American Journal of Human Genetics 108, 1866–1879, Oct
DE genes in annotated pathways from Consensus-

PathDB44 (Data S6, S7, and S8). Our analysis highlighted

multiple shared pathways across perturbations and cell

lines related to PI3K-AKT-mTOR, MAPK, adipogenesis,

and TGF-b signaling (Figure S4C). We also observed several

differences in pathway enrichments; for example, path-

ways related to FOXA2 and FOXA3 transcription factor

networks had greater enrichment across several perturba-

tions in the liver than in muscle and fat, transcriptional

regulation by RUNX2 had greater enrichment in muscle

than in liver and fat, and chromatin organization and re-

modeling pathways had greater enrichment in fat than

in liver and muscle. In addition, for genes affected by mul-

tiple perturbations, we saw strong enrichment pathways

related to insulin signaling and resistance.

Combined, our concurrent assessment of multiple meta-

bolically relevant perturbations across cell lines highlights

the relationships between complex cell-specific molecular

mechanisms and provides a genome-wide map of genes

and signaling pathways with potential environmental

contributions to complex disease susceptibility.

Prioritizing complex disease-relevant environmental

perturbations

To measure the relevance of diverse environmental pertur-

bations in complex diseases, we analyzed our transcrip-

tome data together with GWAS summary statistics for 31

diseases and complex traits broadly related to multiple car-

diometabolic, psychiatric, autoimmune, and reproductive

traits, as well as hematological measurements (Figures 2

and S5; Data S9). We hypothesized that environmental

perturbations impact disease through the same genes

that confer susceptibility to the trait. To this end, for

each of the 21 perturbations across the three cell lines,

we used stratified LD score regression9 (LDSCreg) to test

whether disease heritability, i.e., the proportion of pheno-

typic variance determined by genotypic variance, is

enriched in regions surrounding DE genes for that pertur-

bation and cell line, adjusting for heritability explained by

a baseline model of genetic architecture9 and by regions

surrounding genes expressed in the specific cell line.

For 26 of the 31 traits tested, the SNP-based heritability

estimate was sufficiently large to partition reliably with

LDSCreg, i.e., heritability Z score R 7 (Data S9). In 19 of

these traits, at least one perturbation in at least one cell

line was enriched for heritability (FDR < 10%; Figure 2).

Several of the enrichments recapitulate important known

biology. For example, among cardiometabolic traits,

high-density lipoprotein (HDL) and triglyceride levels

were enriched for dexamethasone (p ¼ 2.10 3 10�3 and

p¼ 6.533 10�3), a corticosteroid known to induce dyslipi-

demia,49,50 and cardiovascular disease was enriched for ro-

siglitazone (p ¼ 6.44 3 10�3), an antidiabetic drug shown

to increase risk of cardiovascular disease.51 In addition,

these enrichments were often manifested through a single

specific relevant cell line. For example, waist-hip ratio

(WHR) heritability was enriched for genes whose
ober 7, 2021



Figure 2. Prioritizing complex disease-relevant environmental perturbations via heritability enrichment analysis
Heritability enrichment results for each complex trait. Each point represents a perturbation-cell-line combination that passes the FDR <
10% cut-off. The y axis represents the�log10(p value) of heritability enrichment, the x axis indicates perturbation, the color of the point
indicates cell line, and the shading color within each panel indicates the perturbation category from Figure 1A. Numerical results are
reported in Data S9.
expression is modified by perturbations in fat, while tri-

glyceride and HDL level heritability were enriched for

genes whose expression is modified by perturbations in

the liver.

Several notable examples were also observed for other

tested traits. For psychiatric disorders, leptin, a hormone

produced and secreted by white adipose tissue that is asso-

ciated with antidepressant-like actions,28,52,53 was enriched

for heritability of major depressive disorder (MIM: 608516)

via its effect in fat cell lines (p ¼ 2.11 3 10�3). In addition,
The American Jo
adiponectin, plasma levels of which appear to be altered in

neurological disorders with metabolic and inflammatory

components,54–56 was enriched for heritability of schizo-

phrenia (MIM: 181500) (p ¼ 5.81 3 10�3). For tested auto-

immune diseases, TGF-b1, an immune-suppressive cyto-

kine dysregulated in the intestines of inflammatory bowel

disease (MIM: 266600) affected individuals,57 was enriched

for heritability of Crohn disease (p¼ 1.183 10�2), as well as

heritability of allergy (MIM: 607154), eczema (MIM:

603165), and asthma (MIM: 600807)27,58–60 (p ¼ 1.08 3
urnal of Human Genetics 108, 1866–1879, October 7, 2021 1871



10�4), three diseases with shared genetic origin.61 Several

perturbations were also enriched for the heritability of

hematological measurements; for example, dexametha-

sone, a synthetic glucocorticoid known to deplete periph-

eral blood lymphocytes and impact immune response,62

was enriched for heritability of lymphocyte count (p ¼
2.883 10�4). Lastly, for reproductive traits, glucose was en-

riched for heritability of age at menarche (MIM: 610873)—

older age at menarche is associated with reduced risk of

glucose metabolism disorder63—while IGF1, whose serum

levels rapidly decrease after menopause,64 was enriched

for heritability of age at menopause (MIM: 300488) (p ¼
2.21 3 10�3).

Identifying environmental perturbations impacting

GWAS-significant loci

Beyond the broad polygenic impact of the tested perturba-

tions and to analyze a larger number of traits, we sought to

prioritize the subset of perturbations that were enriched for

impact on GWAS-significant loci in specific complex dis-

eases. We tested for enrichment of DE genes for cis-SNPs

associated with diseases and phenotypes in the GWAS

Catalog.65 Because many traits had a small number of asso-

ciations, we first tested for enrichment within groups of

similar traits, as defined in the GWAS Catalog (Figure 3,

Data S10).

We observed significant enrichment for at least one

perturbation and cell line across all 14 groups of complex

diseases and traits tested (FDR < 10%). For example, genes

responsive to the effect of rosiglitazone, an insulin sensi-

tizer known to affect plasma lipid levels,66 were enriched

within GWAS-significant hits for lipid or lipoprotein mea-

surements (odds ratio [OR]¼ 2.00 and p¼ 5.983 10�3). In

addition, genes responsive to the effect of retinoic acid, a

metabolite of vitamin A that is synthesized in the liver

and whose signaling dysregulation contributes to hepatic

disease,67 were enriched within GWAS hits for liver

enzyme measurements (ORMuscle ¼ 2.71 and pMuscle ¼
9.06 3 10�4; ORLiver ¼ 2.60 and pLiver ¼ 1.8 3 10�2).

Moreover, atorvastatin and metformin, two perturbations

with highly correlated DE signals (Figure 1D) known to

reduce cardiovascular morbidity,68–72 were both enriched

within GWAS hits for cardiovascular measurements

(ORATOR-Liver ¼ 1.75 and pATOR-Liver ¼ 1.58 3 10�2;

ORATOR-Muscle ¼ 2.53 and pATOR-Muscle ¼ 1.52 3 10�2;

ORMETF-Liver ¼ 1.86 and pMETF-Liver ¼ 1.56 3 10�2). In line

with the LDSC regression-based enrichment for Crohn dis-

ease, we observed that genes responsive to TGF-b1 were en-

riched within GWAS-significant hits for digestive system

disorders (OR ¼ 2.7 and p ¼ 3.96 3 10�9).

More generally, we observed that GWAS hits for immune

system disorders or inflammatory measurements were en-

riched in genes responsive to the effect of inflammatory

perturbations, e.g., ORTNFa ¼ 1.92 and 1.77 and pTNFa ¼
3.84 3 10�8 and 2.54 3 10�8 for immune system disorders

and inflammatory measurements, respectively. Neurolog-

ical disorders were also enriched for inflammatory pertur-
1872 The American Journal of Human Genetics 108, 1866–1879, Oct
bations, although to a lesser extent (e.g., ORTNFa ¼ 1.35

and pTNFa ¼ 8.60 3 10�4). Associations with lipid or lipo-

proteinmeasurements and drugmetabolism traits were en-

riched in genes responsive to several perturbations via the

liver, where most drug metabolism occurs,73 and associa-

tions with body measurements were enriched via muscle.

For traits with a large number of GWAS hits, i.e., traits

with at least 100 reported associated loci, we tested enrich-

ments directly (Figure S5). In 14 of the 152 complex dis-

eases and traits tested, we observed significant enrichment

for at least one perturbation and cell line (FDR < 10%). For

example, genes in muscle cells that were responsive to the

effect of isoprenaline, a beta-adrenergic agonist with ef-

fects on cardiac muscle,74 were enriched within GWAS-sig-

nificant hits for cardiovascular disease (OR ¼ 2.24 and p ¼
2.56 3 10�4). In addition, consistent with the LDSCreg-

based enrichment of dexamethasone for HDL heritability

in the liver, genes responsive to dexamethasone in the liver

were enriched within GWAS-significant associations for to-

tal cholesterol levels (OR ¼ 3.08 and p ¼ 1.94 3 10�4).

Lastly, genes responsive to IGF1 in the liver were enriched

within significant associations for birth weight (OR ¼ 3.86

and p¼ 5.483 10�5), consistent with prior observations of

negative correlation between IGF1 levels and birth

weight.75,76

Environmental perturbations harbor causal genes and

help inform their functions

A major challenge with GWAS data in isolation is identi-

fying causal disease genes. Here, we assessed whether

combining GWASs with relevant environmental perturba-

tions helped to identify or reinforce causal disease genes

and to inform on their molecular functions. Because

many of our perturbations were related to cardiometabolic

traits, including IR, obesity, and type 2 diabetes (T2D

[MIM: 125853]), we tested whether genes affected by our

panel of perturbations harbored candidate causal genes un-

derlying loci for seven cardiometabolic traits. To assess

this, we integrated our perturbation data with results

from genomic colocalization analyses of GWAS loci

for these seven traits and GTEx eQTLs in visceral and

subcutaneous adipose, skeletal muscle, and liver tissues.5

We observed that genes with a transcriptional response

to at least one of our environmental perturbations are en-

riched among the candidate causal genes, i.e., genes with

high LD-modified posterior colocalization probability

(CLPPmod), for cardiometabolic traits (Figure 4A; OR ¼
1.40, Fisher’s exact test p value ¼ 5.333 10�4). We next as-

sessed whether DE genes for specific perturbation-cell-line

combinations were more likely to be causal compared with

non-DE genes (Figure 4B). Genes responsive to isoprena-

line, SP600125 (a c-Jun N-terminal kinase inhibitor that

plays an essential role in TLR-mediated inflammatory re-

sponses), and TNFa in fat had significantly higher median

CLPPsmod (FDR < 10%) compared to non-DE genes (Wil-

coxon test; pISOP ¼ 8.7 3 10�4, pSP60 ¼ 6.0 3 10�3, and

pTNFa ¼ 6.0 3 10�3).
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Figure 3. Identifying environmental perturbations impacting significant GWAS loci
GWAS enrichment results for each group of complex traits from the GWAS Catalog. Each point represents a perturbation-cell-line com-
bination that passes the FDR < 10% cut-off; the color of the point indicates the cell line and the shading color within each panel in-
dicates the perturbation category from Figure 1A. The y axis represents the �log10(p value) of Fisher’s exact test and the size indicates
the odds ratio for the enrichment of GWAS hits of each group of traits from the GWAS Catalog. Numerical results are reported in
Data S10. Results for specific traits, rather than groups of traits, are displayed in Figure S5.
To explore how perturbation experiments can inform

the function of candidate causal genes underlying cardio-

metabolic loci, we intersected the DE patterns in each

cell line and perturbation with the colocalization patterns

in the matched tissue. We illustrate four such examples

(Figures 4C–4E): three loci in which a single gene showed

high CLPPmod and one locus with more complex colocali-

zation patterns (five out of seven genes in the locus

showing high CLPPmod).
The American Jo
Results from the colocalization analysis associated

FAM13A (MIM: 613299) genetic variants in subcutaneous

fat with several traits of interest, i.e., HDL, T2D, triglycer-

ides, WHR, and fasting insulin (Figure 4C, locus 1). We

recently described the role of FAM13A in adipocyte differ-

entiation and the contribution to body fat distribution.77

The DE patterns of FAM13A in our perturbation experi-

ment (Figure 4D, locus 1) not only reinforce the role of

FAM13A in adipose tissue but also suggest an additional
urnal of Human Genetics 108, 1866–1879, October 7, 2021 1873



Figure 4. Environmental perturbations can help inform the functionality of causal genes underlying cardiometabolic trait loci
(A) Percent of causal genes (High Prob(Causal)) underlying cardiometabolic traits loci that are DE (purple) or not DE (gray) in at least one
perturbation and cell line. OR/P: odds ratio and Fisher’s exact test p value for the enrichment of DE genes among causal genes compared
to non-DE genes.
(B) Perturbation-cell-line combinations with a significant (FDR < 10%) difference in median (D) CLPPmod between DE and non-DE
genes, according to the two-samples Wilcoxon rank-sum test.
(C and D) Examples of loci for which intersecting the effects of perturbations (C) with the colocalization results (D) helps inform the
functionality of candidate causal genes. The color indicates CLPPmod (C) or DE direction (D). White boxes with crosses indicate that
the gene was not tested for colocalization or DE.
(E) Effect of glucose and insulin in the expression of the three FADS genes and the effect of the expression of these genes on HDL, fasting
glucose (FGLUC), and triglycerides (TRIG), the three traits for which FADS genes colocalize. The color of the triangles indicates either the
effect of the perturbation on the gene (red, upregulation; blue, downregulation) and the effect that up-/downregulation of the gene has
on the phenotype (red, increased phenotype, blue, decreased phenotype). DE, differential expression; CLPPmod, LD-adjusted colocaliza-
tion posterior probability; FDR, false discovery rate.
metabolic function in the liver not captured by the coloc-

alization results. The role of FAM13A in the regulation of

hepatic glucose and lipid metabolism was recently

confirmed by Lin et al.78 Another candidate gene, PDGFC
1874 The American Journal of Human Genetics 108, 1866–1879, Oct
(MIM: 608452), shows an identical colocalization pattern

to FAM13A (Figure 4C, locus 2) and the perturbation data

also support its importance in the adipose tissue

(Figure 4D, locus 2). However, the perturbation data
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identify an additional role of PDGFC in skeletal muscle in

contrast with the role of FAM13A in the liver.

Another complementary example is illustrated by the

colocalization for DTX1 (MIM: 602582), which is specif-

ically associated with WHR and subcutaneous fat

(Figure 4C, locus 4) and whose expression is regulated by

insulin, IL-6, TNF-a, dexamethasone, and rosiglitazone in

mature human adipocytes (Figure 4D, locus 4).

Finally, genetic variants in the FADS locus have been asso-

ciated with HDL cholesterol, triglyceride levels, fasting

glucose, and T2D79–81 and our colocalization analysis was

consistentwith theseobservations (Figure4C, locus3).How-

ever, the high amount of LD, the gene density, and the plei-

otropy of FADS genes have challenged the dissection of indi-

vidual gene effects. Particularly informative is the case of

FADS1 (MIM: 606148), FADS2 (MIM: 606149), and FADS3

(MIM:606150), forwhich theDEpatterns for glucose and in-

sulin (Figure 4D, locus 3) point, among others, to a fine-

tuned cell-line- and perturbation-specific regulation of the

FADS locus in the context of metabolic homeostasis

(Figure 4E).

Together these results highlight the importance of

perturbation experiments to contextualize GWAS associa-

tions and results from genomic colocalization analyses.
Discussion

We have profiled transcriptional responses tomultiple envi-

ronmental perturbations to identify disease-relevant pertur-

bations modulating genetic risk for complex traits and to

inform the functionality of causal genes. By combining

gene expression datawithGWAS summary statistics of com-

plex traits,we show that theheritability ofmultiple complex

traits is enriched in regions surrounding genes responsive to

particular sets of perturbation-cell-line combinations. We

confirmed several well-established associations, e.g., the

role of TGF-b1 on asthma, and provided additional evidence

for recent and less-well-understood associations, e.g., the

role of leptin on major depressive disorder. In addition,

beyond the broad polygenic impacts of the tested perturba-

tions, we were able to prioritize the subset of perturbations

that are enriched for their impact on GWAS-significant loci

in specific groups of complex diseases. We observed that

environmentally responsive genes are enriched for cis-SNPs

associatedwith abroad spectrumofdiseases andphenotypes

from theGWASCatalog. Further, by integrating gene expres-

sion data with information from genomic colocalization

studies, we showed that environmentally responsive genes

are enriched for candidate causal genes for cardiometabolic

traits and that the effects of these perturbations in the rele-

vant tissues further suggest context-specificmolecularmech-

anisms of GWAS hits for cardiometabolic traits.

2Our approach interrogated multiple cell lines and per-

turbations, but comparable applications will be limited by

the specific cell lines and environmental perturbations as-

sayed and the exposure time and concentrations selected.
The American Jo
Here, we chose the concentrations of use on the basis of

an extensive literature search and the exposure time to

reduce the likelihood of secondary regulatory mechanisms.

Our data demonstrate that, formost perturbations, there is a

notable transcriptional response after a 2 h stimulation win-

dow. This suggests that longer stimulation times should be

avoided, e.g., the typical 24 h stimulation period, if the pur-

pose of the experimental setting is to describe genes that are

likely to be directly regulated by the perturbations assayed.

Further, the use of cell lines provides the opportunity for

conducting well-controlled perturbation experiments; how-

ever, it is unknown the degree to which all findings would

generalize to primary cells. Perturbation experiments on

well-defined primary cells from multiple individuals might

better mimic the disease-associated environment, but, until

such experiments become more feasible, measuring expres-

sion in cell lines with tightly controlled cellular environ-

ments provides a more tractable setting to study gene-envi-

ronment interactions.20,26 For some of the diseases we

considered, the studied cell lines might not represent the

cell type or tissue through which disease is manifested.

However, because we observed that cell lines can share tran-

scriptional responses (Figure 1D), our study design has

shown that we can identify important perturbations

without the causal cell type being examined.

To perform heritability enrichment analyses, we build

annotations for each perturbation by using a fixed

(100 kb size) window around each DE gene, which might

lead to wide estimates of regulatory territories and decrease

power to fine-map disease-relevant contexts. As perturbed

chromatin immunoprecipitation sequencing (ChIP-seq)

experiments become available for these perturbations

and cell lines they can help further narrow down the regu-

latory regions for these environments. In addition, because

fine-mapping summary statistics are not available for

many of the traits deposited in the GWAS Catalog, we

used the closest genes as proxy of the causal gene. While

the closest gene is themost likely causal gene in only about

50% of examined loci, we do not expect this to dispropor-

tionately affect DE versus non-DE genes and upwardly bias

our enrichment results. Furthermore, because most

perturbations affect a small number of genes, the LDSC

regression analysis for the enrichment of DE genes for trait

heritability is based on partitions that cover a very small

part of the genome. All these factors can substantially

reduce power to identify disease-relevant contexts, and

we thus chose to use a 10% FDR threshold and highlight

several positive control examples. We illustrate the impact

of the FDR threshold on the enrichment for GWAS-

significant loci in Figures S6 and S7. Last, our genomic

colocalization analyses are based on eQTLs mapped in

GTEx tissues from healthy donors and might miss the ef-

fect of regulatory variants that manifest uniquely in the

presence of the perturbation environment. Although we

do not expect this to upwardly bias the enrichment of

DE genes for likely causal genes, it might mask the effects

of eQTLs for perturbations that are less likely to be present
urnal of Human Genetics 108, 1866–1879, October 7, 2021 1875



in healthy donors, e.g., dexamethasone, and reduce the

power to detect enrichment of DE genes in candidate

causal genes responsive to these perturbations.

In conclusion, we demonstrate the advantages of large-

scale characterization of transcriptional changes in

diversely stimulated and pathologically relevant cells to

identify disease-relevant perturbations that modulate ge-

netic risk for complex traits. We also provide a broad

resource of the dynamic transcriptional landscape inmeta-

bolic tissues. To our knowledge, this is the largest andmost

complete study of transcriptional effects of metabolically

relevant perturbations in human fat, liver, and skeletal

muscle cell lines. In addition, we show that integrating

GWAS and eQTL results with perturbation experiments

can inform the function of candidate causal genes and

prioritize genes and environmental stimuli for follow-up

experiments. Combined, this work demonstrates how

integrating differential expression, eQTL, and GWAS data

can inform genetic and environmental components of

complex disease mechanisms.
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