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Modern Al-based clinical decision support models owe their success in part to the very large number
of predictors they use. Safe and robust decision support, especially for intervention planning, requires
causal, not associative, relationships. Traditional methods of causal discovery, clinical trials and
extracting biochemical pathways, are resource intensive and may not scale up to the number and
complexity of relationships sufficient for precision treatment planning. Computational causal structure
discovery (CSD) from electronic health records (EHR) data can represent a solution, however, current
CSD methods fall short on EHR data. This paper presents a CSD method tailored to the EHR data.

The application of the proposed methodology was demonstrated on type-2 diabetes mellitus. A large
EHR dataset from Mayo Clinic was used as development cohort, and another large dataset from an
independent health system, M Health Fairview, as external validation cohort. The proposed method
achieved very high recall (.95) and substantially higher precision than the general-purpose methods
(.84 versus .29, and .55). The causal relationships extracted from the development and external
validation cohorts had a high (81%) overlap. Due to the adaptations to EHR data, the proposed
method is more suitable for use in clinical decision support than the general-purpose methods.

Diagnostic tools based on artificial intelligence (AI) have recently demonstrated human-like performance!™,
owing their high performance to their ability to synthesize information from many features. Consistent with
this observation, national initiatives such as the Precision Medicine Initiative® and the Learning Health Systems®
encourage the inclusion of a wide-range of information about the patient into the decision making process.
Increasingly, clinical decision support systems start to include treatment planning and selection tools’. Such tools
require causal knowledge, not merely the associations (correlations). Intervening on correlates rather than causal
factors of the disease leads to lack of efficacy, under- or overtreatment, and in worst case, to iatrogenic harm®.

The gold standard for discovering causal relationships is conducting a randomized clinical trial or eluci-
dating the underlying biochemical pathways. In many cases, clinical trials are impractical, unethical, if not
outright impossible. Computational causal structure discovery (CSD) methods to discover causal relationships
have demonstrated great success in many domains®'! and their application to EHR data could offer a solution
for causal discovery from observational real world medical data. However, to unlock their full potential, these
general-purpose algorithms need to be adapted to address study design and data quality challenges specific to
the EHR data.

We propose an algorithm with three adaptations. First, we incorporate study design considerations. EHR data
as it exists in the system does not follow any study design. Billing codes in particular are recorded for reimburse-
ment purposes and do not distinguish between new incidences and pre-existing conditions. Understanding
this difference is critical for study design. Second, time stamps can be unreliable. The time stamp of a diagnosis
often does not coincide with the onset time of the disease, but rather reflects the documentation time. In some
cases, the temporal ordering of diseases may be reversed. Partly for this reason, general purpose CSD algorithms
applied to the EHR data occasionally report “causal” relationships that are in the opposite direction of the natural
disease progression. Third, general-purpose CSD methods sometimes fail to orient edges. Even when a clear causal
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Figure 1. Study design and evaluations. (A) Overview of the study design for Mayo Clinic (MC) EHR. (B) The
workflow of the internal evaluation. Three methods FGES + raw, FGES + transf, and the proposed algorithm
were compared using stability, precision, and recall. Orange color highlights the proposed method (Method 3).
(C) The workflow of external comparison. The proposed method was applied to two datasets, MC and M Health
Fairview (FV), and the resulting graphs were compared.

direction exists and is not masked by data artifacts, CSD algorithms can have difficulty distinguishing the cause
from the effect due to statistical equivalence'?. Leveraging the longitudinal nature of EHR data and incorporat-
ing time information as part of the causal discovery process can enhance the identification of edge orientation.

In this paper, (1) we propose a data transformation procedure that distinguishes new incidences from pre-
existing conditions, which allows us to determine the temporal order of the disease-related events despite the
inaccurate (or rather noisy) timestamps in the EHR data. (2) We then present modifications to an existing CSD
method, (Fast) Greedy Equivalence Search (GES)!*!4, to infer the direction of causal relationships more robustly
using longitudinal information and takes the above study design considerations into account.

We demonstrate this methodology through the clinical example of type-2 diabetes mellitus (T2D), its risk
factors and complications. T2D is an exceptionally well-studied disease with numerous clinical trials having
produced a vast knowledge base, making the evaluation of the methodology possible. The goal of this work is
not to uncover new causal relationships in diabetes, but to present a novel methodology for discovering causal
relationships from EHR data that are sufficiently robust to support model development for clinical decision sup-
port tools. While we use T2D as our use case, we expect our methods to generalize to other diseases, typically
chronic diseases, that exhibit similar characteristics and suffer from the same EHR shortcomings.

Methods

Study source and population. This retrospective cohort study utilized EHR data sets from two inde-
pendent health systems, Mayo Clinic (MC) in Rochester, Minnesota and M Health Fairview (FV) in Minneapo-
lis, Minnesota. Two 2-year time windows 2003-2004 and 2006-2007 for MC; and 2008-2009, and 2011-2012
for FV were defined. Dates for the time windows differed between MC and FV due to data availability. We
extracted diagnoses, prescriptions, laboratory results, and vital signs from the two EHR data sets with the same
inclusion and exclusion criteria: patients must have at least two blood pressure measurements, one before the
first time window and one after the second time window; aged 18 +at the end of the first time window; and sex
and age must be known. Figure 1A shows an overview of the study design of MC EHR (the study design for FV
is similar). We used the MC EHR as the development cohort.

Variables. Diagnosis codes are aggregated into the disease categories of obesity, hyperlipidemia, pre-diabe-
tes, type 2 diabetes mellitus, coronary artery disease, myocardial infarction, heart failure, chronic renal failure,
cerebrovascular disease, and stroke based on ICD-9 and codes following our previous work!®. Medications indi-
cated for the above conditions were rolled up into NDF-RT therapeutic subclasses. Relevant laboratory results
and vital signs were categorized based on cutoffs from the American Diabetes Association guidelines'S.
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Causal structure discovery. A relationship between two events is causal if manipulating the earlier event
causes the other (later) event to change. For example, prescribing a medication reduces the probability of down-
stream events (complications). Causation differs from association. For example, blood sugar is associated with
risk of stroke: diabetic patients with higher blood sugar have a higher risk of stroke; however, this relationship is
likely not causal in diabetic patients since attempts to reduce the risk of stroke by reducing blood sugar consist-
ently failed in clinical trials'”!8. If two events share a common cause (a confounder) and are not otherwise caus-
ally related, then manipulating one event will not affect the other variable as long as the common cause remains
unchanged. The confounder can be observed or latent. The term causal structure refers to the set of all existing
causal relationships among all events and can be visualized as a graph. The causal graph consists of nodes, which
corresponds to events, and the nodes are connected by edges that denote causal relationships. General-purpose
CSD methods are designed to work with observational data to derive a causal structure that are consistent with
the joint probability of the data.

Several general-purpose CSD algorithms have been proposed and the interested reader is referred to the
Supplements II where we present an overview of the major methods. In this work, we focus on (Fast) Greedy
Equivalence Search (FGES) as the comparison method, because we previously found it to outperform other CSD
methods'?. Briefly, FGES finds the optimal causal graph by a greedy search guided by a goodness-of-fit score (e.g.
BIC or BDeu) over all possible graphs. Particularly, it starts with an empty graph, and iteratively adds individual
edges that maximize the score given the current graph, until adding edges no longer improves the score. Then,
FGES iteratively removes individual edges that maximizes the score, until edge removal ceases to improve the
score. The output of FGES is a pattern, which can contain undirected edges, where the causal effect direction
could not be determined due to statistical equivalency. FGES has good mathematical properties and been shown
to be consistent under a set of assumptions'*?°.

Proposed methods. The workflow of the proposed methods is described in Fig. 1B, method 3 (colored
in orange). We propose two methods, a data transformation and a causal search method. The former method
transforms the longitudinal EHR data into disease-related events, so that we can determine the temporal order-
ing of events (diseases) despite inaccuracies in the EHR data and extracts all pairs of diseases where a clear
precedence ordering exists. The search method constructs the causal graph using the transformed data and the
set of precedence pairs.

Data transformation method. A disease-related event is defined as a diagnosis, a prescription, an abnor-
mal lab result, or abnormal vital sign. An event is incident if it occurs in the second time window but is not
present in the first time window although the patient is observed in the first time window. Conversely, a disease
event is pre-existing if the patient presented with it in or before the first time window. An event A precedes
another event B if among patients who have both A and B in the second time window, B is significantly more
likely to be incident than A. Note that precedence implies neither causation nor association; however, if a causal
effect exists, it must follow the precedence direction. Formal mathematical definitions of these concepts can be
found in the Supplement I. The output from this step is (i) an event-based data set consisting of the incident and
pre-existing conditions for each patient in each of the two time windows, (ii) a set C of precedence relationships
of all pairs (v;, v;) of events for which event v; clearly precedes v;.

The proposed CSD search Algorithm. Given C, we construct the causal graph G by iteratively adding
edge (F:/,-, vj) from C that maximizes the goodness of fit of G. The orientation of this edge must be consistent with
the precedence relationship, namely from v; to v;. The goodness of fit is defined by the BIC criteria. Let XV, X®
denote the data sets collected in the two distinct time windows, where X® follows X (1. The likelihood of the G is

E(g|X(1)’ X(2)> _ P(x@)’ X(1)|g> _ P(X(z) |X(1),g> P(x(1)|g>
~ TIII P(+@ . 6)p(016) = IT I1 (4”1 pats 9 (1),

s vey
s vey

where x'” is the observation vector for subject s at the cross-section t; v{" is the observation of variable (event)

v for subject s at the cross-section t; and pa(v, g)gl) is the observation vector for the parents of v in the causal
structure G, at cross Sect. 1 for subject s.

The algorithm estimates P (vs(z) |pa(v, g)§1>) using logistic regression on the subjects that do not have v at the
first cross section and are under observations for both cross sections. For subjects who have v at the first cross
section, the probability of having v at the second cross section is 1. Since G represents the transition graph, the
term P (xs(l) |G > is a constant.

Finally, the BIC score is

BIC(G) = —2nL(G1XW, X®) + In(n)|G|, )

where n is the number of observations that are common in the two cross sections, and |G|is the number of edges
in the causal structure G.

Algorithm 1 describes the proposed algorithm for constructing the causal graph G. G is a directed acyclic
graph (DAG), with nodes representing variables and edges representing causal effects between a pre-existing
and an incident variable.
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Algorithm 1: The proposed causal search algorithm.

Input: the precedence set C; the dataset X
Output: the discovered DAG, G

1 Initialize G = @
2 while the candidate set C is not empty and ABIC > 0 do
3 foreach candidate pair (V; < V;) € C do
4 ABIC = BIC(X,§) — BIC(X,G U (V; <V}))
5 if ABIC > 0 then
6 G = G u(V; <V;)/ add the candidate pair on the current graph
7 C=C\ (Vi < Vj) /I remove the candidate pair from C else stop
8 end
9 end
10 end
11 Return g

Statement of human rights and informed consent.  The study was approved by both Mayo Clinic and
University of Minnesota Institutional Review Board (IRB). Informed consent was obtained from all patients. All
relevant guidelines and regulations were followed.

Evaluation

Clinical evidence. The standard way to evaluate CSD methods is to compare the resulting graph to a
gold standard graph. However, such a gold standard graph does not exist and possibly many relationships are
unknown. However, there exists (1) Associative Evidence: a large body of observational studies documenting
risk factors and outcomes for diabetes. Results from these studies have already been distilled into summaries?'.
(2) Clinical trials can support both the existence (positive) and also the lack (negative) of hypothesized causal
relationships. We compiled a list of causal relationships from clinical trials considering 175 clinical trials with a
primary endpoint of any of the conditions we studied, including composite end points. We excluded trials with
inclusion criteria that are too strict (trial results would not generalize to our population) and the interventions
that are out of the scope of our study. 14 trials remained yielding 19 positive and 18 negative causal relationships.
These trials and the evidence they produced are listed in Supplement III, Table S1. These relationships are used
as causal evidence to compute recall.

Internal evaluation. We evaluated the method and the resulting graphs from the following four perspec-
tives.

Stability. 'We run 1000 bootstrap replicas on the development cohort. An edge has ambiguous orientation if it
is present in at least half of the 1000 graphs (edge is not noise) and both orientations appear in at least 30% of the
graphs that contain this edge (it does not have a dominant direction). We report the percentage of ambiguous
edges.

Precision. Based on the causal graph derived from the training cohort, an edge is incorrect if there is no asso-
ciative evidence of a relationship between the two events; or if causal evidence specifically indicates the lack of
a causal relationship. We define precision as one minus the proportion of incorrect edges among the discovered
edges.

Causal recall. ~ Causal recall is computed on a single graph discovered from the training cohort, quantifying the
percentage of the known causal relationships discovered. A known causal relationship from A to B is discovered
if there is a node in the graph that maps to A, another node that maps to B and (a) a direct causal relationship
A — Bin the graph exists or (b) a causal path A — X — B exists and no causal evidence states that in patients with
X, A does not cause B. For example, if the evidence states that blood pressure (without specifying whether it is
systolic or diastolic) increases the risk of stroke, then the path sbp — cevd — stroke would satisfy this relation-
ship.

Associative recall.  Associative recall is also computed on a single graph discovered from the training cohort
and it quantifies the percentage of known associative relationships that can be explained by the discovered causal
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graph. An associative relationship between A and B is explained by the graph if there is a node in the graph that
maps to A, another node that maps to B, and a path between A and B exists in the graph.

External validation. We performed 1000 bootstrap replications on both data sets independently using the
proposed method. On each data set, all edges from the 1000 graphs were pooled, resulting in two sets of pooled
edges. We compared these two sets and pointed out the edges that were discordant between the MC and FV data,
as shown in Fig. 1C.

Method comparison. Figure 1B depicts an overview of the method comparison. Three methods are com-
pared, (1) FGES +raw FGES is applied directly to the raw data; (2) FGES + transf data is transformed using the
proposed transformation method and FGES is applied to the transformed data; and (3) Proposed the proposed
search algorithm is applied to the transformed data. Comparing FGES + raw and FGES + transf isolates the effect
of the proposed transformation method, and comparing FGES + transf and Proposed highlights the effect of the
proposed search algorithm.

Results

Baseline characteristics. Table 1 presents descriptive statistics for the MC and FV data sets at the end of
the first time window and incidence rates for the diseases in the second window. Differences between datasets
are tested through the t-test (for age) and the chi-square test (all other variables).

Directional stability. The proposed data transformation reduced the percentage of ambiguously oriented
edges from 45 to 24%, and finally, the proposed search method eliminated ambiguously oriented edges (Table 2).

Correctness and completeness. Table 3 shows the precision, associative recall and causal recall of the
graphs discovered by the three methods. All three methods achieved almost perfect recall; FGES + raw achieved
the lowest precision of 0.294: less than third of the events reported as causally related are even associated. By
using the proposed transformation, the precision increased to 0.55, but almost half of the reported causal rela-
tionships are still incorrect. Finally, the proposed method achieved a precision of 0.838. We present the causal
graph discovered by the proposed methods in the Fig. 2. Incorrect edges are colored in red.

External validation. We compared the graphs discovered from the MC and FV data sets. There are 74
distinct edges that were discovered from at least one of the data sets. Sixty (81%) edges coincided across the two
datasets, while 14 (19%) differed. Table 4 shows the discordant edges, the percentage of bootstrap iterations in
which the edge was present and the main reason for the discordance.

There are three broad reasons for differences in edges. The main reason, affecting half of the edges was that
of policy differences. These include preferred lab results (A1C vs FPG) and decisions regarding therapeutic
interventions. The second reason, affecting four edges, is a lack of clear precedence in the relationships among
the events. For example, the abnormal Trigl — HL treatment edge was not discovered at FV because the first
abnormal Trigl precedes or follows the HL treatment in statistically equal proportions. The final reason, affect-
ing the remaining three edges, is differential degree of confounding between the two sites. For example, SBP is a
confounder of CHF and MI. When the algorithm fails to detect the SBP — MI edge, the effect of SBP on MI was
shown through CHF (which depends on SBP more than MI). For the HL diagnosis — Trigl edge, the common
cause is BMI, and for the HL treatment — CAD edge, it is LDL. The reason for differential confounding was likely
a combination of population and institutional differences as well as data artifacts.

Discussion

We proposed a new data transformation method and a new search algorithm specifically designed for EHR data.
We showed how the resulting graph achieved close to 90% precision (90% of the edges were correct), almost
100% recall (the graph could explain all known associations and almost all known causal relationships), and the
graph was remarkably stable in face of data perturbation (no edge disappeared or changed direction). Due to its
built-in facility, our method outperformed general purpose methods by a large margin.

While the two graphs from the two independent health systems are reassuringly similar, small differences
exist. None of these differences implies an incorrect physiological or pathophysiological effect. Among the 14
edges that differed, seven captured differences between the population and the institutions, such as institution-
specific triggers for prescriptions and the use of different laboratory tests for the same purpose (fasting plasma
glucose versus Alc). Depending on the goal of the modeling, it may be desirable to include such differences. We
believe that the discovered causal graphs offer adequate information about causal (including confounding) factors
to support the development of clinical decision support models and can also support clinical research efforts.

The proposed algorithm achieved such high performance because it could compensate for errors in the EHR
data and it incorporated study design considerations. Problems caused by incorrect time stamps and diseases
appearing in the reverse order are alleviated by reducing the overall reliance on time stamps. The study design
with its two-year windows allows for (even large) errors in the time stamp and once a disease is recognized as
pre-existing by the data transformation method, its subsequent time stamps are irrelevant. Time stamps that
appear in the reverse order tend to have a small gap (time to schedule and complete a diagnostic procedure), so
they likely fall into the same two-year window. Study design considerations, namely that billing codes do not
distinguish between incident and pre-existing conditions as well as whether a patient is under observation or not,
are addressed through the data transformation method. The ability of the search algorithm to produce a DAG
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MC (N =57,332) FV (N=79,486) P-value
Events in window 1 | New events in window 2 | Events in window 1 | New events in window 2
Demographics
Age 48.1(18.2) 50.4 (14.6) 0.000
Male 0.43 0.34 0.000
Ethnicity white 0.92 0.93 0.000
Vitals and labs
BMI>25and <30 27.1 29 27.5 34 0.097
BMI>30 32.6 3.6 43.1 4.9 0.000
SBP>140 10.3 34 4.5 2.9 0.000
DBP>90 23 1.0 1.6 1.2 0.000
LDL>130 18.4 3.6 15.4 4.3 0.000
HDL abnormal 20.2 1.7 24.6 3.0 0.000
Trigl>150 22.6 3.7 17.6 43 0.000
FPG>100 and <125 244 7.2
FPG=>125 11.9 3.7
Alc=5.7 and Alc<6.5 6.8 0.6
Alc=6.5 7.0 0.9
Diagnoses
Hypertension (HTN) 284 5.6 30.6 8.4 0.000
Obesity (Ob) 11.5 1.2 11.3 13 0.320
Hyperlipidemia (HL) 31.9 8.3 36.4 9.4 0.000
f;fe’g:;l)’e‘es mellitus g g 35 24 24 0.000
Diabetes mellitus (DM) 7.9 5.1 9.5 4.3 0.000
Eél};(l):r)lic renal failure 12 02 02 03 0.000
(Cé)lx_]ée)stive heart failure 24 17 12 14 0.000
chojr\(g)ary artery disease 94 35 5.6 34 0.000
é\l/\l/}llgcardial infarction 24 12 0.9 16 0.000
(Cceg;agivascular disease 36 23 18 14 0.000
Stroke 1.2 1.1 0.6 1.0 0.000
Treatments
Hypertension 20.6 8.3 31.5 13.9 0.000
Hyperlipidemia 15.7 8.0 24.6 9.1 0.000
Diabetes mellitus 44 24 7.2 4.3 0.000

Table 1. Characteristics of the MC and FV data sets. For age, mean (sd) is indicated; for the disease-related
events, percentage (%) of positive is indicated. New events rate at the second time windows is reported. BMI:
Body mass index; SBP: systolic blood pressure; DBP: diastolic blood pressure, Trigl: triglycerides, FPG: fasting
plasma glucose; Alc: hemoglobin A

Method Number of distinct edges Ambiguously oriented (%)
FGES +raw 125 45

FGES + transf 75 24

Proposed 64 0

Table 2. Directional stability. The table shows the number of distinct edges that appeared in half of the 1000
bootstrap replications, and the percentage of ambiguously oriented edges.

is achieved through using precedence relationships to orient edges that have equal probability in both orienta-
tions. Precedence relationships in turn rely on the pre-existing/incident status of the disease as determination
by the data transformation method.
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Precision | Associative recall | Causal recall
1. FGES + raw 0.294 1.000 1.000
2. FGES +transf | 0.549 0.985 1.000
3. Proposed 0.838 1.000 0.947

Table 3. Metrics from clinical evidence.

Ob

HTN

HTN.dx DBP

D

CeVD MI CHF
Legend
Correct edge ——»
Stroke Wrong edge ————>

Figure 2. Causal graph discovered by the proposed method. The ‘dx’ suffix indicates diagnosis of the disease.
The abbreviations of the diseases and lab results can be found in Table 1.

Discovery %
Edge MC |FV | Reason
HDL — Trigl 0 91.7 | There is no clear precedence relationship, the two events often coincide
HTN.dx — CRF 88.5 [0.1
Trigl » DM.dx 100 |0
Trigl - HL.tx 100 |0
LDL— HL.dx 72.1 |0
FPG.125— DM.dx 100 |0 FV uses Alc, not FPG
Trigl -» FPG.125 99.5 0.2
DBP — HTN.tx 915 |0 The criteria for diagnosis and treatment are institution specific
SBP — HL.tx 99.3 | 1.7
SBP —HTN.tx 100 | 29.1
Trigl - HTN.tx 837 |0
CHE — MI 0 67. | SBP isacommon cause for CHF and MI, but at FV, this effect was too weak in 68% of the bootstrap
iterations
HL.dx — Trigl 0 87.6 | While the main driver of Trigl is BMI, at FV, the diagnosis of HL helps explain the variation in Trigl
HL.tx— CAD 0 74.3 | LDL drives both HL treatment and CAD

Table 4. External validation. The ‘tx suffix denotes the treatment, and ‘dx’ suffix denotes the diagnosis of
the disease. The abbreviations of the diseases and lab tests can be found in Table 1. The table describes the
edges that were discordant between the Mayo Clinic (MC) and M Health Fairview (FV) data sets. It shows the
percentage of the bootstrap iterations in which the edge was discovered at MC and FV and a brief reason for
the discrepancy.
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Generalizability beyond diabetes. The proposed method was demonstrated on type 2 diabetes, but it
can generalize to other applications as long as the target application benefits from some of the improvements:
reducing the impact of inaccuracies in the EHR data, accounting for the temporal ordering of events and dis-
tinguishing pre-existing and incident conditions. The method assumes that pre-existing diseases persist during
the second time window.

Future work. The algorithm requires longitudinal data with at least two time windows. Different diseases
and their symptoms might manifest at different rates, incorporating this knowledge into the discovery pro-
cess may enhance the performance of the algorithms. Secondly, the proposed methods may be able to capture
the effect of medication changes when a study design of multiple (more than two) time windows is applied.
The current implementation assumes a single incidence of a disease, or that the diseases persists during the
study period. Another possible extension could relax this assumption, allowing for transient conditions that can
have multiple incidences in the study period. Thirdly, variable semantics (such as SBP and DBP being measures
related to hypertension) is an essential component of the proposed algorithm, but it is not always available in a
computable form. Further, both datasets in this study are from the Midwest with a predominantly white patient
population. The generalizability of the discovered causal relations can be further tested by examining a broader
patient population.

Conclusions

We have demonstrated that the graph produced by the proposed transformation and search algorithm is more
stable across bootstrap iterations and as complete as other methods yet it contained substantially fewer errors
(had higher precision) than graphs produced by general-purpose methods. The resulting graph was success-
fully validated using longitudinal EHR data from an independent health system. We conclude that the proposed
method is more suitable for use in clinical studies using EHR data.

Data availability

The data that support the findings of this study are not publicly available since they contain patient health infor-
mation. Authorization to access patient data can be requested from the Mayo Clinic and University of Minnesota
Institutional Review Board.
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