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INTRODUCTION

Intrahepatic cholangiocarcinoma is the second most 
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Objective: To determine whether volumetric CT texture analysis (CTTA) using fully automatic tumor segmentation can help 
predict recurrence-free survival (RFS) in patients with intrahepatic mass-forming cholangiocarcinomas (IMCCs) after surgical 
resection.
Materials and Methods: This retrospective study analyzed the preoperative CT scans of 89 patients with IMCCs (64 male; 
25 female; mean age, 62.1 years; range, 38–78 years) who underwent surgical resection between January 2005 and December 
2016. Volumetric CTTA of IMCCs was performed in late arterial phase images using both fully automatic and semi-automatic 
liver tumor segmentation techniques. The time spent on segmentation and texture analysis was compared, and the first-order 
and second-order texture parameters and shape features were extracted. The reliability of CTTA parameters between the 
techniques was evaluated using intraclass correlation coefficients (ICCs). Intra- and interobserver reproducibility of volumetric 
CTTAs were also obtained using ICCs. Cox proportional hazard regression were used to predict RFS using CTTA parameters and 
clinicopathological parameters.
Results: The time spent on fully automatic tumor segmentation and CTTA was significantly shorter than that for semi-
automatic segmentation: mean ± standard deviation of 1 minutes 37 seconds ± 50 seconds vs. 10 minutes 48 seconds ± 13 
minutes 44 seconds (p < 0.001). ICCs of the texture features between the two techniques ranged from 0.215 to 0.980. ICCs 
for the intraobserver and interobserver reproducibility using fully automatic segmentation were 0.601–0.997 and 0.177–
0.984, respectively. Multivariable analysis identified lower first-order mean (hazard ratio [HR], 0.982; p = 0.010), larger 
pathologic tumor size (HR, 1.171; p < 0.001), and positive lymph node involvement (HR, 2.193; p = 0.014) as significant 
parameters for shorter RFS using fully automatic segmentation.
Conclusion: Volumetric CTTA parameters obtained using fully automatic segmentation could be utilized as prognostic markers 
in patients with IMCC, with comparable reproducibility in significantly less time compared with semi-automatic segmentation.
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common primary liver cancer following hepatocellular 
carcinoma [1], and its incidence, albeit relatively rare, 
has been increasing worldwide over the past two decades 
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[2,3]. Currently, surgical resection is the only potentially 
curative treatment option for patients with intrahepatic 
cholangiocarcinoma [4,5]; however, even after curative 
surgery, clinical outcomes remain poor, with a 5-year 
survival rate of only 20–35% [4]. Previous studies [6-8] 
have demonstrated large tumor size, lymph node metastasis, 
and multiplicity as risk factors for recurrence after resection. 
Further attempts to predict the prognosis of intrahepatic 
mass-forming cholangiocarcinoma (IMCC) through imaging 
findings revealed that arterial and delayed enhancement 
can be utilized as potential prognostic markers of IMCC [9-
12]. However, these imaging features can be considered to 
be rather subjective; thus, quantitative prognostic imaging 
markers would be of great clinical value, given the poor 
prognosis and lack of well-established treatment options in 
patients with IMCCs. 

In recent years, radiomics and texture analysis have 
become an important area of research in oncology as 
clinical decision support tools [13-15]. Texture analysis is 
a novel non-invasive technique that quantifies the spatial 
pattern of pixel intensities on cross-sectional imaging to 
evaluate the heterogeneity of tumors [13,15,16], which 
is known to be a relevant factor in tumor prognosis [17-
21]. Moreover, studies have shown that tumors with high 
intratumoral heterogeneity, representing higher spatial 
variation in cellularity, angiogenesis, tumor matrix, 
and areas of necrosis, have a poorer prognosis [22,23]. 
Previous studies have reported that a new nomogram using 
texture parameters extracted from manual segmentation 
of the arterial phase of MRI was able to predict the early 
recurrence of intrahepatic cholangiocarcinoma [24]. Despite 
the growing clinical interest in radiomics, several technical 
challenges hinder its further adoption, including a lack 
of standardization in extracting radiomics features and 
reproducibility [25,26]. For instance, the selection of the 
region of interest (ROI) can greatly influence textural index 
estimations, as it largely depends on the segmented area or 
volume [13,21]. This would be particularly critical in IMCC, 
as these tumors generally have indistinct borders. In this 
regard, Parmar et al. [27] reported that semi-automatic 
segmentation may improve the robustness of texture 
analysis features compared with manual segmentation 
in non-small-cell lung cancers on CT. Since then, many 
attempts to apply automatic segmentation for liver tumors 
have yielded similar performance for radiologists [28,29]. 
However, until now, no CT texture analysis (CTTA) study has 
been performed for cholangiocarcinoma using an automatic 

segmentation tool to predict its prognosis.
Therefore, this study aimed to determine whether 

volumetric CTTA using a fully automatic segmentation 
technique is useful in predicting recurrence-free survival 
(RFS) in patients with IMCC in comparison with semi-
automatic volumetric segmentation analysis.

MATERIALS AND METHODS

Patients
The Institutional Review Board of Seoul National 

University Hospital approved this retrospective study, and 
the requirement for informed consent was waived (IRB 
No. 1703-015-836). Data for our clinical study group was 
obtained from the electronic medical records of our tertiary 
hospital and consisted of 89 patients (64 male and 25 
female; mean age, 62.1 years; range, 38–78 years) who 
were pathologically diagnosed with IMCCs after surgery 
between January 2005 and December 2016. The inclusion 
criteria were as follows: 1) pathologically confirmed 
IMCC after curative-intent surgery (i.e., R0 resection 
achieved), 2) availability of preoperative contrast-enhanced 
pancreatobiliary or liver protocol CT images including the 
late arterial phase, 3) CT images reconstructed using filtered 
back projection (FBP) at 120 kVp, 4) interval between 
preoperative CT scans and surgery of less than 8 weeks, and 
5) follow-up longer than at least 6 months after surgery. 

The exclusion criteria were as follows: 1) patients with 
distant metastasis at initial workup (n = 5), 2) other 
concurrent malignancy or history of other malignancies 
(n = 35), 3) those who underwent treatment for IMCC 
such as radiofrequency ablation or transcatheter arterial 
chemoembolization before surgery (n = 10), and 4) 
technical errors during uploading CT images (n = 2). A 
detailed description of the inclusion and exclusion of the 
study patients is summarized in Figure 1. 

Clinical and Pathologic Parameters
The pathologic data of the surgical specimens were 

retrieved from the pathologic reports registered in the 
electronic medical records of our hospital, including gross 
type, resection margin, size, histologic grade, number of 
tumors, presence or absence of an extrahepatic extension, 
vascular invasion or regional lymph node metastasis, 
and underlying hepatitis (including liver cirrhosis). 
Other demographic and clinical data were also collected, 
including age; sex; laboratory findings such as carbohydrate 
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antigen 19-9, cancer embryonic antigen (CEA), aspartate 
transaminase, alanine aminotransferase, total bilirubin, and 
albumin; and whether preoperative treatment for IMCC was 
performed.

Follow-Up
All patients were followed up until tumor recurrence 

(either regional or distant) or the final outpatient visit 
until December 2019. Surveillance for tumor recurrence was 
performed at least once every 6 months in an outpatient 
setting using imaging modalities, including ultrasound, 
CT, or MRI. Tumor recurrence time was defined as the time 
at which the tumor was detected in at least one of the 
imaging modalities listed above.

CT Acquisition
A variety of CT scanners were used in our study owing 

to its retrospective design and relatively low incidence of 
IMCCs. All 89 preoperative CT examinations were performed 
using a multidetector CT system with four (n = 4), eight 
(n = 8), 16 (n = 24), 32 (n = 3), 64 (n = 45), or 320 (n = 

5) slices. CT parameters were as follows: tube voltage, 
120 kVp; tube current, 99–187 mAs; rotation time, 0.5 
seconds; pitch, 1.0–1.5; slice thickness, 2.5–3 mm; and 
reconstruction interval, 2–2.5 mm. After administration of 
1.6 mL/kg of nonionic contrast material at a rate of 3.0–5.0 
mL/s using a power injector, late arterial phase helical CT 
scans were obtained according to the bodyweight of the 
patient. For late arterial phase scanning, a 17–19 seconds 
delay was used after the maximal Hounsfield unit (HU) of 
the descending thoracic aorta reached 100 HU using bolus 
tracking. All images were reconstructed using the FBP 
algorithm.

Only CT scans performed within 8 weeks before surgery 
were included. If more than one late arterial phase CT 
examination was available, the CT nearest to the operation 
day was selected.

Texture Analysis
All late arterial phase CT images were retrieved from our 

picture archiving and communication system and loaded 
into a commercially available texture analysis software 

251 surgically confirmed intrahepatic
cholangiocarcinoma patients

from January 2005 to December 2016

31 patients excluded
  - 10 with periductal infiltrating type
  - 20 with intraductal type
  - 1 with both periductal infiltrating and intraductal type

40 patients excluded without R0 resection
5 patients excluded with preoperative metastasis

45 patients excluded
  - 35 with history of other malignancy
  - �10 with history of previous treatment (4 chemotherapy, 5 TACE, 

and 1 PCD in situ state)

41 patients excluded
  - �12 without available CT within 2 month before surgery
  - �25 without late arterial phase at 120 kVp reconstructed  

with filtered back projection
  - 2 without postoperative follow-up
  - 2 technical error when performing segmentation

220 patients with intrahepatic mass-forming
cholangiocarcinomas

130 patients without other malignancy/
preoperative treatment

175 patients underwent R0 resection

89 patients finally included

Fig. 1. Flowchart of the inclusion and exclusion of study patients. PCD = percutaneous catheter drainage, TACE = transcatheter arterial 
chemoembolization
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program (Syngo.via Frontier, RADIOMCIS prototype, Siemens 
Healthineers) for further texture analysis. Texture analysis 
was performed by one radiologist (5 years of abdominal CT 
experience) using an automatic liver lesion segmentation 
tool (Fig. 2) provided in the prototype CT Multiparameter 
Analysis software (Syngo.via Frontier, RADIOMCIS prototype, 
Siemens Healthineers), which was performed by a user-
defined stroke for the long diameter of each lesion (the 
largest lesion, if multiple tumors were present). The 
automatic lesion segmentation algorithm used in our study 
has been described in a previous study [30,31]. In brief, 
it consists of three parts: region growing, ray casting, 
ellipsoid approximation, and convex hull.

The first-order texture analysis with seven parameters 
(mean, variance, energy, entropy, skewness, kurtosis, and 
uniformity); second-order texture analysis (Gray-Level Co-
occurrence Matrix [GLCM]) with seven features (inverse 
difference moment, contrast, correlation, sum average, 
difference average, sum entropy, and difference entropy); 
and shape analysis with five features (compactness1, 
compactness2, elongation, flatness, and sphericity) were 
performed [32]. 

One radiologist drew volumes of interest (VOI) for 
each lesion using both manual corrections for automatic 
segmentation (semi-automatic segmentation) and without 
manual correction (fully automatic segmentation), twice 
per methods in four separate sessions (two semi-automatic 
and two fully automatic) at least 1 month apart to reduce 
memory recall and test intraobserver reproducibility. 

Additionally, an ROI was drawn manually for the largest 
section once. To test interobserver reproducibility, 30 CT 
scans were randomly selected, and two sessions (one semi-
automatic and one fully automatic) of segmentation, 
also with a 1-month interval, were performed by another 
radiologist (4 years of abdominal CT experience).

As Supplementary analysis (Supplementary Table 1), the 
arterial enhancement pattern of each tumor was visually 
assessed, performed by two radiologists.

Statistical Analysis
The time spent on segmentation and texture analysis was 

compared between the semi-automatic and fully automatic 
segmentation techniques using a paired t test. Reliability in 
obtaining the texture parameters between fully automatic 
and semi-automatic segmentation was assessed using 
intraclass correlation coefficient (ICC). Additionally, 
intraobserver and interobserver reproducibility was also 
assessed using ICC for each segmentation method. For 
comparison, the raw data from each segmentation session 
were used.

A univariable Cox proportional hazards regression was 
used to determine the relationship between the CT texture 
features and other clinicopathologic parameters and RFS. 
Multicollinearity was checked for pathologic size and 
other variables (semi-automatic diameter, semi-automatic 
volume, full-automatic diameter, full-automatic volume, 
ROI two-dimensional [2D] area, and ROI [2D] diameter). 
Variables with a variance inflation factor greater than 10 
were removed from the multivariable analysis. Multivariable 
Cox proportional hazards regression were used to determine 
whether each clinicopathological or texture parameter, 
which was a significant factor in univariable analysis, was 
an independent prognostic factor for RFS. A p value of less 
than 0.05, indicated a statistical significance. All statistical 
analyses were performed using SPSS software (version 25; 
IBM Corp.) and MedCalc statistical software (version 19.0, 
MedCalc Software bvba).

RESULTS

Patients
Among the 89 patients included in this study, 58 (65.2%) 

patients had a recurrence and 31 (34.8%) patients had no 
recurrence until their final outpatient visit until December 
2019. Other demographic, clinical, and pathological data 
are summarized in Table 1.

Fig. 2. Illustration of the application of the liver lesion 
segmentation tool. A 61-year-old male with cholangiocarcinoma. 
The reader manually draws a line (white line on the image) across 
the maximum dimension of the tumor. The software automatically 
segments the entire tumor volume.
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Clinicopathological Parameters
The results of univariable Cox regression analysis 

regarding RFS for clinicopathologic parameters are described 
in Table 2. Among the clinicopathologic parameters, 
pathologic tumor size (p < 0.001), multiplicity (p = 
0.016), extrahepatic extension (p = 0.006), regional lymph 
node metastasis (p < 0.001), and CEA (p = 0.003) were 
significant. 

Texture Analysis Parameters

Time Spent on VOI Drawings
Reviewer 1 spent mean time ± standard deviation of 10 

minutes and 48 seconds ± 13 minutes and 44 seconds for 
semi-automatic VOI segmentation per CTTA. Reviewer 2 
used 9 minutes and 19 seconds ± 7 minutes and 59 seconds 
for semi-automatic VOI segmentation. In comparison, with 
fully automatic segmentation, reviewer 1 spent 1 minutes 
and 37 seconds ± 50 seconds per CTTA, and reviewer 2 
spent 1 minutes and 23 seconds ± 37 seconds. The time 

spent on fully automatic tumor segmentation and CTTA 
was significantly shorter (p < 0.001) than that for semi-
automatic segmentation by both reviewers. For manual ROI 
drawing, reviewer 1 spent 2 minutes and 1 seconds ± 1 
minutes and 6 seconds.

Reliability between Semi-Automatic and Fully Automatic 
Segmentations

ICCs between semi-automatic and fully automatic 
segmentation ranged between 0.215–0.980 (Table 3). 
Among the first-order parameters, skewness and kurtosis 
were less reliable (< 0.5) compared to the other first-
order parameters. The second-order parameters showed an 
ICC of 0.706–0.980, and shape features showed an ICC of 
0.215–0.638 (Fig. 3). Among the 89 tumors, 34 (38.2%) 
had ill-defined margins. On the subgroup analysis (excluding 
tumors with ill-defined margins), improvement in the 
reproducibility was noted for shape features (0.515–0.792).

Reliability between Observers
Full results are provided in Supplementary Tables 2-5. 

The ICCs for intraobserver and interobserver reproducibility 
using fully automatic segmentation were 0.601–0.997 and 
0.177–0.984, respectively (Supplementary Tables 3, 4).

Table 1. Clinical and Pathologic Characteristics of 89 Study 
Patients

Characteristics Data
Age, years 62.1 ± 8.3
Sex, male:female 64:25
Recurrence

Yes 58 (65.2)
No 31 (34.8)

Tumor size, cm 5.8 ± 3.2
Histologic grade

Well differentiated 17 (19.1)
Moderately differentiated 49 (55.1)
Poorly differentiated 23 (25.8)

Multiplicity 15 (16.9)
Extrahepatic extension 28 (31.5)
Vascular invasion 42 (47.2)
Regional lymph node metastasis 23 (25.8)
Underlying hepatitis 32 (36.0)
Laboratory finding

CA 19-9, U/mL  3252.3 ± 11292.2
CEA, ng/mL  7.2 ± 16.5
AST, IU/L 36.7 ± 37.3
ALT, IU/L 40.4 ± 64.0
Total bilirubin, mg/dL 1.0 ± 1.1
Albumin, g/dL 4.1 ± 0.4

Data are mean ± standard deviation or number of patients with 
percentage in parentheses. ALT = alanine aminotransferase, AST = 
aspartate transaminase, CA 19-9 = carbohydrate antigen 19-9, CEA = 
cancer embryonic antigen

Table 2. Univariable Cox Regression Analysis of Clinicopathologic 
Parameters for Predicting RFS

Parameters Hazard Ratio (95% CI) P
Age (per year increase) 0.999 (0.968-1.031) 0.931 
Sex (male to female) 0.810 (0.463–1.417) 0.460 
Tumor size (per cm increase) 1.133 (1.059-1.213) < 0.001 

Histologic grade*
1.933 (0.263–14.200) 0.517
1.941 (0.255–14.742) 0.522 

Multiplicity 2.201 (1.159–4.180) 0.016 
Extrahepatic extension 2.094 (1.236–3.548) 0.006
Vascular invasion 1.648 (0.980–2.771) 0.059 
Regional lymph node metastasis 2.711 (1.547–4.751) < 0.001
Underlying hepatitis 0.656 (0.375–1.147) 0.139
CA 19-9 (per U/mL increase) 1.000 (1.000–1.000) 0.321
CEA (per ng/mL increase) 1.021 (1.007–1.035) 0.003
AST (per IU/L increase) 1.004 (0.999–1.010) 0.153
ALT (per IU/L increase) 1.001 (0.998–1.005) 0.546
Bilirubin (per mg/dL increase) 1.071 (0.895–1.282) 0.455
Albumin (per g/dL increase) 0.656 (0.354–1.217) 0.181

*Histologic grade was compared between reference variable (well 
differentiated) and test variables (moderately differentiated, in 
the first raw and poorly differentiated, in the second raw). ALT = 
alanine aminotransferase, AST = aspartate transaminase, CA 19-9 = 
carbohydrate antigen 19-9, CEA = cancer embryonic antigen, CI = 
confidence interval, RFS = recurrence-free survival
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The ICCs between the two trials of semi-automatic VOI 
segmentation showed excellent reliability (> 0.8), except 
kurtosis (0.786) among the first-order texture parameters 
and compactness2 (0.777) among the shape parameters 
(Supplementary Table 2). The ICC between the two trials 
of fully automatic VOI segmentation showed excellent 
reliability (> 0.8) for all the first- and second-order texture 
parameters. However, shape features showed only a good 
reliability (0.601–0.812) (Supplementary Table 3).

Interobserver reproducibility was calculated for 30 
randomly chosen tumors (Supplementary Table 4). 
Semi-automatic VOI segmentation showed excellent 
reproducibility between reviewers 1 and 2 (ICC > 0.8) 
for the first-and second-order parameters; however, less 
reproducibility (0.001–0.888) for the shape parameters. In 
contrast, fully automatic VOI segmentation, showed an ICC 
range of 0.684–0.984 except kurtosis among the first-order 
texture parameters, while less reproducibility (0.208–0.818) 
was observed for the shape parameters. 

The results for the 55 subgroup of patients (also including 
18 patients among them chosen for inter-observer analysis) 
after exclusion of patients with lesions with ill-defined 
margins are provided in Supplementary Tables 2, 3, and 5.

Association between Texture Parameters and RFS 
Univariable Cox regression analysis for RFS using CT 

texture parameters with ROI drawings versus VOI drawings is 
summarized in Table 4. Univariable analysis of ROI drawings 
identified area (p = 0.001), diameter (p = 0.002), the first-
order mean (p = 0.001), energy (p = 0.037), kurtosis (p = 
0.037), and shape-flatness (p = 0.006) were significant. 
Univariable analysis of semi-automatic/fully automatic 
VOI segmentation revealed volume (p = 0.024/p = 0.010), 
diameter (p = 0.002/p = 0.004), and the first-order mean 
(p < 0.001/p = 0.001) were significant. 

With multicollinearity analysis, semi-automatic volume, 
semi-automatic diameter, full-automatic volume, and ROI 
(2D) diameter were excluded from the multivariable analysis 
(Supplementary Table 6). The results of multivariable Cox 
regression analysis, including all clinicopathologic and 
texture parameters significant at univariable analyses, are 
shown in Table 5. For the ROI drawing method, extrahepatic 
extension (p = 0.017), regional lymph node metastasis 
(p = 0.010), CEA (p = 0.010), and area (p < 0.001) were 
significant predictors of RFS. For semi-automatic/fully 
automatic VOI segmentation, pathologic tumor size (p < 
0.001/p < 0.001), regional lymph node metastasis (p = 0.030/

Table 3. Reliability Between Parameters Extracted from Semi-
Automatic Segmentation and Fully Automatic Segmentation

All (n = 89) Subgroup (n = 55)

Volume
0.971 

(0.956–0.981)
0.982 

(0.969–0.990)

Diameter
0.932 

(0.896–0.955)
0.958 

(0.928–0.976)
First-order

Mean
0.967 

(0.949–0.978)
0.958 

(0.927–0.975)

Variance
0.744 

(0.611–0.832)
0.786 

(0.631–0.875)

Energy
0.899 

(0.846–0.934)
0.904 

(0.835–0.944)

Entropy
0.841 

(0.758–0.895)
0.871 

(0.779–0.925)

Skewness
0.407 

(0.095–0.611)
0.446 

(0.049–0.677)

Kurtosis
0.455 

(0.171–0.641)
0.207 

(-0.345–0.534)

Uniformity
0.827 

(0.736–0.886)
0.874 

(0.786–0.927)
Second-order

GLCM IDM
0.980 

(0.966–0.987)
0.987 

(0.977–0.997)

GLCM contrast
0.967 

(0.930–0.982)
0.966 

(0.931–0.982)

GLCM correlation
0.706 

(0.552–0.807)
0.756 

(0.590–0.859)

GLCM sum average
0.715 

(0.567–0.812)
0.529 

(0.204–0.723)

GLCM diff average
0.978 

(0.961–0.987)
0.983 

(0.969–0.991)

GLCM sum entropy
0.828 

(0.739–0.887)
0.864 

(0.767–0.921)

GLCM diff entropy
0.960 

(0.909–0.979)
0.968 

(0.927–0.984)
Shape

Compactness1
0.293 

(-0.080–0.537)
0.520 

(0.192–0.717)

Compactness2
0.215 

(-0.201–0.486)
0.523 

(0.197–0.718)

Elongation
0.562 

(0.332–0.713)
0.775 

(0.615–0.869)

Flatness
0.638 

(0.449–0.762)
0.792 

(0.614–0.884)

Sphericity
0.314 

(-0.047–0.550)
0.515 

(0.185–0.714)

Data are intraclass correlation coefficient values with 95% 
confidence interval in parentheses. Subgroup analysis was 
performed after excluding 34 tumors with ill-defined margins. 
diff = difference, GLCM = Gray-Level Co-occurrence Matrix, IDM = 
inverse difference moment
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p = 0.014), and the first-order mean (p = 0.006/p = 0.010) 
were significant factors for the prediction of RFS (Fig. 4).

DISCUSSION

Our study attempted to assess whether volumetric 
texture analysis of IMCCs using the fully automatic tumor 
segmentation technique can help predict RFS in patients 
undergoing surgical resection. In a comparison between the 
semi-automatic and fully automatic segmentation methods, 
we found that there was an excellent reliability between 
them in the first-and second-order parameters, except 
for skewness and kurtosis, while the time spent on fully 
automatic segmentation was dramatically and significantly 
shortened compared to semi-automatic segmentation. As 
for shape parameters that showed poor agreement, separate 
subgroup analysis performed after excluding tumors with 
ill-defined margins showed significant improvement in 
reliability. Finally, and in response to our original question, 
our study demonstrated that the first-order mean texture 
analysis was an independent predictor of RFS in patients 
with IMCCs using both semi-automatic and fully automatic 

segmentation methods, demonstrating that automatic 
segmentation can indeed be used as a prognostic tool. 

The main obstacles in the clinical adoption of texture 
analysis are its reproducibility and generalizability [33]. 
Moreover, variability in tumor delineation can greatly 
influence radiomics analysis, and tumors with less 
sharp borders will accordingly have lower interobserver 
agreements [34]. Our study results in this regard are 
similar to the results of previous studies dealing with 
the segmentation of hepatic tumors [35,36] evaluating 
one or several parameters (attenuation on CT or analog-
to-digital converters and enhancement degree on MRI). 
In those studies, semi-automatic VOI measurements 
showed better intraobserver and/or interobserver 
reproducibility than manual ROI measurements, while 
manual volume segmentation was shown to be tedious and 
time-consuming [27]. Our study results show that fully 
automatic VOI segmentation can demonstrate the same 
prognostic parameter as semi-automatic VOI segmentation; 
however, in a dramatically shorter time. Therefore, 
volumetric CTTA using fully automatic tumor segmentation 
can be utilized as a time-saving clinical tool that can 

Fig. 3. Illustration of intraobserver and interobserver reproducibility of lesion segmentation. A 66-year-old female with 
cholangiocarcinoma showing arterial phase hyperenhancement, who did not show recurrence during 83.8 months follow-up after surgical 
resection. 
A. Yellow is representative of semi-automatic segmentation and blue is representative of fully automatic segmentation, by radiologist 1.  
B. Light green is representative of the second trial of semi-automatic segmentation by radiologist 1. C. Purple is representative of semi-automatic 
segmentation by another radiologist, radiologist 2. D. Green is representative of fully automatic segmentation by radiologist 2.

Semi-A (R1)

Full-A (R1)

Semi-A (R1_1)

Semi-A (R1_2)

Semi-A (R1)

Semi-A (R2)

Full-A (R1)

Full-A (R2)

A B C D
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Table 4. Univariable Cox Regression Analysis of Texture Parameters for Predicting RFS
Semi-Automatic Fully Automatic ROI Method

HR (95% CI) P HR (95% CI) P HR (95% CI) P
Area/volume 1.001 (1.000–1.002) 0.024 1.001 (1.000–1.002) 0.010 1.045 (1.019–1.073) 0.001
Diameter 1.011 (1.004–1.018) 0.002 1.009 (1.003–1.016) 0.004 1.012 (1.004–1.019) 0.002
First-order

Mean 0.972 (0.958–0.986) < 0.001 0.977 (0.965–0.990) 0.001 0.976 (0.963–0.990) 0.001
Variance 1.000 (0.999–1.001) 0.836 0.999 (0.998–1.000) 0.291 1.000 (0.999–1.001) 0.609
Energy 1.000 (1.000–1.000) 0.493 1.000 (1.000–1.000) 0.064 1.000 (1.000–1.000) 0.037
Entropy 0.706 (0.320–1.562) 0.391 0.602 (0.266–1.360) 0.222 0.730 (0.341–1.560) 0.417
Skewness 1.355 (0.774–2.372) 0.288 0.725 (0.516–1.019) 0.064 2.289 (0.866–6.047) 0.095
Kurtosis 1.007 (0.968–1.048) 0.727 1.000 (0.963–1.039) 0.987 1.467 (1.024–2.102) 0.037
Uniformity 7.556 (0.298–191.561) 0.220 10.655 (0.344–330.459) 0.177 7.032 (0.319–155.088) 0.217

Second-order
GLCM IDM 37.939 (0.254–5569.166) 0.155 54.332 (0.312–9467.910) 0.129 16.569 (0.192–1432.715) 0.217
GLCM contrast 0.603 (0.219–1.659) 0.328 0.583 (0.222–1.534) 0.275 0.716 (0.325–1.575) 0.406
GLCM correlation 1.030 (0.168–6.330) 0.975 0.553 (0.096–3.194) 0.508 1.220 (0.252–5.892) 0.805
GLCM sum average 1.022 (0.990–1.054) 0.184 1.014 (0.998–1.041) 0.282 1.030 (0.893–1.188) 0.687
GLCM diff average 0.264 (0.035–2.017) 0.199 0.233 (0.030–1.822) 0.165 0.377 (0.066–2.145) 0.272
GLCM sum entropy 0.714 (0.367–1.391) 0.323 0.632 (0.315–1.268) 0.196 0.781 (0.406–1.501) 0.458
GLCM diff entropy 0.344 (0.070–1.690) 0.189 0.290 (0.056–1.507) 0.141 0.468 (0.113–1.937) 0.295

Shape
Compactness1 0.000 (0.000–48190.159) 0.102 0.000 (0.000–1.342 x 1017) 0.603 0.000 (0.000–1072388.411) 0.169
Compactness2 0.035 (0.001–1.969) 0.103 0.708 (0.031–15.939) 0.828 0.138 (0.002–8.097) 0.340
Elongation 1.776 (0.194–16.276) 0.611 1.758 (0.200–15.432) 0.611 0.561 (0.118–2.672) 0.468
Flatness* 1.735 (0.244–12.337) 0.582 0.354 (0.051–2.457) 0.294 21.861 (2.423–197.203) 0.006
Sphericity 0.039 (0.001–1.931) 0.103 0.372 (0.015–9.246) 0.546 0.160 (0.015–1.669) 0.125

CI = confidence interval, diff = difference, GLCM = Gray-Level Co-occurrence Matrix, HR = hazard ratio, IDM = inverse difference moment, 
RFS = recurrence-free survival

Table 5. Multivariable Cox Regression Analysis of Clinicopathologic and Texture Parameters for Predicting RFS
Semi-Automatic Fully Automatic ROI Method

HR (95% CI) P HR (95% CI) P HR (95% CI) P
Clinicopathologic 

Size* 1.166 (1.084–1.255) < 0.001 1.171 (1.086–1.263) < 0.001    0.089
Multiplicity    0.298    0.248    0.154
Extrahepatic extension    0.059    0.075 1.974 (1.127–3.457)    0.017
Regional LN metastasis 2.019 (1.069–3.812)    0.030 2.193 (1.169–4.112)    0.014 2.193 (1.203–3.997)    0.010
CEA    0.288    0.214 1.019 (1.005–1.034)    0.010

Texture analysis
Area 1.053 (1.025–1.082) < 0.001
Diameter    0.640

First-order parameter
Mean 0.980 (0.965–0.994)    0.006 0.982 (0.968–0.996)    0.010    0.140
Energy    0.661
Kurtosis    0.696

Shape
Flatness    0.322

CEA = cancer embryonic antigen, CI = confidence interval, HR = hazard ratio, LN = lymph node, RFS = recurrence-free survival
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provide reproducible VOI drawings, and we suspect that 
semi-automatic or fully automatic segmentation will be 
the path forward [37] for wider acceptance of texture 
analysis in clinical studies.

In our comparison of the semi-automatic and fully 
automatic liver lesion segmentation techniques, we found 
that the reproducibility of both methods was overall good 
to excellent (ICC of 0.786–0.994 with semi-automatic 
segmentation and 0.932–0.997 with fully automatic 
segmentation) regarding the first-order histogram 
analysis and GLCM of the second-order analysis, which is 
comparable to the reproducibilities reported in other recent 
studies [38,39]. However, shape features extracted from 
fully automatic VOI segmentation demonstrated inferior 
reproducibility (0.601–0.812) compared to that of semi-
automatic VOI segmentation (0.777–0.899). This lower 
reproducibility of shape features may have resulted from the 
inherent limitation of the auto-segmentation mechanism 
used in this study, as computations can easily be affected 

by even minute differences in the pathway of line strokes 
[30,31]. However, even the interobserver reproducibility 
of the semi-automatic VOI segmentation method between 
the two radiologists was poor (0.001–0.888), highlighting 
the difficulty in reproducing similar measurements. Thus, 
considering that cholangiocarcinoma has ill-defined margins, 
we performed a separate subgroup analysis, excluding 
tumors with ill-defined margins. According to the results of 
this analysis, the interobserver reproducibility between fully 
automatic VOI segmentation showed greater improvement 
than that of semi-automatic VOI segmentation. Therefore, 
we believe that fully automatic VOI segmentation would 
be acceptable for the volumetric CTTA of most IMCC cases, 
except for highly infiltrative tumors. 

Finally, our study demonstrated that the first-order 
mean parameter of VOI CTTA on AP images was a favorable 
predictor of RFS in patients with IMCC, which is in good 
agreement with previous studies [9-11], which reported 
that IMCCs with arterial enhancement showed better 

Fig. 4. Representative case of texture analysis predicting recurrence-free survival. A 64-year-old female with cholangiocarcinoma 
showing arterial phase isoenhancement and slight hyperenhancement. 
A. Axial CT image. B. Coronal CT image. C. Volumetric reconstruction. The blue area is representative of fully automatic segmentation and 
the yellow area is representative of semi-automatic segmentation. The mean value of texture analysis was 89.1 and 85.8 on fully automatic 
segmentation and semi-automatic segmentation, respectively. The mean attenuation of 89 intrahepatic mass-forming cholangiocarcinomas was 
64.6–66.3 (Supplementary Table 2, 3). D. No recurrence was observed for 77.8 months after surgical resection.

A

C

B

D
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prognosis than IMCCs without arterial enhancement. 
However, in previous studies [9-11], visual inspection 
was used to determine the pattern of enhancement by 
comparing the enhancement of the tumor with that of the 
background liver parenchyma qualitatively using binary 
or tertiary classification (hyperenhancement totally or 
partially, or hypoehancement). We also performed ROI 
attenuation measurements for the largest tumor section 
at the arterial phase in this study; however, the first-order 
mean was not demonstrated to be a significant factor in the 
multivariable analysis. This may suggest that VOI drawing 
may be more representative of the whole tumor than 
2D ROI drawing. The growing evidence that the arterial 
enhancement pattern and degree of IMCC are related to the 
prognosis of IMCC also correlates well with the currently 
developing histologic concepts of cholangiocarcinoma. 
According to recent immunohistochemical staining studies 
[40,41], IMCCs can be divided into large and small duct 
types. Small duct type IMCCs frequently show a larger area 
of arterial phase hyperenhancement on CT or MRI due to 
the reflection of its nonschirrhous nature and has a more 
favorable survival probability than the large duct type [40-
42]. Although the pathologic database from our hospital 
did not provide specific information regarding the origin of 
the cell type, our study may provide a radiologic-histologic 
correlation of IMCCs. Although many validation studies are 
warranted, quantitative texture analysis of arterial phase 
hyperenhancement of IMCCs may be an option for future 
prognostic markers of IMCCs. However, the limited number 
of significant prognostic variables from our texture analysis 
result doubts the added clinical value of texture analysis for 
predicting the RFS of IMCC. Nevertheless, objective numeric 
data from our texture analysis support previous articles 
[9-11] based on subjective visual analysis, with more 
statistical power (Supplementary Table 1). In addition, 
the application of fully automatic segmentation tools will 
help to utilize image characteristics of tumors, not only for 
radiologists but also for clinicians not familiar with image 
interpretation, with shorter time spent.

There are several limitations to our study that should be 
mentioned. First, owing to its retrospective nature, various 
CT machines were used in our study, although only FBP 
reconstructed images taken at 120 kVp were chosen to 
lower interscanner variance. However, the use of different 
CT machines may lead to better generalizability. Second, 
we did not analyze all the second-order features of the 
texture analysis provided in the texture analysis program. 

Specifically, Gray Level Run Length Matrix (GLRLM) and 
Gray Level Size Zone Matrix (GLSZM) were not analyzed, 
and filters were not applied. Thus, further studies are 
warranted to validate the reproducibility of the entirety 
of features in PyRadiomics. Lastly, our decision to include 
only patients who underwent surgery may have introduced a 
selection bias. Therefore, the extent of extrapolation of our 
study results could be limited to patients with surgically 
resectable IMCCs.

In conclusion, our study results demonstrated that 
volumetric CTTA of arterial phase images using the fully 
automatic segmentation approach could be used as a 
biological prognostic tool in patients with IMCC, with 
comparable reproducibility of semi-automatic CTTA, in far 
less time, thereby potentially resolving one of the major 
technical challenges of texture analysis.

Supplement

The Supplement is available with this article at  
https://doi.org/10.3348/kjr.2021.0055.
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