TABLE 1.
Utility of model systems for airway infection in CF
Model type | System | Usea |
|||||||
---|---|---|---|---|---|---|---|---|---|
Studies of airway infection | Chronic airway infection | Gut-lung axis studies | General infection studiesb | Studies of basic microbial biology | Studies of host response | New antibiotic discovery | New antibiotic validation | ||
CF animal models | Mouse | Y | Yc | Y | Y | Y | Y | ||
Rat | Y | Y | Y | Y | Y | ||||
Piglet | Y | F | Y | Y | Y | Y | |||
Ferret | Y | F | Y | Y | Y | Y | |||
Rabbit | Y | Y | Y | Y | |||||
Other animal models | Zebra fish | Y | Y | Y | |||||
Caenorhabditis elegans | Y | Y | Y | ||||||
Wax moth larvae | Y | Y | Y | ||||||
Ex vivo modelsd | Porcine lung model | Y | to 21 days | Y | Y | Y | Y | ||
Piglet trachea | F | F | F | F | F | ||||
Human lung tissue | Y | F | Y | Y | Y | Y | |||
Human cell lines | Y | F | Y | Y | Y | Y | |||
Human primary cells | Y | F | Y | Y | |||||
Organoid-derived 2D cultures | Y | F | Y | Y | Y | Y | |||
Human lung on chips | Y | F | Y | Y | Y | Y | |||
Sputum | Y | F | Y | Y | Y | Y | Y | ||
In vitro models | LB (standard lab medium) | Y | |||||||
Synthetic CF sputum medium | Y | Y | Y | Y | Y | ||||
Conditioned medium from host cells | Y | F | Y | Y | Y | Y | Y | ||
Conditioned bacterial supernatant | Y | Y | Y | ||||||
Microfluidic chambers | Fe | F | Y | Y | |||||
WinCF | Y | F | Y | Y | Y | ||||
Chemostats | Y | Y | Y | Y | Y | ||||
Multiwell platesf | Y | F | Y | Y | |||||
In silico models | Bioinformatics and modelling of existing datag | Y | Y | Y | Y | Y | Y | Y | |
Empirical machine learning models | Y | Y | Y | Y | Y | Y | Y | ||
Microbial metabolic models | Y | Y | Y | Y | Y | Y | Y | ||
Airway transport models | Y | Y | Y | Y | Y | Y | Y | ||
Agent-based models | Y | Y | Y | Y | Y | Y | Y | ||
Immune system modelsh | Immune cells (neutrophils, monocytes, etc.) | Y | Y | Y | Y | Y | Y | ||
Primary mouse immune cells | Y | Y | Y | Y | Y | ||||
Primary human immune cellsi | Y | Y | Y | Y | Y | ||||
Antibodies | Y | Y | Y | Y | Y | Y |
Y, yes; F, future development of this use is likely.
Work that is not airway specific but can help understand general virulence factors or their mechanism of action.
Agar bead model.
Classifying ex vivo versus in vitro models can sometimes be difficult. Here, we classify models as ex vivo if they comprise complex tissues or human samples and use primary cells.
If adapted to use (artificial) sputum.
Other in vitro biofilm models are also available (e.g., Calgary device, beads, tube biofilms, etc.).
Microbiome, metagenome, transcriptome, proteomes, chemical dynamics, fluid flow, etc., alone or in combination with clinical metadata.
See also animal and ex vivo models.
Including peripheral and alveolar cells.