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Abstract

Streptococcus pyogenes causes 700 million human infections annually worldwide, yet, despite a 

century of intensive effort, there is no licensed vaccine against this bacterium. Although a number 

of large-scale genomic studies of bacterial pathogens have been published, the relationships 

between the genome, transcriptome, and virulence in large bacterial populations remain poorly 

understood. We sequenced the genomes of 2,101 emm28 S. pyogenes invasive strains, from which 

we selected 492 phylogenetically diverse strains for transcriptome analysis and 50 strains for 

virulence assessment. Data integration provided novel understanding of the virulence mechanisms 

of this model organism. Genome-wide association study (GWAS), expression quantitative trait 

loci (eQTL) analysis, machine learning, and isogenic mutant strains identified and confirmed a 

one-nucleotide indel in an intergenic region that significantly alters global transcript profiles and 

ultimately virulence. The integrative strategy we used is generally applicable to any microbe and 

may lead to new therapeutics for many human pathogens.

Editorial Summary

This study presents the genomes of 2,101 emm28 Streptococcus pyogenes invasive strains, of 

which 492 were transcriptionally profiled and 50 were assessed for virulence. GWAS, eQTL 

analysis, and study of isogenic mutant strains identified an intergenic region that alters global 

transcript profiles and bacterial virulence.
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INTRODUCTION

Regardless of ecological niche or host range, all bacterial species comprise genetically 

diverse strains. One poorly understood area of the molecular genetics of microbes is the 

complex interplay between the genome, transcriptome, and virulence in large populations of 

infectious strains. Genetic variation may affect gene transcript levels, but the extent to which 

this is true and what consequences it has for pathogenesis remain unclear. Although large 

genomics studies have been published1–6, far less has been done in the areas of comparative 

transcriptome7–9 and virulence analyses involving natural populations10,11. Moreover, with 

the exception of one study involving a relatively small sample of strains of Escherichia 
coli12, the relationships between the genome, transcriptome, and virulence have not been 

studied. Integrative analysis of diverse data from population-based strain samples may have 

implications for translational research efforts in areas such as vaccine formulation, new 

therapeutics and diagnostics, and public health.

Streptococcus pyogenes (group A streptococcus, GAS) is a strict human pathogen that 

causes more than 700 million infections annually in children and adults worldwide13. 

Human infections range in severity from relatively mild pharyngitis (“strep throat”) to 

extremely severe and life-threatening infections such as septicemia and necrotizing fasciitis/

myositis, commonly known as “flesh-eating” disease. The organism also causes skin and 

soft-tissue infections and is responsible for post-infection sequelae such as rheumatic fever 

and rheumatic heart disease, important causes of morbidity globally13,14.

GAS has been used as a model organism for studying the relationship between strain 

type and disease phenotype, and epidemics1,6,15–17. emm28 strains are among the top 

five emm-types associated with invasive GAS infections in the USA, and many European 

countries18–23. For reasons that remain unexplained, strains of some emm types or M protein 

serotypes are non-randomly associated with particular types of human infections17,24–30. As 

an example, emm28 GAS strains are repeatedly overrepresented among cases of puerperal 

sepsis (childbed fever) and neonatal infections17,31–34.

Despite important advances in the genomics of selected organisms, little is known about 

the nature and extent of transcriptome diversity among clonally-related progeny of bacterial 

strains that have shared a recent common ancestor. Data bearing on this issue are critical 

for enhanced understanding of bacterial evolution in natural populations, phenotypic 

diversification, and microbial epidemics. To address these knowledge gaps, we sequenced 

the genomes of 2,101 strains of type emm28 GAS recovered in comprehensive, population­

based studies and used the resulting phylogenetic information to select representative strains 

for analyses of transcriptomes (n = 492 strains) and virulence (n = 50 strains). Data 

integration provided new understanding about the biology of this model organism, including 

a striking magnitude of transcriptome variation in a relatively closely related clade of 

organisms. Application of statistical methods and machine learning facilitated discovery of a 

new molecular genetic process that underpins enhanced virulence in some GAS strains.
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RESULTS

Population structure and temporal distribution

We sequenced the genomes of 2,101 emm28 GAS strains isolated from invasive infections 

in six countries in North America and Europe during a 26-year period, 1991 through 2016 

(Table 1, Supplementary Table 1, Supplementary Fig. 1). All strains were recovered as part 

of comprehensive, population-based studies. The genomes were sequenced to 202-fold mean 

coverage35 (Supplementary Fig. 2a, Supplementary Table 1, and Online Methods). Inference 

of genetic relationships were made using single nucleotide polymorphisms (SNPs) present 

in the core genome, that is, the genome devoid of mobile genetic elements (MGEs) such as 

prophages and integrative-conjugative elements (ICEs) (Supplementary Table 1). The major 

emm28 GAS population was distributed into two primary clades (Clades 1 and 2) and four 

subclades (designated SC1A, SC1B, SC2A, and SC2B) by Bayesian clustering (Fig. 1a,b). 

Clade 2 organisms are differentiated from Clade 1 in part by a 28.0-Kb horizontal gene 

transfer (HGT) bloc that contributes 520 core SNPs and by 19 core SNPs located outside 

of this HGT bloc (Supplementary Table 2). This 28.0-Kb HGT bloc includes the nga-ifs-slo 
operon encoding secreted toxins NAD+-glycohydrolase (SPN) and streptolysin O (SLO), 

known key contributors to GAS virulence6,16,36–39. ifs encodes an endogenous inhibitor of 

SPN40. Importantly, recombinogenic acquisition of high-expression variants of the nga-ifs­
slo operon can increase survival in the primate upper respiratory tract, enhance virulence 

and trigger intercontinental epidemics1,6,16,41. Clade 2 organisms have an nga-ifs-slo region 

that has 99% sequence identity to the analogous three-gene operon present in Streptococcus 
dysgalactiae subspecies equisimilis (SDSE)42 and likely was acquired by subclade 2A GAS 

via a recombination event.

SC1B comprises the most strains, accounting for 49.7% of the isolates, followed by SC2A 

(26.8%), SC1A (22.3%), and SC2B (0.53%). Strains belonging to subclades SC1A, SC1B, 

and SC2A varied by year, geographic location and MGE content (Fig. 1c and Supplementary 

Fig. 3). Marked temporal displacement of SC1A strains occurred concomitantly with a 

surge of SC2A strains in the USA, where ~55% of strains were SC2A. SC1B strains 

were predominantly isolated from patients in Finland, Norway, Faroe Islands, and Iceland, 

whereas SC1A was the prevalent subclade in Canada. MGE diversity in the cohort was 

assessed (Supplementary note and Supplementary Tables 3-6) and the 20 most abundant 

MGE-50 genotypes accounted for 90% of strains (Fig. 1c).

We next used an integrative strategy to investigate the complex interplay between genome 

variation, transcriptome changes and virulence differences in an animal infection model 

from a population perspective.

Transcriptome signatures and population structure

To determine if distinct patterns of gene expression are nonrandomly associated with the 

emm28 population structure, we first conducted transcriptome (RNA-seq) analysis on a 

subset of 50 strains genetically representative of the three numerically dominant subclades 

(i.e., SC1A, SC1B, and SC2A) (Supplementary Table 7). Strains were selected for RNA­

seq analysis from the main sample of 2,095 M28 strains based on the criteria described 
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in the Online Methods. The 50 strains are from diverse years, countries, regions within 

countries, and MGE content. RNA-seq analysis was conducted in triplicate (three biologic 

replicates) at mid-exponential (ME) and early-stationary (ES) growth phases (Online 

Methods, Supplementary Fig. 2b and Supplementary Table 7).

Although the 50 strains differ in genomic backgrounds, the number of strains analyzed, 

coupled with the extremely high correlation coefficients among the transcript levels in the 

triplicate samples (Supplementary Fig. 4), permitted identification of distinct transcriptome 

alterations with respect to the population structure (Fig. 1). We identified two strains that 

unexpectedly had “outlier” transcriptomes (Fig. 2a,b). Manual inspection of the genome 

sequence data for these two outlier strains identified two separate large deletion events in the 

covS global regulatory gene (Fig. 2a,b). Mutations in genes encoding global transcriptional 

regulators such as CovR/CovS, RopB, and Mga can alter substantial proportions (5–25%) of 

the transcriptome43–45.

For the 46 strains with wild-type (WT) alleles in all known major regulatory genes 

(Fig. 2c,d), the greatest number of differentially expressed (DE) genes occurs between 

strains assigned to different subclades (Supplementary Fig. 5). At the mid-exponential 

phase, the greatest number of differentially expressed genes was observed when comparing 

the transcriptomes of SC2A strains to SC1A and SC1B strains (32; 2% and 15; 0.9% 

differentially expressed genes, respectively) (Supplementary Fig. 5a and Supplementary 

Table 8). A similar pattern was evident when the early-stationary transcriptomes of the 

three genetic subclades were compared, but the number of differentially expressed genes 

was considerably greater (5–9 fold) (Supplementary Fig. 5a). SC2A strains had the greatest 

number of differentially expressed genes compared to SC1A and SC1B strains (318; 19.9% 

and 83; 5.2% DE genes, respectively) (Supplementary Fig. 5a and Supplementary Table 8).

A significant proportion of the differentially expressed genes was located in the 28.0-Kb 

region that was horizontally transferred (HGT region) and includes the nga-ifs-slo operon 

(Supplementary Table 8). At mid-exponential phase, 35.7% (SC2A/SC1A comparison, P 
< 0.0001) and 25% (SC2A/SC1B comparison, P < 0.001) of genes within this HGT 

region (28 genes) were differentially expressed (P value assessed by Fisher exact test) and 

21.4% (SC2A/SC1A comparison) and 39.3% (SC2A/SC1B comparison, P < 0.001) were 

differentially expressed at early stationary phase. The three most strongly up-regulated genes 

in SC2A strains compared to SC1A and SC1B strains were nga, ifs, and slo, with ~4-fold 

increase in transcript levels at mid-exponential phase and an ~8-fold increase at the early 

stationary phase (Supplementary Table 8 and Supplementary Fig. 5b).

Infections caused by SC1B strains have increased in recent years in several countries, 

including the US, Finland, Iceland, and Norway, whereas SC1A strains have decreased 

substantially (Supplementary Fig. 3a) raising the possibility that SC1B strains have evolved 

to be more fit than SC1A strains. Therefore, we inspected the genetic differences in 

the core chromosome (Supplementary Table 9) that differentiate all SC1A from SC1B 

strains and found that all SC1B strains have two contiguous nonsynonymous mutations in 

RivR, a negative regulator of grab (protein-G-related α2-macroglobulin-binding)46,47. At 

mid-exponential phase, grab was the only up-regulated gene in SC1B strains compared to 
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SC1A and SC2A strains (Supplementary Table 8 and Supplementary Fig. 5c). Similarly, 

higher grab transcript abundance was observed at early stationary phase in SC1B and 

SC2A strains compared to SC1A (Supplementary Fig. 5c). GRAB is a cell-surface anchored 

protein that binds to α2-macroglobulin, allowing it to retain the proteolytically active form 

of cysteine protease SpeB at the GAS surface, protect GAS from killing by antimicrobial 

peptide LL-3748,49 and contribute to invasive infection in a mouse model50. We cannot rule 

out stochastic processes contributing to subclade displacement.

Validation of singleton (RNAtag-seq) analysis

Transcriptome analysis of bacteria traditionally has been conducted using triplicate biologic 

replicates of strains grown to two distinct growth phases. However, this approach currently 

is not economically feasible for studying many hundreds of strains. Given the improved 

accuracy, sensitivity, and reproducibility of RNA-seq, we hypothesized that large-scale 

transcriptome analysis using singleton strains (i.e., lacking replicates), in concert with 

optimal sequencing depth (5–10 million sequencing reads) for a pathogen with a genome 

size of approximately 2 Mb51, would provide significantly enhanced understanding of 

the transcriptome landscape of a group of relatively closely related strains. To test our 

hypothesis, we used RNAtag-seq52 to increase strain throughput for transcriptome analysis. 

Expression data from strains without (singletons) and with biological replicates were 

found to be highly correlated. (Supplementary Figure 6, Supplementary note). Thus, we 

proceeded with population transcriptome analysis of 442 genetically representative and 

diverse singleton strains (Supplementary Table 10 and Supplementary Fig. 7) chosen by 

k-means clustering statistical strategy (Online Methods).

Population transcriptome analysis of diverse strains

To examine the relationship between the transcriptomes of 442 singleton strains, we first 

used principal component analysis (PCA) on the normalized expression data and identified 

two major clusters, referred to as Cluster A (n = 339) and B (n = 83) (Fig. 3a). DBSCAN 

clustering validated the existence of these two clusters (Supplementary Fig. 8a). WT-like 

strains (strains bioinformatically assessed to have WT alleles for all major regulatory 

genes) were predominantly associated with Cluster A except for 10 outlier strains (Fig. 3a). 

Reexamination of the genome data for these outlier strains using Pilon (Online Methods) 

identified undetected indels in the covS global transcriptional regulatory gene in eight of 

these 10 strains. Hence, transcriptome-guided polymorphism discovery identified genetic 

causes underlying these aberrant transcriptomes.

Inasmuch as the transcriptomes of the eight covS mutant strains differed markedly from 

the WT strains and consistent with previous results53–58 we hypothesized that strains with 

mutations in specific major global regulators have distinct underlying patterns of gene 

expression that could be exploited to distinguish specific classes of regulator gene mutants. 

To test this hypothesis, we used Random Forest (RF) machine learning59 to determine if 

one of the four class labels (i.e. WT, covR-, covS- or ropB-mutant) could be assigned to the 

outlier strains with high probability. Briefly, based on analysis of the transcriptome profile 

of 283 singleton strains (see Online Methods), Random Forest classification was used to 

predict class labels for the eight outlier strains. Transcriptome-based classification correctly 
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identified all eight organisms as covS mutant strains (Supplementary Table 11). Among the 

81 covRS and 21 ropB strains, 85.2 and 61.9% of the strains, respectively, were accurately 

classified (Supplementary Table 11). covRS strains misclassified as WT phenotypically 

(transcript profile) resemble WT strains, grouping with Cluster A strains (Fig. 3c). Thus, 

machine learning classification of the transcript profiles accurately predicted the genotype 

(regulatory gene mutation status) and predicted the transcript phenotype (mutant-like or 

WT-like) of strains with mutations in a major regulator gene.

Regulatory gene mutations and transcriptome changes

Re-assignment of the outlier strains as covS mutants resulted in Cluster A having both 

WT-like and mutant strains whereas Cluster B was composed exclusively of mutant strains 

(Fig. 3b). Inspection of transcriptomic and genomic data for Clusters A and B produced 

five findings. First, all Cluster B strains have mutations in covS or covR, and second, the 

majority of strains with either covS (68.5%) or covR (37.5%) mutations are assigned to 

Cluster B (Fig. 3c). Third, the great majority of strains assigned to Cluster A were WT-like 

or had mutations in major regulatory genes other than covRS (see below). Fourth, Cluster 

B strains had a significantly increased number of differentially expressed genes compared 

to Cluster A strains (Fig. 4). Fifth, no simple genomic subclade-specific association was 

evident with respect to the two major transcriptome clusters (Supplementary Fig. 8b).

The CovRS two-component system negatively regulates expression of 15% of the 

transcriptome, including key virulence factors44. Consistent with this, inactivation of CovRS 

enhances virulence53,56. We compared the transcriptomes of 442 strains composed of 188 

predicted WT strains, 132 strains with diverse types of mutations in covRS, and 122 

strains with varied mutations in other major regulator genes. Although Cluster B contained 

only covRS mutant strains (Fig. 3c), a sizeable proportion of covS (20.4%) and covR 
(45.8%) mutant strains grouped with nearly all WT-like strains in Cluster A (Fig. 3c). The 

finding that covRS mutant strains are predominantly of two distinct transcriptome clusters 

suggests that polymorphisms in covRS are not equivalent, as reported previously57,58, and 

the grouping of Cluster A covRS mutants with WT strains suggest some polymorphisms 

may have fewer functional consequences than others. PCA of only covRS mutant strains 

in Cluster A (n = 33) and B (n = 83) recapitulated the grouping into two distinct clusters 

(Fig. 5a). We next used distance-based clustering to test the hypothesis that additional 

substructure not evident by PCA (Fig. 5a) was present in the transcriptome data (Fig. 5b) 

and the findings are reported in the Supplementary note.

To test the hypothesis that Cluster B covRS strains have distinctive transcriptomes compared 

to Cluster A covRS strains, we examined transcription of genes in both groups and 

found 142 differentially expressed genes (Supplementary Table 12). The two clusters 

differed in the complement of differentially expressed genes and also in magnitude of 

the altered transcript changes (up or down) of the differentially expressed genes. Many 

(32%) differentially expressed genes had 5-fold or greater altered transcript levels, including 

critical CovRS-regulated genes encoding virulence factors such as SPN and SLO, the Mga­

regulon, HasABC and SpeB (Supplementary Table 12). Moreover, compared to Cluster A 

covRS strains, Cluster B covRS strains have a significantly increased frequency of frame­
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shift inducing indels and nonsense mutations (Fisher exact test, two tailed P < 0.0001), 

likely to inactivate this regulatory system (loss-of-function mutations).

Based on the increase in transcripts of genes encoding multiple key virulence factors in 

Cluster B strains we hypothesized that Cluster B strains would be more virulent than Cluster 

A covRS mutant strains. Consistent with this hypothesis, analysis of virulence of four strains 

from each cluster using a mouse infection model showed that cluster B strains caused 

significantly higher mortality (Fig. 5c) and larger lesions with more tissue destruction (Fig. 

5d). An analogous study comparing mutations in ropB variably affecting the expression and 

activity of the SpeB cysteine protease virulence factor is presented in the Supplementary 

note, Supplementary Fig. 8d-h, and Supplementary Tables 13-14.

A single nucleotide indel significantly alters virulence

The secreted R28 protein is a GAS virulence factor that has been studied as a potential 

vaccine candidate60,61. This protein is encoded by the Spy1336/R28 gene located on an 

ICE-like element annotated as the region of difference 2 (RD2)62,63 (Fig. 6a). This 37.4 

Kb segment of DNA is >99% identical to a region present in the chromosome of group 

B streptococci63. In our transcriptome study of the initial 50 strains, we observed that 

approximately one-third of the strains expressed low levels of Spy1336/R28 transcript, 

whereas two-thirds of the strains expressed high levels of Spy1336/R28 transcript. The 

adjacent gene (Spy1337) had the same pattern of expression (Fig. 6b). There was no 

correlation between Spy1336/R28 and Spy1337 transcript level and genetic structure, 

geographic location, year of isolation or MGE-50 genotype. This perplexing finding 

prompted us to conduct a genome-wide association study (GWAS) analysis using SEER64,65 

on de novo assemblies of all 442 strains for which we had associated transcriptome data. 

Based on the transcript levels of the Spy1336/R28 and Spy1337 genes, we examined if the 

strains with low or high-transcript phenotype were significantly associated with any genetic 

event (e.g., SNP, indel, recombination). For both phenotypes (high and low transcript levels), 

100% of the significant k-mers mapped to the intergenic region between Spy1336/R28 

and Spy1337 (Supplementary Fig. 10a), and this led to identification of a variant in a 

poly(T) homopolymeric tract located in the intergenic region between the Spy1336/R28 and 

Spy1337 genes (Fig. 6c). Significant k-mers positively associated with the high-transcript 

phenotype had 10T residues and negatively associated with high-transcript phenotype had 

9T residues in this tract. The association of the 10T variant with increased level of transcript 

of Spy1336/R28 and Spy1337 also was identified by an expression quantitative trait loci 

(eQTL) analysis66,67 of the 50- and 442-strain data sets (Supplementary Fig. 10b).

Compared to a parental strain (9T residues), an isogenic mutant strain (10T residues) had 

significantly increased transcript levels of Spy1336/R28 and Spy1337 (Fig. 6d), caused 

significantly larger gross and microscopic lesions, and more near-mortality, assessed in a 

mouse necrotizing myositis infection model (Fig. 6e,f), was significantly more resistant 

to killing by human polymorphonuclear leukocytes ex vivo (P < 0.05, Fig. 6g), and 

produced more secreted and cell-associated Spy1336/R28 protein (Fig. 6h). Altered levels 

of Spy1336/R28 and Spy1337 caused by variation in the number of T residues in this 

homopolymeric nucleotide tract was further confirmed by RNA-seq analysis of the isogenic 
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strains grown to mid-exponential or early stationary phase (Supplementary Table 15). Thus, 

insertion or deletion of a single T residue in this homopolymeric tract significantly alters the 

transcript levels of Spy1336/R28 and Spy1337, the transcriptome, and strain virulence.

SC2A subclade strains are more virulent in mice

The whole genome sequence and transcriptome data showed considerable differences among 

the emm28 strains, and these genomic and transcriptomic changes may cause significant 

variation in virulence. To test this hypothesis, the virulence of 50 emm28 strains (the same 

phylogenetically diverse strain set used in the initial transcriptome studies described above; 

Supplementary Table 7) relative to SC1A reference strain MGAS28426 was assessed in 

a mouse model of necrotizing myositis16,39,68. Virtually all of these strains (96%) were 

wild-type for all known major regulatory genes. As a population, the virulence of SC1A and 

SC1B strains did not differ significantly from one another (Fig. 7a,b). In striking contrast, 

SC2A strains were significantly more virulent than SC1A and SC1B strains (Fig. 7a,b). 

We hypothesized that the increased virulence of SC2A strains is due, at least in part, to 

significantly increased expression of the nga-ifs-slo genes, resulting in increased production 

of secreted NAD+-glycohydrolase and SLO toxins by SC2A organisms, as shown for other 

GAS serotypes1,6,15,16. Consistent with this hypothesis, SC2A strains had significantly 

higher nga transcript levels and NAD+-glycohydrolase activity compared to either SC1A or 

SC1B strains (Fig. 7c). The same was observed for ifs (P < 0.001, Mann-Whitney test) and 

slo (P < 0.001, Mann-Whitney test), two other genes in this operon.

To unambiguously demonstrate that the significantly increased virulence of SC2A strains 

compared to SC1A stains is due, in part, to greater nga-ifs-slo promoter activity, we 

replaced the nga promoter of SC2A reference strain MGAS27961 with the SC1A nga 
promoter. The isogenic mutant strain with the SC1A promoter produced significantly less 

NAD+-glycohydrolase activity in vitro (Fig. 7d) and caused significantly less mortality and 

tissue destruction in a mouse necrotizing myositis infection model (Fig. 7e,f).

DISCUSSION

We used GAS as a model pathogen to investigate the complex interplay between population 

genomics, transcriptomics, and virulence in emm28 S. pyogenes strains. We discovered 

there was no simple correlation between the magnitude of transcriptome changes (number 

of differentially expressed genes) and the overall genome-to-genome genetic distance 

(Supplementary Fig. 9 and Supplementary note). In the aggregate, our analysis shows that 

a holistic approach involving multiple types of high-dimensional data applied to population­

based strain samples can reveal new understanding of pathogen-host interactions not readily 

discovered by less integrative and comprehensive approaches. By exploiting transcriptome 

signature analysis, we found that ~ 5% of strains had mutations in global regulators missed 

by commonly employed bioinformatics methods. This finding serves as a cautionary note for 

studies investigating genome-transcriptome relationships.

We exploited the population-based multidimensional genome and transcriptome datasets, 

and statistical methods including GWAS and eQTL to identify the molecular event 

responsible for altering the transcript level of Spy1336/R28, a gene encoding the R28 
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protein virulence factor and vaccine candidate60,63,69. This adds to an emerging theme in 

bacteria that seemingly modest changes in intergenic regions can alter gene expression and 

be adaptive15,70–74. Several possibilities exist for how the increased transcript levels of 

Spy1336/R28 and Spy1337 enhance virulence. One possibility is that the altered-virulence 

phenotype is solely or predominantly caused by increased production of Spy1336/R28, a 

known virulence factor60,75. It is not yet known precisely how this protein contributes to 

virulence, although it has been reported to promote adhesion to human epithelial cells60,76. 

A second possibility is that the Spy1337 regulatory protein directly or indirectly alters 

transcription of itself and other genes that may influence virulence. To test this hypothesis, 

we conducted RNAseq analysis of the isogenic strains containing either 9Ts or 10Ts and 

found that at mid-exponential phase, only two genes (Spy1336/R28 and Spy1337) were 

significantly upregulated whereas at early stationary phase, Spy1336/R28 and Spy1337 

and 33 other genes were upregulated, and 165 were downregulated (Supplementary Table 

15). The three-gene fruRBA operon (Spy0641, Spy0642, and Spy0643 encoding proteins 

involved in fructose utilization) was highly upregulated in the 10T isogenic mutant strain 

compared to the 9T parental organism. Inactivation of the fruR or fruB gene significantly 

decreases survival of the mutant strains in human whole blood or in the presence of 

polymorphonuclear leukocytes77. Consistent with this finding, the 10T isogenic mutant 

strain was significantly more virulent in a mouse model of necrotizing myositis (Fig. 6e,f), 

had significantly enhanced resistance to killing by human polymorphonuclear neutrophils 

(PMNs, Fig. 6g), and produced more secreted and cell-associated Spy1336/R28 protein (Fig. 

6h); see model (Fig. 6i).

The simplest hypothesis to explain how insertion or deletion of one T residue in this 

intergenic region alters the transcript levels of Spy1336/R28 and Spy1337 is that the 

transcriptional regulator encoded by Spy1337 binds directly to this intergenic region 

and increases transcription of both genes simultaneously. Under this hypothesis, the 

homopolymeric nucleotide tract might either (i) be part of, or constitute the entire Spy1337 

consensus binding site, or (ii) be located in a spacer region flanked by two consensus 

binding sites. In the first case above a homopolymeric tract with 10Ts (compared to 9Ts) 

would constitute a better consensus binding site, whereas in the second case above the 

presence of 10Ts in the spacer region (compared to 9Ts) would place flanking putative 

consensus binding sites in a more favorable spatial orientation in the DNA helix for binding 

of the Spy1337 transcriptional regulator (Fig. 6c). Additional studies are underway to 

resolve this matter.

Machine learning and eQTL analysis were used in novel ways in this study. Our 

transcriptome dataset facilitated use of machine learning to analyze and correctly classify 

regulator mutant strains that were misidentified based on analysis of genome sequence 

data alone. Until recently the majority of studies on pathogenic microbes using machine 

learning had used DNA sequence-based data, commonly focused on predicting resistance to 

antimicrobial agents4,78–83. eQTL analysis has been used with expression data in humans 

and other eukaryotic organisms84–90; this study applies eQTL analysis to a bacterial dataset, 

made possible by the generated extensive transcriptome data. We discovered that an indel 

in an intergenic region was significantly associated with altered expression of five genes; 

two in cis (Spy1336/R28, Spy1337) and three in trans (Spy1338, Spy1339, Spy1340), 
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using transcript data from 50 strains in mid-exponential phase. Similarly, cis (Spy1336/R28, 

Spy1337) and trans-associations with 47 additional genes (FDR < 0.0005), were found 

using transcript data from 442 strains in early stationary phase (Supplementary Fig. 10b, 

Supplementary Table 16). Importantly, 60% of the 49 genes identified by eQTL analysis 

were also differentially expressed by RNA-seq analysis of the isogenic (10T) mutant and 

(9T) parental strains.

The transcriptome data also permitted us to conclude that although HGT events can and 

do alter the transcriptome, the vast majority of transcriptome changes are caused by SNPs 

(missense or nonsense mutations) and short indels that affect major regulatory genes such as 

covR/covS, ropB, and mga and result in truncation of the cognate encoded protein53–55,57. 

The findings are consistent with the observation that these regulatory genes are among the 

genes with the highest densities of polymorphisms in population genomic analyses of GAS 

strains6,91,92.

For unknown reasons, emm28 GAS strains are overrepresented among cases of puerperal 

sepsis (childbed fever), female genital tract infections, and neonatal infections17,31–34. 

Although our study was not designed to address the very complicated relationships between 

bacterial population structure and detailed clinical phenotype of the infecting strains, 

one observation warrants comment. Reasonably detailed infection-type information was 

available for the 951 isolates from patients in the U.S. We found that compared to non-SC2A 

strains from the U.S., a significantly higher proportion of SC2A strains from the U.S. 

was associated with puerperal sepsis, neonatal infections and female genital tract infections 

(χ2 (1) = 5.854, P = 0.015; Supplementary Table 1). In this regard, we note that as a 

group, SC2A strains were also significantly more virulent in the mouse necrotizing myositis 

experiments (Fig. 7a, b).

In summary, our study serves as an exemplar for how multidimensional datasets generated 

from population-based samples can be effectively integrated to yield new knowledge about 

microbial genetics and pathogen-host interactions. Integration of the three different types of 

data resulted in a more enhanced understanding of the molecular genetics of a pathogen than 

study of any one or two of the three types of data. The strategy is generally applicable to any 

microbe, pathogenic or otherwise, and may lead to new therapeutics.

ONLINE METHODS

Whole genome sequencing and polymorphism analysis.

Strain growth, isolation of chromosomal DNA, generation of paired-end libraries, and 

multiplexed sequencing using an Illumina NextSeq 550 instrument (San Diego, CA) were 

performed as described previously 93–95. The pipeline used for bacterial genome analysis 

is shown in Supplementary Fig. 2a. The trimmed sequence reads were corrected using 

Musket96, and mapped to the genome of reference serotype M28 strain MGAS6180 

(GenBank accession number CP000056)97 using SMALT (see URLs). Single nucleotide 

URLs
FaBox, http://users-birc.au.dk/biopv/php/fabox/;
SMALT, www.sanger.ac.uk/resources/software/smalt/;
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polymorphisms (SNPs) and insertions and deletions (indels) were identified using FreeBayes 

(see URLs) as described93, and Pilon98, which was used to detect indels. SNPfx.pl (a 

PERL script developed in-house, see URLs) was used to determine the nature of the SNPs 

(coding/noncoding, synonymous/nonsynonymous, etc). Alternatively, and in conjunction 

with, the SPAdes algorithm was used for de novo genome assembly99. SRST2 was used to 

identify genes, alleles, and multi-locus sequence types (MLSTs)100. The algorithm Gubbins 

was used to detect horizontal gene transfer events101. hierBAPS 102 (hierarchical Bayesian 

Analysis of Population Structure, see URLs) was used to determine population structure and 

SplitsTree was used to estimate phylogenetic trees and networks103. hierBAPS was run with 

five replicates of the estimation algorithm using prior upper bound values for the number of 

clusters ranging between 50–200, each run converging to the same posterior mode estimate 

of the population structure.

Long-read sequencing of 24 strains (Supplementary Table 19) was performed using an 

Oxford Nanopore MinION instrument with R9.5 flowcells and the Rapid Barcoding Kit 

(SQK-RBK004). These strains were selected from the 50 strains for which RNAseq 

expression analysis was done in triplicate to be numerically representative of the major 

genetic clades, encompass a diversity of prophage and ICE content (MGE genotypes), 

and include strains that differ in the R28 promoter region T nucleotide homopolymeric 

tract. Hybrid assemblies of the nanopore long reads and Illumina short read data were 

performed with Unicycler104, as described previously105. Quality metrics for read quality 

filtering and trimming were done with Trimmomatic, read error correction with Musket, 

de novo assemblies with SPAdes/Unicycler, MLST and emm determination with SRST2, 

read mapping with SMALT, and polymorphism discovery with FreeBayes, are listed in 

Supplementary Table 20.

Phylogeny among the strains was inferred by Neighbor-Joining based on concatenated 

sequential core chromosomal SNPs, and clades of related strains were defined by Bayesian 

analysis based on entire core genome sequences using hierBAPS. The reference strain for 

transcriptome analysis was selected using k-means (see below and in the Supplementary 

note).

Strain selection for transcriptome analysis.

To choose a subset of isolates from the sequenced population of 2,101 emm28 strains that 

would approximately span as much genetic variation as possible for a given size of the 

subset, we used a projection-based approach, similar to the population structure correction 

used in the bacterial GWAS method SEER106. First, a single-nucleotide polymorphism 

(SNP)-based pairwise distance matrix was calculated separately for all emm28 isolates 

belonging to a given lineage (SC1A, SC1B, SC2A, SC2B) using core SNPs. We excluded 

FreeBayes, www.github.com/ekg/Freebayes/;
SNPfx.pl, https://github.com/codinghedgehog/SNPfx/;
hierBAPS, http://www.helsinki.fi/bsg/software/BAPS/;
Illumina bcl2fastq, https://support.illumina.com/downloads/bcl2fastq-conversion-software-v2–20.html;
FASTQC, http://www.bioinformatics.babraham.ac.uk/projects/fastqc;
FASTX-toolkit, http://hannonlab.cshl.edu/fastx_toolkit/;
(NCBI) Sequence Read Archive, http://www.ncbi.nlm.nih.gov/sra;
fsm-lite, https://github.com/nvalimak/fsm-lite.
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MGEs and potential regions of recombination identified by Gubbins101. Subsequently we 

sampled isolates proportionately to the fraction of the total population size represented by 

each lineage. The distance matrix for each lineage was then used to project all lineage 

isolates into a three-dimensional Euclidean space with multidimensional scaling (MDS), 

as in SEER106. For the given total size k of the subset to be chosen from a lineage, the 

k-means algorithm with 200 random restarts107 was used to identify an optimal set of k 
centroids to span the variation present in the 3-dimensional MDS projection of the genetic 

variation present within the lineage. The isolate with the minimum Euclidean distance to 

each centroid was chosen to determine the final subset of k representative isolates.

RNA-seq library preparation and sequencing.

a) 50 emm28 strains grown in triplicate and harvested at two time points.—
50 strains representative of the four major genetic subclades (Fig. 1a,b; Supplementary Table 

7) were assayed in triplicate at mid-exponential and early-stationary phases of growth. RNA 

was extracted with the RNeasy kit (Qiagen) following the manufacturer’s instructions. rRNA 

was depleted using the Ribo-Zero rRNA removal kit for Gram-positive bacteria (Illumina), 

as described previously93,108. The quality of the total RNA and rRNA-depleted RNA was 

evaluated with RNA Nano, and Pico chips, respectively (Agilent Technologies), and an 

Agilent 2100 Bioanalyzer. The cDNA libraries were prepared with indexed reverse primers 

from the ScriptSeq Index PCR primers kit (Illumina), and purified with AMPureXP beads 

(Beckman Coulter). The quality of the cDNA libraries was evaluated with High-Sensitivity 

DNA chips (Agilent Technologies). For each sample, the cDNA library concentration was 

measured fluorometrically with Qubit™ dsDNA HS assay kits (Invitrogen). The cDNA 

libraries were diluted, pooled, and sequenced with an Illumina NextSeq instrument. This 

same protocol was used for the comparative RNA-seq analysis of the 9T and 10T isogenic 

strains (Supplementary Table 15).

b) 461 emm28 strains grown as singleton cultures and harvested at one time 
point.—Transcriptome analysis of the 461 singletons (Supplementary Table 1, 10) was 

performed by RNAtag-seq as described109, with the modifications described herein. Total 

RNA isolated from each strain was quantified fluorometrically using the Qubit RNA BR 

assay kit (Life Technologies). 400 ng from each sample were fragmented for 3 min at 

94°C in a volume of 16 μl in 1X FastAP buffer, dephosphorylated using FastAP alkaline 

phosphatase (ThermoFisher Scientific) for 12 min at 37°C in a final volume of 20 μl, 

and phosphorylated at the 5’-end using T4 polynucleotide kinase (T4 PNK) (New England 

Biolabs), for 30 min at 37°C in a final volume of 82 μl. Fragmented, dephosphorylated total 

RNA was purified using 2X volume (164 μl) of Agencourt RNAClean XP paramagnetic 

beads, according to the manufacturer’s instructions, in 1.5-ml Eppendorf tubes and 

Dynamag-2 magnets (Invitrogen). The final elution volume was 12 μl. Pooling of the total 

RNAs during the RNAtag-seq procedure was enabled via ligation of barcodes such that all 

RNA fragments from the same strain were distinctly labeled with an individual barcode. 

We used 16 uniquely barcoded oligoribonucleotides described in an earlier study109 and 

shown in Supplementary Table 17. For each strain 5 μl of fragmented, phosphorylated total 

RNAs were ligated to 1 μl of the respective oligoribonucleotide at 5 μM final concentration 

using T4 RNA Ligase 1 (ssRNA ligase) (New England Biolabs) in a volume of 20.1 μl. The 
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reaction was carried out at 22°C for 90 min. After the ligation the volume of each sample 

was increased to 80 μl by adding 59.9 μl RLT buffer (RNeasy mini kit, Qiagen), and mixed 

with a 1:1 mixture containing 80 μl of RNA binding buffer (RNA Clean & concentrator-5, 

Zymo Research), and 80 μl 100% ethanol in 1.5 ml Eppendorf tubes. Thus, six pools 

containing 8 samples each were made for each set of 48 samples by successively passing 

the total RNAs corresponding to the 8 strains constituting one particular pool sequentially 

through one Zymo column, and concentrating them together, as shown in Supplementary 

Fig. 7a. The final eluted volume per pool was 32 μl.

The quality of the total RNA pools was evaluated with RNA Pico chips (Agilent 

Technologies). We made 57 pools containing total RNA from 8 strains each, and 1 additional 

pool with total RNA from 5 strains, for a total of 461 strains. The Ribo-Zero rRNA 

removal kit (Gram-Positive Bacteria) was used to eliminate unwanted rRNAs from the 

pools. The quality of the ribodepleted RNA was analyzed using RNA Pico chips (Agilent 

Technologies). First strand cDNA synthesis was performed as described previously109. For 

each pool 12 μl of ribodepleted RNAs were mixed with 2 μl of AR2 oligonucleotide, 

which is complementary to a region present in all 16 barcoded oligoribonucleotides used in 

this study (Supplementary Table 17), denatured for 2 min at 70°C, and first-strand cDNA 

synthesis was performed using AffinityScript reverse transcriptase (Agilent) in a volume of 

20 μl, at 55°C for 55 min. RNA was subsequently degraded in 0.09 N NaOH at 70°C for 

12 min, and neutralized with acetic acid at a final concentration of 76.9 mM, in a final 

volume of 26 μl. After addition of 14 μl of water, single-stranded cDNAs (sscDNAs) were 

purified using 2.5X volume (100 μl) of Agencourt RNAClean XP paramagnetic beads, and 

the sscDNAs along with the beads were resuspended in 5 μl of water. While in the beads, 

the sscDNAs were mixed with 2 μl of 3Tr3 adapter109, and ligated, using T4 RNA Ligase 

1 in a volume of 20 μl. The reactions were incubated overnight at 22°C, followed by two 

consecutive cleanup reactions using 2.5X volume of Agencourt RNAClean XP beads, and 

eluted with 25 μl of water.

Library amplifications were performed with the universal primer univP5109 and 1 of 4 

distinct P7 barcode adapters (Supplementary Table 17). Namely, sscDNA pools were 

organized in sets of 4, and individually amplified in a final volume of 50 μl, after a PCR 

enrichment test to determine the correct amplification conditions, followed by two cleanup 

steps using Agencourt RNAClean XP beads, and elution in 20 μl of low TE (10 mM Tris, 

0.1 mM EDTA). For each sample, the cDNA library average size was determined using 

High-Sensitivity DNA chips (Agilent Technologies), and the cDNA library concentration 

was measured fluorometrically with Qubit™ dsDNA HS assay kits (Invitrogen).

Samples were pooled one additional time at this point in the protocol. The cDNA libraries 

corresponding to 4 pools, each corresponding to 8 strains, were mixed together at equimolar 

amounts. This process was repeated 14 additional times, and thus we ended up with 15 

superpools, amounting to 58 pools, and representing 461 strains (Supplementary Fig. 7a). 

The libraries corresponding to each superpool were individually spiked with a 10% PhiX 

library to improve cluster diversity and sequenced with an Illumina NextSeq instrument.
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Analysis of RNA-seq data

The bioinformatics pipeline used to process RNA-seq data is presented in Supplementary 

Fig. 2b.

a) Analysis of 50 emm28 strains grown in triplicate and harvested at two 
time points.—For each sequencing run, Illumina bcl2fastq software (see URLs) was 

used to convert Illumina generated BCL base call files to FASTQ files. Read quality of 

sequencing data was evaluated using FASTQC software (see URLs). Adapter contamination 

and read quality filtering was performed using Trimmomatic110. Reads were mapped to 

the genome of reference strain MGAS6180 using EDGE-pro111 and the reads mapping to 

rRNA and tRNA genes were excluded from subsequent analyses. Additionally, genes with 

low expression were excluded from downstream analysis based on the strategy described in 

the Supplementary note. Differential expression analysis was performed using DESeq2112. 

This same pipeline was used for the comparative RNA-seq analysis of the isogenic strains 

containing either 9T or 10T in the homopolymeric tract between Spy1336 and Spy1337.

b) Analysis of 442 emm28 singleton strains at one time point.—Demultiplexing 

of reads from superpools into separate pools was performed with bcl2fastq. Read quality 

assessment and read quality trimming were done with FASTQC and Trimmomatic, 

respectively. Reads from each pool were demultiplexed into separate fastq files 

corresponding to individual samples based on the inline barcodes using FASTX-toolkit 

(see URLs). Median reads per pool was 92.6 million (Supplementary Fig. 7b) and median 

number of reads per sample per pool ranged between 8 to 24 million (Supplementary 

Fig. 7c). Exclusion of low-expression genes is described in the Supplementary note. No 

significant batch effects were found to be associated with the expression data. As estimated 

using the R package variancePartition113, the percentage of variance explained by batch 

effects was found to be <2%.

Differential expression analysis of the final set of 442 singleton strains was performed using 

NOISeq-sim implemented in the NOISeq package114. Differentially expressed genes were 

identified in each of the 441 strains compared to the reference strain MGAS28737, selected 

as described in the Supplementary note. DESeq2112 was used for differential expression 

analysis for instances where two-group comparisons were being made, where each group 

comprised of more than one strain.

Machine learning using random forest analysis.

The random forest analysis was done with MATLAB using the function TreeBagger 

(MATLAB R2016b - Statistics and Machine Learning Toolbox, The Mathworks, Natick, 

MA, USA). The aim was to train a Random Forest115 for classification of outlier strains into 

four categories: covR, covS, ropB and WT based on the transcriptome profile of the strains. 

Random forest was trained with transcriptome data generated for strains with mutations in 

only a single major global regulatory gene (covR, covS or ropB) and strains known to be 

WT-for all known major regulatory genes (n = 283). Hence, the training data consisted of 

283 strains, for which the transcriptome profiles over the 1,614 genes and the class labels 

were known. The test data consisted of 8 outlier strains, for which the transcriptome profiles 
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over the 1,614 genes were known but the class labels were unknown. Prior to learning 

the final model, the following feature-selection procedure was applied. An initial random 

forest (1,000 trees) over all genes was built and the predictive importance of the genes was 

estimated using the built-in measure for feature importance. This was repeated ten times 

and the final feature importance values were taken as the average from the individual runs. 

Starting with the most important feature, we successively included more features according 

to the given order of importance. For each subset of features, we performed a two-fold 

cross-validation, for which a random forest (100 trees) was built using two-thirds of the 

training data and evaluated on one-third of the training data. The out-of-sample performance 

of the sub-models was measured by the average out-of-sample classification accuracy over 

100 cross-validation iterations. The increase in classification accuracy quickly plateaued as 

more features were added and, based on this, the 10 most informative genes were selected 

for the final model. The final model was used to predict the class probabilities of the 

8-outlier strains (Supplementary Table 11).

Genome-wide association analysis.

Genome-wide association analysis (GWAS) using SEER106 was performed with the de novo 
assemblies of 442 strains for which we also had RNA-seq data. GWAS was used to identify 

genetic variant(s) significantly associated with a binary phenotypic grouping (high transcript 

expression = 1 or low transcript expression = 0), defined based on transcript levels of the 

Spy1336/R28 gene. Plotting of the normalized transcript level (counts) of the Spy1336/R28 

gene for the 442 strains, resulted in two visually very distinct groups - low (1/3rd strains) 

and high (2/3rd strains) expressers, analogous to our observations for the 50 strains (Fig. 

6b). We identified the threshold and found strains with less than 261.5 normalized counts 

were considered low-expressers (coded as 0) and strains with equal to or greater than 261.5 

counts were considered high expressers (coded as 1). The binary phenotype file and de novo 
assembled fasta files were supplied to SEER and the k-mers were counted from assembled 

reads using fsm-lite (see URLs). To account for the population structure, the distance matrix 

computed by Mash116 was used. Running SEER yielded 17 and 13 significant k-mers 

(adjusted Pvalue < 10−8) that were positively or negatively associated with high or low 

transcript expression, respectively.

eQTL analysis.

Expression quantitative trait loci (eQTL) analysis was performed using the R package 

Matrix eQTL117. For eQTL analysis, population structure was accounted for in the model by 

using the top ten principal components as covariates. Associations were considered in cis if 

the polymorphism was within 1 Kb of the gene under consideration.

Virulence studies of 50 naturally occurring and isogenic serotype M28 GAS mutant strains 
using a mouse model of necrotizing myositis.

Mouse necrotizing myositis studies with serotype M28 GAS strains were performed as 

described previously118,119. The 50 naturally occurring strains used in the initial RNA­

seq experiment, including virulence reference strain MGAS28426, were used. Strain 

MGAS28426 was used as the virulence reference strain because it is genomically 

representative of SC1A strains and was used as a wild-type reference for the secreted 
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NAD+-glycohydrolase assays. Frozen stocks of each strain were prepared and quantified by 

counting colony forming units (CFUs) recovered from thawed cultures after serial dilutions 

were made. Immunocompetent 4-week old female outbred CD1 mice (Envigo Laboratories) 

were randomly assigned to strain treatment groups and inoculated in the right lower hind 

limb with 5 X 108 CFUs of each bacterial strain (n = 20 mice/strain; 1,000 mice total). 

This dose was selected based on two pilot experiments that showed the virulence reference 

strain MGAS28426 caused approximately 50% near-mortality at an inoculation dose of 5 X 

108 CFUs. This strategy facilitated identification of comparator strains with significantly 

increased or decreased virulence. The mouse sample size was selected using a power 

calculation with the following variables: α = 0.05, power (1-ß) = 0.8, difference in survival 

rates between groups = 0.4, and ratio of group size = 1.

For the CovRS mutant strain comparison, four cluster A strains and four cluster B strains (n 
= 45 mice per strain) were used at a dose of 5 X 108 CFU. For the parental wildtype (27961) 

and isogenic promoter mutant (27961-SC1A-nga-promoter) comparison (n = 40 mice per 

strain), 5 X 108 CFU were used. For the RopB mutant strain comparison, three Group I and 

four Group II strains (n = 40 mice per strain) were used at a dose of 1 X 109 CFU. For the 

9T and the 10T isogenic strains, 27961–9T and 27961–10T, and the control strain 28085–

10T (n = 20 mice per strain) were used at a dose of 5 X 108 CFU. Representative gross 

and microscopic images of limbs taken from mice assigned to histopathology analysis were 

obtained. Oligonucleotides used to create the isogenic mutants are shown in Supplementary 

Table 18 (see the Supplementary note).

All animal studies were performed in accordance with a protocol (AUP-0615–0041) 

reviewed and approved by the Institutional Care and Use Committee, The Methodist 

Hospital Research Institute, Houston, TX. Mice were monitored at least once daily, and 

near-mortality was determined with internationally recognized criteria guidelines provided 

by the National Research Council (US) Committee for the Update of the Guide for the Care 

and Use of Laboratory Animals 2011, and the Guide for the Care and Use of Laboratory 

Animals, 8th ed. National Academies Press, Washington, DC. Survival data were expressed 

as Kaplan-Meier curves, and statistically significant differences were determined with the 

log-rank test (Prism6, GraphPad Software).

Statistical analysis.

Unless otherwise stated, error bars represent SD, and P values were calculated using Fisher 

exact, Mann-Whitney, or log-rank tests. False discovery rate (FDR) was used as reported 

by the MatrixEQTL package. Bayesian clustering was used to define clades and subclades 

in the emm28 population. k-means and distance-based clustering were used to identify 

centroids in a two-dimensional space clustering of strains generated by principal component 

analysis (PCA) and find additional substructure in clusters, respectively. The random 

forest analysis was done with MATLAB using the function TreeBagger. The R package 

variancePartition was used to confirm the absence of significant batch effects. R-squared 

(R2) statistics was used to investigate if a correlation existed between genetic distance and 

extent of transcriptome remodeling. A one-tailed test of proportions was used establish that 

Group II RopB strains contained a significant proportion of mutations affecting functional 
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domains. The Pearson correlation coefficient (r) was used to compare RNA-seq data from 

strains analyzed in triplicate to RNAtag-seq data collected from strains grown as singletons.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Population genetic structure for 2,095 S. pyogenes emm28 invasive infection isolates.
(a) Genetic relationships inferred without correction for horizontal gene transfer (HGT) and 

recombination events. Four genetic subclades (SC1A, SC1B, SC1C, and SC2A) inferred 

by BAPS are shown. (b) Genetic relationships inferred with correction for HGT and 

recombination events using Gubbins. hierBAPS was used to infer genetic subclades (SC1A, 

SC1B, SC2A, and SC2B) within the population after exclusion of recombination events. 

Post exclusion of HGT and recombination events, SC1C strains (n = 11; panel a), a distinct 

genetic lineage of emm28 strains, were inferred as SC2B strains by hierBAPS. (c) Mobile 

genetic element genotypes (MGE-50) were defined based on the presence/absence of alleles 
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for 50 MGE-encoded site-specific integrase (n = 31) and secreted virulence factor (n = 

19) genes detected using SRST2 as described in the Supplementary note, and presented in 

Supplementary Tables 1, 3-6. Illustrated are the 20 most abundant MGE-50 genotypes, each 

present in 10 or more strains and cumulatively accounting for 90% of the total strain sample. 

Trees in panels a and b are shown at the same scale. Strains are colored by clades and 

mobile genetic element genotype (MGE-50) as indicated in the panel insets. NJ, Neighbor 

Joining.
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Figure 2. Transcriptome analysis of 50 strains with three biological replicates at two time points.
Principal component analysis of transcriptome data for 50 strains at mid-exponential (a) 

and early-stationary (b) phases of growth. Highlighted within ovals are two strains with 

deletion frameshift mutations in covS that group distinctly away from the other 48 strains at 

both mid-exponential and early-stationary phase (a & b). Based on the global transcriptome 

profile of WT-like strains, SC2A isolates clustered together compared to SC1A or SC1B 

strains (c & d). Red, SC1A; blue, SC1B; and yellow, SC2A.
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Figure 3. 442 singleton strains partition into two major transcriptome clusters based on their 
genome-wide expression profiles.
(a) Figure depicts three-dimensional PCA plots displaying variation in the transcriptome 

data along the top three principal components (PCs). The greatest variance in transcriptome 

data along PC1 (38%) separates strains into two major clusters, arbitrarily designated 

Cluster A and B. Wild-type (WT)-like strains are predominantly associated with Cluster 

A. The genome data were reexamined for 10 outlier WT-like strains that did not group 

with Cluster A WT-like strains. (b) 8 of the 10 outlier WT-like strains were re-assigned to 
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Cluster B after identification of previously missed polymorphisms, resulting in Cluster B 

containing mutant strains exclusively whereas Cluster A is comprised of both mutant and 

WT-like strains. (c) Cluster B is composed exclusively of strains with mutations in covR 

or covS. WT-like strains and strains with mutations in genes encoding regulators other than 

covR/covS (designated Other) predominantly grouped into Cluster A.
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Figure 4. Variation in the number of differentially expressed (DE) genes between Cluster A and 
B strains.
(a) Plot displays the distribution of the number of DE genes for Cluster A (blue circles) 

and Cluster B (red circles) strains. DE genes were identified using strain MGAS28737 as a 

reference (see Supplementary note). The area of each circle is proportional to the number 

of DE genes. The horizontal grey line represents the median number of DE genes (n = 

176) across 442 singleton strains. (b) Cluster B (n = 83) strains have significantly more DE 

genes compared to Cluster A (n = 339) strains (Mann-Whitney test, one-tailed, P < 0.0001). 

Median and interquartile range of DE genes for each cluster are depicted.
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Figure 5. Clustering of covR and covS mutant strains and associated virulence.
(a) PCA plot of covR/covS mutant strains from Cluster A and Cluster B display distinct 

clustering. (b) Distance based hierarchical clustering transcriptome profile validated the 

clustering evident by PCA and also showed additional clustering. Strains in cluster B 

partitioned into additional subgroups arbitrarily designated B.1 and B.2. The analysis further 

refined subgroup B.2 strains into subgroups B.2.1 and B.2.2 (see Supplementary note). (c) 

Virulence of four cluster A and four cluster B strains in a mouse model of necrotizing 

myositis (n = 45 mice/strain). A significantly increased ability to cause near-mortality was 

observed for cluster A strains compared to cluster B strains. P values were determined using 

the log-rank test. (d) Representative gross pathology images of the hindlimb lesions from the 

mice (n = 6 mice per strain) infected with each of the four Cluster A (top panels) and Cluster 

B (bottom panels) strains are shown. Scale bar, 1cm.
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Figure 6. An intergenic single nucleotide insertion increases Spy1336/R28 expression and strain 
virulence.
(a) Schematic showing the divergently transcribed Spy1336/R28 and Spy1337 genes located 

in the RD2 region of the M28 chromosome. The Spy1336/R28 gene encodes the R28 

protein, a virulence factor, and Spy1337 encodes an inferred transcriptional regulator. 

(b) Seventeen of 50 (34%) strains with low levels of Spy1336/R28 transcript (top) have 

reduced levels of Spy1337 transcript (bottom), whereas 33 strains (66%) with high levels 

of Spy1336/R28 transcript have high levels of Spy1337 transcript. Whiskers represent 
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minimum and maximum values. (c) Intergenic region betweenSpy1336/R28 and Spy1337. 

Homopolymeric T tract is underlined in red. (d) qRT-PCR results for low expresser wild­

type parental (MGAS27961–9T) and isogenic mutant strain (MGAS27961–10T). Strain 

MGAS28055–10T is a naturally occurring high expresser strain with the 10T variant in the 

homopolymeric tract. Mean and SD are shown; y-axis is presented in log scale.

(e) Virulence of MGAS27961–9T, MGAS27961–10T, and MGAS28085–10T in a mouse 

model of necrotizing myositis (n = 20 mice/strain). (f) Shown are representative gross 

and microscopic images of mice (n = 6 mice per strain) hindlimbs infected with strains 

MGAS27961–9T, MGAS27961–10T, or MGAS28085–10T. Scale bars, 1 cm (gross), and 1 

mm (microscopic images). (g) Isogenic strains were exposed to purified PMNs, and percent 

bacterial survival was assessed at 3 h. Results are means and SEM of data from 9 separate 

experiments. (h) Western immunoblot analysis showing production of Spy1336/R28 protein. 

Isogenic strains were collected at equivalent ODs during mid-exponential (ME) and early 

stationary phase (ES). Cell-free supernatants and whole cells were assayed (2 independent 

experiments) for presence of Spy1336/R28 protein with an anti-R28 antibody. 24 μl (ME) 

and 8 μl (ES) were loaded for analysis of R28 in the cell-free supernatants, and 16 μl 

(ME) and 8 μl (ES) for whole cells. R28 from the reference strain MGAS6180 is predicted 

to have a molecular weight of 157 kDa. (i) Model depicting how the single nucleotide 

indel alters virulence. Weak binding of Spy1337 to the intergenic region containing the 

9T homopolymeric tract leads to lower expression of Spy1336/R28, Spy1337 and other 

virulence factors (left panel), whereas stronger binding of Spy1337 to the intergenic 

region containing the 10T homopolymeric tract leads to higher expression of Spy1336/R28, 

Spy1337 and other virulence factors (right panel).
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Figure 7. Mouse virulence data, NADase production and nga transcript level.
(a) Virulence of 50 emm28 GAS strains in a mouse model of necrotizing myositis (n 
= 20 mice/strain). The 50 strains used for initial transcriptome analysis were studied. A 

significantly (log-rank test) increased ability to cause near-mortality was observed for strains 

of SC2A (green) compared to strains of SC1A (red) and SC1B (blue). Kaplan-Meier curve 

for all strains tested is shown by subclade. (b) Ability of each of the 50 strains assayed 

to cause near-mortality at 7 days post-inoculation is shown. SC1A (red bars) and 1B (blue 

bars) strains were compared to virulence reference strain MGAS28426 (arrow; * indicates 

P values relative to strain MGAS28426, log-rank test), and SC2A (green bars) strains were 

compared to the average of SC2A strains overall (# indicates P values relative to subclade 

2A strains overall, log-rank test). (c) NADase activity and nga transcript levels. NADase 
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assays were performed using two biological replicates on strains that are wild-type for all 

known major transcriptional regulators. Number of strains (solid bars) analyzed per subclade 

was 5 (SC1A), 8 (SC1B), and 5 (SC2A). NADase activity (Y-axis, left) is presented as 

the highest dilution with hydrolyzing activity against exogenously added NAD+. Replicate 

data are expressed as mean ± SD, Mann-Whitney two-tailed test. nga transcript levels 

(normalized transcript counts) are shown (Y-axis, right). The number of strains (hatched 

bars) analyzed per subclade was 24 (SC1A), 98 (SC1B), and 66 (SC2A). Strains wild-type 

for all known major virulence regulators were assessed. (d) NADase activity and nga 
transcript levels (qRT-PCR) of the isogenic mutant strain (27961-SC1A-nga-promoter) were 

compared to its parental wild-type strain (MGAS27961; SC2A) and a representative SC1A 

strain (MGAS7868). Two biological replicates per strain are expressed as mean ± SD, 

Mann-Whitney two-tailed test. (e) Kaplan-Meier curve showing that the isogenic mutant 

and wild-type parental strains differ significantly (log-rank test) in virulence in a mouse 

necrotizing myositis infection model. (f) Gross pathology images of infected mouse (n = 

5) hindlimbs reflect the difference in virulence between the isogenic mutant and wild-type 

parental strains. Scale bar, 1 cm.
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Table 1.

Summary of the 2,101 invasive emm28 strains studied

Country State
1
/Region Years Number of strains

Canada Ontario 1991–2002 247

Denmark Faroe Islands 2002–2014 7

Finland Countrywide 1995–2015 704

Iceland Countrywide 1992–2012 27

Norway Countrywide 2006–2016 164

USA A 1995–2012 105

USA B 2000–2012 99

USA C 1995–2011 61

USA D 1995–2012 103

USA E 1997–2012 103

USA F 1995–2012 239

USA G 2004–2012 34

USA H 1998–2012 89

USA I 1996–2012 53

USA J 2000–2012 65

USA Texas 1990s 1

The complete list of 2,101 strains analyzed in this study is presented in Supplementary Table 1. The total number of strains isolated in the 
USA was 952, of which 951 strains were collected as part of the ABC surveillance study conducted by the Centers for Disease Control and 

Prevention22,93–95. The strain from Texas is the genome reference strain MGAS618063.

1
For the U.S. isolates, the states have been coded (A-J) at the request of the Centers for Disease Control.
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