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Abstract

Objectives: To apply deep learning algorithms using a conventional convolutional neural 

network (CNN) and a recurrent CNN to differentiate three breast cancer molecular subtypes on 

MRI.

Methods: A total of 244 patients were analyzed, 99 in Training Dataset scanned at 1.5T, 83 in 

Testing-1 and 62 in Testing-2 scanned at 3T. Patients were classified into 3 subtypes based on 

hormonal receptor (HR) and HER2 receptor: (HR+/HER2−), HER2+ and triple negative (TN). 

Only images acquired in the DCE sequence were used in the analysis. The smallest bounding box 

covering tumor ROI was used as the input for deep learning to develop the model in the Training 

dataset, by using a conventional CNN and the convolutional long short term memory (CLSTM). 

Then, transfer learning was applied to re-tune the model using Testing-1(2) and evaluated in 

Testing-2(1).

Results: In the Training dataset, the mean accuracy evaluated using 10-fold cross-validation was 

higher by using CLSTM (0.91) than CNN (0.79). When the developed model was applied to 

the independent Testing datasets, the accuracy was 0.4–0.5. With transfer learning by re-tuning 

parameters in Testing-1, the mean accuracy reached 0.91 by CNN and 0.83 by CLSTM, and 

improved accuracy in Testing-2 from 0.47 to 0.78 by CNN and from 0.39 to 0.74 by CLSTM. 

Overall, transfer learning could improve the classification accuracy by greater than 30%.
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Conclusions: The recurrent network using CLSTM could track changes in signal intensity 

during DCE acquisition, and achieved a higher accuracy compared to conventional CNN during 

training. For datasets acquired using different settings, transfer learning can be applied to re-tune 

the model and improve accuracy.
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INTRODUCTION

Breast cancer is a heterogeneous group of disease with different phenotypes, and each 

subtype has different treatment strategy and prognosis. In the standard clinical practice, 

the status of the hormonal receptor (HR) and human epidermal growth factor receptor 2 

(HER2) are evaluated to decide the appropriate treatments, including the use of hormonal 

therapy and HER2 targeting therapy. Microarray studies have shown that the morphological 

and clinical heterogeneity of breast cancer has a molecular basis [1]. Breast MRI can 

accurately reveal the 3-dimensional high spatial-resolution features of the disease, and is a 

well-established imaging modality routinely used for diagnosis, pre-operative staging and 

surgical planning [2]. With technological advances in imaging analysis, computer-aided 

diagnosis (CAD) and radiomics provide efficient methods to extract quantitative features for 

diagnosis, and they can also be used for molecular subtype differentiation [3–7]. While most 

studies extract imaging features from the tumor, it has been shown that features extracted 

from the peri-tumoral parenchyma outside the tumor also contain useful information [7,8].

After quantitative features were extracted, various classification methods including logistic 

regression [4,7,8], support vector machine (SVM) [5,8], naïve Bayes model [9] and artificial 

neural network [10] that could deal with a large number of parameters were applied to 

build the classification model. While these methods have yielded promising results, since 

they relied on pre-determined imaging features, the results were dependent on the choice 

of computer algorithms as well as the contrast variations and image quality. As such, the 

developed model might be specific to the analyzed dataset and not generally applicable. In 

the last several years, deep learning using the Convolutional Neural Network (CNN) have 

been applied for diagnosis and classification of breast lesions on MRI. In contrast to CAD 

and radiomics that extract specific features to carry out the classification task, CNN uses the 

raw image and performs the end-to-end learning for classification. The methods have been 

used for differentiation of benign and malignant lesions and achieved a high accuracy [11–

13]. They have also been used for multi-class molecular subtype differentiation, which was 

a much more challenging task compared to diagnosis and in general had a lower accuracy 

[14–16]. More sophisticated deep learning networks that can fully utilize all information 

contained in multi-parametric MRI may help.

The purpose of this study was to apply deep learning networks to differentiate three 

breast cancer molecular subtypes on MRI, including HR positive and HER2 negative 

(HR+/HER2−), HR negative and HER2 negative (i.e. triple negative, TN) and HER2 
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positive (HER2+). The smallest bounding box containing the tumor and the proximal 

peri-tumor tissue was used as the input. A conventional CNN and a recurrent network 

using convolutional long short-term memory (CLSTM) that could consider the temporal 

information in DCE-MRI were applied, and the obtained results were compared. An 

independent testing dataset acquired using a different MR scanner from another hospital was 

used to evaluate the applicability of the model developed from the training dataset. Then, the 

model was re-tuned by transfer learning to investigate its utility for general implementation 

in different clinical settings.

MATERIALS AND METHODS

Patients

This was a retrospective study by retrieving patients who received breast MRI from two 

different institutions for analysis. The inclusion criteria were consecutive patients receiving 

MRI for diagnosis of suspicious lesions or pre-operative staging, and who had surgery with 

histologically confirmed cancer and molecular subtypes. Only cases presenting as mass 

lesions with a clear boundary were further selected for this study, in order to minimize 

the uncertainty in the defined tumor area. The exclusion criteria were patients receiving 

neoadjuvant treatment such as chemotherapy or hormonal therapy. The training dataset was 

obtained from one hospital from Aug 2013 to Dec 2014 performed on a Siemens 1.5T 

system, with a total of 99 patients, including 65 HR+/HER2− (66%), 24 HER2+ (24%), 

10 TN (10%) cancers. The mean age was 48 years old (range 22 to 75). The independent 

testing cases were collected from another hospital performed on a GE 3T system. The 

testing dataset-1 was collected from Jan 2017 to May 2018, with a total of 83 patients, 54 

HR+/HER2− (65%), 19 HER2+ (23%), 10 TN (12%), and mean age of 51 (range 24 to 

82). The testing dataset-2 included later cases collected from June to Dec 2018, with a total 

of 62 patients, 37 HR+/HER2− (60%), 15 HER2+ (24%), 10 TN (16%), and mean age of 

49 (range 33 to 72). The study was approved by the Institutional Review Board and the 

requirement of informed consent was waived.

Histopathological Analysis

The molecular subtypes were obtained from the medical record, based on the examination 

results of immunohistochemical staining and FISH from the surgical specimen. The tumor 

size was also obtained from the histological examination result of the surgical specimen. Of 

the 99 cases in the training dataset, the mean tumor size was 2.6 cm (range 0.4 to 5.0 cm). 

Of the 83 cases in testing dataset-1, the mean tumor size was 2.0 cm (range 0.7 to 3.5 cm). 

Of the 62 cases in testing dataset-2, the mean tumor size was 2.1 cm (range 0.5 to 5.3 cm). 

The tumor size and the distribution of three molecular subtypes in these three datasets were 

comparable.

MR Imaging Protocol

Only the dynamic-contrast-enhanced (DCE) images were used for analysis. The training 

dataset was scanned on a 1.5 Tesla scanner (Siemens Magneton Skyra, Erlangen, Germany) 

with a 16-channel Sentinelle breast coil. DCE-MRI was acquired using a fat-suppressed 

three-dimensional fast low angle shot (3D-FLASH) sequence with one pre-contrast and four 
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post-contrast frames, with TR/TE=4.50/1.82 msec, flip angle=12°, field of view=32×32 cm, 

matrix size=512×512 and slice thickness=1.5 mm. The spatial resolution was 0.6×0.6×1.5 

mm, and the temporal resolution was 180 seconds for each DCE frame. The contrast 

medium 0.1 mmol/kg Omniscan® (GE Healthcare, New Jersey, USA,) was administered 

at the beginning of the second acquisition. The testing dataset was done on a 3T 

scanner (GE SIGNA HDx, Milwaukee, WI) using a dedicated 8-channel bilateral breast 

coil. The DCE images were acquired using the volume imaging for breast assessment 

(VIBRANT) sequence also with fat-suppression, with TR/TE=5/2 msec, flip angle=10°, 

field of view=34×34 cm, matrix size=416×416 and slice thickness=1.2 mm. The DCE 

series consisted of one pre-contrast and five post-contrast frames. The spatial resolution was 

0.8×0.8×1.2 mm, and the temporal resolution was 130 seconds for each DCE frame. The 

contrast agent, 0.1 mmol/kg Magnevist® (Bayer Schering Pharma, Berlin, Germany), was 

injected after the pre-contrast images were acquired.

3D Tumor Segmentation

The tumor was segmented on the contrast enhancement maps generated by subtracting 

pre-contrast images from post-contrast images taken at the 2nd DCE frame, using the fuzzy­

C-means (FCM) clustering algorithm [13]. The 2nd DCE frame could best show the tumor 

boundary relative to adjacent tissues, thus was chosen for analysis. Some operator input was 

needed, which was performed by two radiologists (JHC and JZ), with 15 and 8 years of 

experience interpreting breast MRI, respectively. The range of slices containing the tumor 

was decided, and then a rectangle box covering the lesion shown on maximum intensity 

projection (MIP) was drawn. On each slice, FCM was applied to determine the tumor pixels, 

and then three dimensional connected-component labeling and hole filling was applied to 

finalize the tumor ROI. Figures 1 and 2 show DCE images from two patients, with the 

segmented tumor ROI. Since only mass lesions with a clear boundary were included in 

this study, the segmentation could be done with computer algorithms, without the need of 

manual correction. After segmentation, tumor ROI’s on all slices were projected together, 

and the smallest square bounding box covering them was determined as the input for deep 

learning analysis, as illustrated in [10].

Deep Learning Networks

For deep learning, each slice was used as an independent input. That is, if a lesion contained 

10 slices, all 10 slices were used as input. The cropped frame was resized to 32 × 32. In 

the training and testing dataset, the images were normalized in the same way to mean=0 and 

standard deviation=1, so their differences could be handled by standardization. The entire 

set of DCE images were normalized together so the change of signal intensity could be 

considered.

The conventional CNN architecture is shown in Figure 3. The DCE images were directly 

used as inputs, not the subtraction images. For CNN, all 5 sets of pre- and post-contrast 

images were put in together, with the input size of 32×32×5. Detailed methods using this 

CNN were reported in Chang et al. [17]. In brief, the architecture used 7 layers and the 

size of convolution kernel was 3×3. The stride number of the 2nd, 4th and 6th convolution 

layers in the output transformation was 2, which reduced the spatial resolution to one fourth 
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the size of the input feature map. Instead of max-pooling, this allowed the network to learn 

down-sampling parameters and facilitated gradient preservation during back-propagation 

[17]. After each convolution layer, we used rectified linear units (ReLU), which could 

lead to faster training and sparse representations. The training was implemented using the 

Adam optimizer. In the training dataset, the parameters were initialized using the heuristic 

approach with the “He initialization method” [18]. L2 regularization was implemented to 

prevent over-fitting by limiting the squared magnitude of the kernel weights. Additionally, 

an early stopping strategy was used to control over-fitting, in which the same echo number 

was applied to all folds in cross validation. The learning rate for the Adam optimizer was 

fixed to 0.001 [19].

Another network, the convolutional long short term memory (CLSTM), was applied to track 

the temporal information of the changed signal intensity in the DCE time sequence [20], 

by inputting the 5 DCE datasets into the network one by one, shown in Figure 4. CLSTM 

is a recurrent neural network (RNN) and has convolutional layers to implement the input 

transformations and recurrent transformations. This architect can extract spatial features as 

well as temporal features from a series of images acquired in chronologic order. The same 

input box used in conventional CNN was used for CLSTM, but the size became 32×32×1 

instead of 32×32×5. The output was the three subtypes, and the accuracy was calculated 

using cases that were correctly predicted to the HR+/HER2−, HER2+, and TN groups.

Model Evaluation and Transfer Learning

The first model was developed using the training dataset with 10-fold cross-validation. Each 

case had one chance to be included in the validation group. The results were pooled together, 

and the range and mean accuracy obtained using CNN and CLSTM were reported. In 

addition to 3-way subtype classification, the binary classification was performed to generate 

ROC curves, and the results obtained using CNN and CLSTM were statistically compared 

by the DeLong test.

After the model was developed, it was directly applied to the testing dataset-1 and dataset-2 

for evaluation. Then, in order to consider datasets acquired using different settings, transfer 

learning was applied to fine-tune the parameters and develop another model specific to 

the testing dataset. In the transfer learning, instead of using the random He initialization 

method during the back-propagation process, the pre-trained model developed using the 

training dataset was used as the basis, that is, the weights of the trained network from the 

training dataset were used as the initial value. The transfer learning was done using the 

testing-1 cases for training with 10-fold cross-validation, and evaluated on testing-2; and 

then reversely done using testing-2 for training and evaluated on testing-1. This alternative 

approach could be used to evaluate the robustness of the transfer learning method.

RESULTS

Prediction Accuracy Using CNN and CLSTM

All results are listed in Table 1. When using the conventional CNN, the mean prediction 

accuracy in the training dataset obtained using 10-fold cross-validation was 0.79 (range 
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0.73–0.89). When using CLSTM that considered the temporal information in the DCE 

series, the mean prediction accuracy in the training dataset was improved to 0.91 (range 

0.83–0.95). When the developed classification model was directly applied to the testing 

datasets, the accuracy was much lower. In Testing-1, the accuracy was 0.52 using CNN 

model and 0.44 using CLSTM model. In Testing-2, the accuracy was 0.47 using CNN model 

and 0.39 using CLSTM model. These results showed that the developed model from the 

training dataset acquired using a different scanner could not be applied to the testing dataset.

Binary Prediction Accuracy

In addition to 3-way classification in the training dataset, the binary prediction was 

performed to differentiate HR+/HER2− vs. others; TN vs. non-TN; and HER2+ vs. HER2−. 

The ROC curves obtained using CNN and CLSTM are shown in Figure 5. The accuracy, 

sensitivity, specificity and AUC are summarized in Table 2. The results were in general 

consistent with the 3-way classification performance, showing a higher accuracy when using 

CLSTM than CNN, but not reaching the significance level. For HR+/HER2− vs. others, 

AUC was 0.86 for CNN and 0.92 for CLSTM (p=0.14). For TN vs. non-TN, AUC was 0.84 

for CNN and 0.89 for CLSTM (p=0.64). For HER2+ vs. HER2− was 0.90 for CNN and 0.93 

for CLSTM (p=0.60).

Prediction Accuracy with Transfer Learning

By using the initial trained model as the basis, the parameters were re-tuned in the testing 

datasets using transfer learning, also evaluated using 10-fold cross-validation. When using 

CNN, the mean accuracy in re-training of Testing-1 was 0.91 (range 0.85–0.95), and that 

could be applied to Testing-2 to improve accuracy from 0.47 to 0.78. When using CLSTM, 

the re-training mean accuracy in Testing-1 was 0.83 (range 0.79–0.88), and that also greatly 

improved accuracy in Testing-2 from 0.39 to 0.74. Similarly, when using the Testing-2 for 

re-training, the developed model could be applied to Testing-1 and improved the accuracy 

from 0.52 to 0.82 using CNN, and from 0.44 to 0.76 using CLSTM. The improvement is 

summarized in Table 1. The second model developed using transfer learning could improve 

accuracy by 0.31 and 0.30 using CNN, and 0.35 and 0.32 using CLSTM, overall greater than 

30%.

DISCUSSION

Machine learning methods, including radiomics and deep learning, have potential to provide 

a comprehensive evaluation of the heterogeneous tumor known to be associated with 

underlying tumor biology [21]. In this study, we applied deep learning to predict three breast 

cancer molecular subtypes: HR+/HER2−, HER2+ and TN breast cancers that have different 

treatment strategies. A conventional CNN and a recurrent CLSTM network were used. In the 

training dataset, the CLSTM that could consider the changing signal intensity in the DCE 

series achieved a higher mean accuracy of 0.91 compared to the mean of 0.79 by using 

the conventional CNN. In the independent testing, it was clear that the developed models 

could not be directly applied, but when transfer learning was used, the re-tuned model could 

significantly improve accuracy. This study elaborates how the AI methods developed using 

one training dataset can be implemented in a different clinical setting, e.g. images acquired 
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using different protocols, different scanners or in different hospitals. Although the approach 

using transfer learning was trivial, yet few studies have actually implemented the transfer 

learning and demonstrated how it worked using well-characterized datasets.

Breast cancer molecular subtypes are very important for choosing the optimal treatments. 

HER-2 targeting agents, Trastuzumab and Pertuzumab, are included in the treatment for 

HER-2 positive cancer. Long-term (5–10 years) hormonal therapy such as tamoxifen and 

aromatase inhibitors are used for HR positive cancer to prevent recurrence. For the TN 

cancers, they are more aggressive and no targeted therapy, and thus, more aggressive 

chemotherapy is usually given to achieve a better outcome. While molecular markers can be 

evaluated from tissues obtained in biopsy or surgery, it is subject to the tissue sampling bias 

problem. Breast MR images contain rich information, which may be used for differentiation 

of molecular subtypes, by using images acquired at the time of diagnosis for a thorough 

assessment of the entire tumor.

For breast DCE-MRI, the pattern of the DCE kinetics (or, signal intensity time curve) 

is known to provide important information for lesion diagnosis, which can be taken 

into consideration in deep learning architecture using various strategies [11–13,22,23]. 

To consider the full spectrum of this time-dependent intensity information, CLSTM was 

developed to process the DCE images set by set, as in a previous study [24]. The CLSTM 

is similar to Long Short-Term Memory (LSTM) network reported by Hochreiter et al. [25], 

which is a Recurrent Neural Network (RNN) used for processing time series and text. The 

temporal features contained in the time order of the 5 DCE pre- and post-contrast MRI sets 

can be fully explored, and that achieved a higher accuracy compared to conventional CNN 

(0.91 vs. 0.79).

Several studies have applied deep learning to differentiate breast cancer subtypes. Ha et al. 

applied a deep learning method using residual neural network for subtype differentiation, 

and reached 70% accuracy and AUC of 0.85 [16]. Zhu et al. applied several different CNN 

architectures, including GoogleNet, VGG and CIFAR, to analyze DCE-MRI and achieved 

the best accuracy of 0.65 [14]. All these studies only analyzed a single-institutional dataset, 

and the reported accuracy was comparable to our result obtained with convention CNN in 

the training dataset. In an extensive literature search, we have not found any study that 

included a second independent dataset for testing, as done in our study. In addition to 

MRI or other breast images, H&E stained histologic images also contain rich information, 

and present a great opportunity for deep learning-based analysis for subtype classification 

[26,27].

The term “transfer learning” is used broadly, which is often referring to pre-training. 

Usually, the pipeline of CNN classification contains 2 stages. First, a network is pre-trained 

by a natural image dataset to obtain the weights of the trainable parameters, e.g. ImageNet, 

which is a set of network weights pre-trained by a large public natural image dataset. 

Next, the training dataset in the intended application is used to fine-tune the pre-trained 

network to achieve the best performance. For example, Nishio et al. [28], applied VGG16 to 

differentiate benign nodule, primary lung cancer and metastatic lung cancer on lung CT. The 

network was initialized using ImageNet, then fine-tuned, which showed increased accuracy 
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from 62.3% to 68% with transfer learning. Two other studies by Yuan et al. [29] and Byra 

et al. [30], also applied a similar strategy using fine-tuned CNN with pre-trained ImageNet, 

and achieved higher accuracy for prostate and breast lesion classification. Another strategy, 

as demonstrated in Samala et al. [31], designed a CNN pre-trained by mammography dataset 

to classify breast lesions on digital breast tomosynthesis (DBT). For clinical implementation, 

the cases were usually acquired in a different setting, and as demonstrated here, re-tuning 

of the parameters is necessary to improve accuracy. Many companies are developing AI 

tools, and usually the product can achieve a high accuracy using training datasets. For 

field implementation in different hospitals, transfer learning based on the specific datasets 

collected in each hospital is necessary. In the present study, we split the testing cases 

based on the time of MRI, which represented a realistic clinical scenario. For example, if 

an AI software developed by a company is sold to a hospital, it can be re-trained using 

retrospective datasets, and then applied to prospective cases.

The major limitation was the small case number, particularly for the TN subtype. 

Unfortunately, this was a common problem for all cancer subtype differentiation studies 

no matter whether it was based on histology, molecular biomarkers or genetic mutations. For 

multi-class differentiation to predict breast cancer molecular subtypes, or to predict different 

primary tumors in metastasis [32], the overall accuracy was a harsh outcome that often 

resulted in low accuracy, i.e. each case had to be correctly classified into one of several 

classes to be counted as accurate. For some clinical applications, combining multi-class 

into binary classification would be sufficient, e.g. to differentiate lung cancer from other 

primary cancers in patients with spinal or brain metastasis [24,32]. The application of 

machine learning for medical imaging analysis can be designed according to the available 

case number and the clinical indications, as well as whether there are appropriate datasets 

that can be used for pre-training.

In conclusion, we have implemented two deep learning networks, conventional CNN and 

CLSTM, to classify three breast cancer molecular subtypes that have different treatment 

strategies. The accuracy in the training dataset could reach 0.8–0.9, but the developed model 

could not be directly applied to the independent testing dataset acquired in a different 

hospital using a different scanner. When using part of the testing dataset for re-tuning, the 

accuracy could be greatly improved by 30%. The results suggest that deep learning can be 

applied to aid in tumor molecular subtype prediction, and also that transfer learning can be 

implemented to re-tune the developed model for wide adoption in different clinical settings.

List of Abbreviations:

ADC Apparent Diffusion Coefficient

AUC Area Under the ROC Curve

CAD Computer-Aided Diagnosis

CLSTM Convolutional Long Short Term Memory

CNN Convolutional Neural Network
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DCE-MRI Dynamic Contrast Enhanced Magnetic Resonance Imaging

FCM Fuzzy-C-Means

GLCM Gray Level Co-occurrence Matrix

HR Hormonal Receptor

LSTM Long Short-Term Memory

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

ROI Region Of Interest

SE Signal Enhancement

SVM Support Vector Machine

TN Triple Negative
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KEY POINTS

1. Deep learning can be applied to differentiate breast cancer molecular 

subtypes.

2. The recurrent neural network using CLSTM could track the change of 

signal intensity in DCE images, and achieved a higher accuracy compared 

to conventional CNN during training.

3. For datasets acquired using different scanners with different imaging 

protocols, transfer learning provided an efficient method to re-tune the 

classification model and improve accuracy.
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Figure 1: 
A case example from a 53-year-old woman with triple negative breast cancer in the right 

breast. (a) Pre-contrast image, (b) Post-contrast image, (c) The zoom-in image of the lesion 

with outlined tumor boundary obtained from segmentation. The square box is centered at the 

centroid of the tumor. (d-h) Color-coded DCE images at 5 time frames, one pre-contrast and 

4 post-contrast, normalized using the same signal intensity scales.
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Figure 2: 
A case example from a 48-year-old woman with Hormonal-positive and HER2-negative 

breast cancer in the right breast. (a) Pre-contrast image, (b) Post-contrast image, (c) The 

zoom-in image of the lesion with outlined tumor boundary obtained from segmentation. 

The square box is centered at the centroid of the tumor. (d-h) Color-coded DCE images 

at 5 time frames, one pre-contrast and 4 post-contrast, normalized using the same signal 

intensity scales. Although this patient has moderate breast parenchymal enhancement (BPE), 

the lesion boundary is clearly visible and can be segmented with computer algorithms.
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Figure 3: 
Diagram of convolutional neural network (CNN) architecture. The architecture uses 7 serial 

convolutional 3 × 3 filters followed by the ReLU nonlinear activation function. Dropout at 

50% is applied to all convolutional and fully-connected layers after the second layer. Feature 

maps are down sampled to 25% of the previous layer by convolutions with a stride length 

of two. The number of the input channels is 5. The number of activation channels in deeper 

layers is progressively increased from 8 to 16 to 32 to 64. Softmax is used as the activation 

function of the last fully connected layer.
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Figure 4: 
Diagram of convolutional long short term memory network (CLSTM) architecture. The 

architecture uses 7 serial convolutional LSTM layers via 3×3 filters followed by the ReLU 

nonlinear activation function. Five sets of pre-contrast and post-contrast DCE images are 

used as inputs. The configuration of the dropout and down sampling are the same as in 

Figure 3. The number of the input channels is one. Five sets of pre-contrast and post-contrast 

DCE images are used as inputs, by adding them one by one into the CLSTM network. The 

number of activation channels in deeper layers is progressively increased from 4 to 8 to 16 to 

32. The last dense layer is obtained by flattening the convolutional output feature maps from 

all states. Softmax is used as the activation function of the last fully connected layer.
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Figure 5: 
The ROC curves for binary molecular subtype classification in the Training dataset obtained 

using CNN and CLSTM. (a) HR+/HER2− vs. others, (b) TN vs. non-TN, (c) HER2+ vs. 

HER2−.
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Table 1.

Accuracy to classify three molecular subtypes in Training and Testing datasets using CNN and CLSTM

Dataset Process CNN CLSTM

Training Dataset Initial Training* 0.73–0.89 (0.79) 0.83–0.95 (0.91)

Testing Dataset-1

Testing Using the First Trained Model 0.52 0.44

Second Training Using Transfer Learning* 0.85–0.95 (0.91) 0.79–0.88 (0.83)

Testing Using the Second Model from Transfer Learning of Dataset-2 0.82 0.76

Testing Dataset-2

Testing Using the First Model 0.47 0.39

Second Training Using Transfer Learning* 0.82–0.89 (0.85) 0.74–0.87 (0.82)

Testing Using the Second Model from Transfer Learning of Dataset-1 0.78 0.74

*
The accuracy in the training process is evaluated using 10-fold cross-validation, and the range (mean) is shown

Eur Radiol. Author manuscript; available in PMC 2021 October 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 19

Table 2.

Binary molecular subtype classification performance in the Training dataset using CNN and CLSTM

CNN Accuracy Sensitivity Specificity AUC

 HR+/HER2− (N=65) vs. others (N=34) 0.81 0.79 0.82 0.86

 TN (N=10) vs. non-TN (N=89) 0.76 0.71 0.79 0.84

 HER2+ (N=24) vs. HER2− (N=75) 0.80 0.73 0.83 0.90

CLSTM

 HR+/HER2− (N=65) vs. others (N=34) 0.90 0.89 0.91 0.92

 TN (N=10) vs. non-TN (N=89) 0.89 0.82 0.92 0.89

 HER2+ (N=24) vs. HER2− (N=75) 0.92 0.90 0.93 0.93
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