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ABSTRACT Current epidemics, such as AIDS or flu, and the emergence of new
threatening pathogens, such as the one causing the current coronavirus disease
2019 (COVID-19) pandemic, represent major global health challenges. While vaccina-
tion is an important part of the arsenal to counter the spread of viral diseases, it
presents limitations and needs to be complemented by efficient therapeutic solu-
tions. Intricate knowledge of host-pathogen interactions is a powerful tool to identify
host-dependent vulnerabilities that can be exploited to dampen viral replication.
Such host-directed antiviral therapies are promising and are less prone to the devel-
opment of drug-resistant viral strains. Here, we first describe proteomics-based strat-
egies that allow the rapid characterization of host-pathogen interactions. We then
discuss how such data can be exploited to help prioritize compounds with potential
host-directed antiviral activity that can be tested in preclinical models.

KEYWORDS host-directed therapies, systems biology, drug repurposing, host-patho-
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Viral diseases represent a major cause of mortality across the world and can devas-
tate our global health systems (1). The current coronavirus disease 2019 (COVID-19)

pandemic illustrates the need to develop innovative tools that allow the rapid identifica-
tion of potential therapies when new viral epidemics occur. Approaches exploiting mRNA
have allowed the development of effective vaccines against COVID-19 at record speed
(2–6). While vaccines are often the most efficient approach to control viral infections in
the long term, it needs time to be administered to the general population, does not pro-
vide 100% antiviral efficiency, and cannot be administered to every patient (7). Therefore,
it is critical to develop antiviral therapies as a measure to treat patients suffering from viral
diseases when prevention fails. However, drug development is often a process too slow
to be readily deployable to an emerging outbreak of disease. It is therefore key to estab-
lish new methods that facilitate the rapid identification of antiviral compounds to treat vi-
ral infections in vulnerable patients (8).

To date, most FDA-approved antiviral drugs target viral proteins involved in its rep-
lication cycle (9). However, a major challenge of these antiviral compounds is that they
facilitate the common emergence of drug-resistant viral strains (10, 11) and are effec-
tive only against particular infections, hampering the possibility of pan-viral efficacies
and repurposing against emerging new diseases. Viruses rely on the host cellular ma-
chinery to ensure their replication. Host-directed therapies (HDTs) take advantage of
this dependency and attempt to disrupt the virus replication cycle by inhibiting essen-
tial host factors (12–17). Host genes that viruses rely on for survival have a low propen-
sity to mutate within the treatment time frame, and adaptation of the virus to compen-
satory host factors likely occurs only under long-term selection pressure of a host-
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directed antiviral. Moreover, different viruses may share dependencies of specific host
proteins or functions. Therefore, targeting the host proteins required for viral replica-
tion is a viable and innovative strategy that can avoid resistance and lead to potentially
broad-spectrum therapeutics as families of viruses often exploit common cellular path-
ways and processes. However, HDTs require in-depth knowledge of virus-host interac-
tions and their biological significance to virus replication. New approaches are aimed
at identifying these cellular host factors, and proteomics approaches provide a power-
ful tool to elucidate the direct physical interactions between host and pathogen as
well as perturbations to the host cells proteome caused by viral infection. Using func-
tional genomics, the anti- or proviral function as well as the endogenous function of
the identified host factors can be assessed. For example, the role of host factors on vi-
ral replication can be studied by knocking out individual host factors using CRISPR fol-
lowed by viral infection. Only host factors that are identified as host dependency fac-
tors without altering critical endogenous molecular functions are suitable for
pharmacological inhibition for HDT. Examples of successful HDT include the use of C-C
chemokine receptor type 5 (CCR5) antagonists for the human immunodeficiency virus
(HIV), cyclosporine for influenza A virus (IAV) and anti-claudin-1 and antioccludin
monoclonal antibodies for hepatitis C virus (HCV). CCR5 antagonists inhibit HIV cell
entry by blocking the interaction of the HIV type 1 (HIV-1) gp120 envelope glycopro-
tein with one of its host coreceptors, CCR5 (18, 19). Cyclosporine targets the interaction
between influenza virus protein M1 and the host factor cyclophilin A, increasing the
ability of cyclophilin A to inhibit M1 (20). It has also been shown that cyclosporine can
inhibit nuclear export of viral RNA (21). HCV can bind to the tight junction protein clau-
din-1 and occludin to enter cells, and monoclonal antibodies against those two pro-
teins have been shown to decrease HCV infection (22, 23). However, despite these
examples, great effort has not been placed on therapeutically targeting the host in an
effort to combat infectious disease.

Recently, massive efforts to identify therapeutic strategies to manage severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19,
have been undertaken. Understanding how SARS-CoV-2 interacts with the host cellular
machinery and the identification of host dependency factors have led to the identifica-
tion of promising drugs and investigational new drugs (INDs) that could be repurposed
for HDT (24, 25). In this minireview, we will discuss how proteomics and systems biol-
ogy approaches can streamline the discovery of antiviral host-directed therapies
(Fig. 1). We will first give an overview of the most commonly used proteomics
approaches to (i) map viral protein interactions with host proteins, (ii) map the global
effects of viral infection on cellular signaling, and (iii) determine structure function. We
will then describe how such proteomic data can be used to direct drug repurposing or
new drug discovery.

PROTEOMICS APPROACHES TO IDENTIFY HOST FACTORS

The identification of putative key host factors is crucial to drive the development of
innovative HDTs. Proteomics approaches present many advantages to do so, as they
allow the unbiased mapping of protein-protein interactions (PPIs) and signaling pertur-
bations due to infection, and ultimately enable structure-function studies. Coupled
with other systems biology approaches, proteomic data are particularly suited to guide
the discovery of innovative antiviral therapeutic strategies using HDTs (26). This section
briefly gives an overview of mass spectrometry (MS) methods used to study virus-host
interactions (reviewed extensively in references 27 and 28).

Proteomics approaches for protein-protein interaction mapping. Affinity purifi-
cation-mass spectrometry (AP-MS) and proximity-dependent labeling (PDL) permit the
extensive mapping of PPI networks and can uncover host machinery that viral proteins
associate with and potentially hijack. Such approaches have successfully been used to
map Zika virus, herpesvirus, HIV-1, and SARS-CoV-2 virus-host PPIs and give critical
insights into identifying important host factors for those viruses (29–40).
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AP-MS is a widely used method to characterize the interactors of epitope-tagged
bait proteins (41). Tagged viral proteins are expressed in host cells and purified with
their bound interactors that are subsequently identified by MS. AP-MS allows the rapid,
quantitative, and unbiased identification of multiple host interactors of a viral protein
in a single experiment. While AP-MS presents some limitations, including the potential
loss of weak interactions or the difficulty to recover membrane proteins, its ease of use
and scalability permit it to generate extensive mapping of PPIs in a very short time.
This is exemplified by the timely description of the SARS-CoV-2 interaction network
only a few months after the pandemic outbreak (29), an immense undertaking that has
been possible due to a massive collaborative effort (42). When designing AP-MS experi-
ments, it is also important to consider that N- or C-terminal tagging can have an effect
on protein function, requiring testing the functional status of tagged proteins. Finally,
AP-MS also does not discriminate between direct and indirect interactions. However,
this can be addressed by coupling AP-MS with cross-linking reagents, which allows the
identification of direct interactions (see “Structure MS” section below) (43–45).

PDL uses enzymes fused to the protein of interest to biotinylate interactors in close
proximity (46, 47). Two classes of enzymes are mainly used: promiscuous biotin protein
ligases (BirA/BioID/TurboID) (48–50) or engineered ascorbic acid peroxidases (APEX)
(51–53). In both cases, upon addition of their substrate, proteins in a 10- to 20-nm
range are biotinylated and can be subsequently purified using streptavidin resin fol-
lowed by identification using MS. The main advantages of the PDL approach, com-
pared to AP-MS, resides in its ability to detect transient or weak interactions as well as
membrane-bound partners. Moreover, due to the covalent labeling of interacting pro-
teins by biotin, lysis and purification can be performed under stringent conditions to
reduce background. PDL can also provide information on the subcellular localization of
the identified PPI by the proximal labeling of organelle-specific proteins or specific use
of spatial references (54).

Global proteomics approaches. Viruses trigger global changes in the molecular
landscape of infected cells in order to ensure their replication and evasion from the
cell’s innate immunity. Measurements of cell signaling rewiring, regulation of protein
levels, and changes to transcription upon viral infection provide a holistic understand-
ing of the mechanisms at play during infection.

High-throughput characterization of posttranslational modifications (PTMs) espe-
cially offer valuable insight into the biology of viral infections, as PTMs have critical

FIG 1 Schematic representation of antiviral host-directed therapy discovery using proteomics and systems
biology approaches. AP-MS, affinity purification-mass spectrometry; PDL, proximity-dependent labeling; XL-
MS, cross-linking mass spectrometry; H/DX-MS, hydrogen/deuterium exchange mass spectrometry; PTM,
posttranslational modification.
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roles in many different aspects of infection that have both proviral (inhibiting inter-
feron response or promoting viral replication and assembly) and antiviral consequen-
ces (degrading viral proteins through ubiquitination or inactivating them through
changes in PTMs) (55, 56). Various studies also revealed how the dynamic interplay
between different PTMs (such as phosphorylation, ubiquitination, and SUMOylation)
regulates processes like pathogen-sensing pathways and innate immune signaling,
underscoring the importance of characterizing the dynamics of these modifications
upon infection (57–60). In particular, phosphoproteomic profiling of infected cells
allows identification of changes in kinase activity over the time course of infection (61–
63). Kinases represent attractive drug targets, as many kinase-regulating drugs and
compounds have been developed for the treatment of various diseases, and numerous
studies have shown that host kinases can regulate various steps of the virus replication
cycle (16). Recent improvements in phosphopeptide enrichment using ion metal affin-
ity or ion-exchange chromatography coupled to MS now allows for the routine identifi-
cation of tens of thousands of phosphorylated peptides in a single experiment (64–66).
Moreover, computational methods to quantify and localize the phosphorylation sites
have also greatly improved, leading to the possibility to infer many kinases’ activity
using growing kinase-substrate relationship databases (67–69). Other PTMs such as
ubiquitination or acetylation can be assessed using MS (70–73), and an integrative
analysis of multiple PTMs with protein abundance can provide insight into the cross
talk between different signaling events (74). Changes in PTM abundance upon infec-
tion can lead to the identification of pathways or enzymes controlling such PTMs and
targetable using HDTs.

Global protein abundance also provides valuable insights as host proteins can be
up- or downregulated after virus infection and show deregulation of pathways that
could be therapeutically actionable. Classic global proteomics approaches using mass
spectrometry have successfully been used to characterize changes in protein levels fol-
lowing infection (74–76). Recent studies combined global proteomics approaches and
thermal proteome profiling (TPP) to assess changes in protein levels and activity during
SARS-CoV-2 and cytomegalovirus infection (77, 78). Thermal shift assay approaches,
such as cellular thermal shift assays (CESTA), could also be used to understand antiviral
compound’s molecular consequences and targets in relevant cell models (79).

Finally, viruses induce reorganization of subcellular structure and organelles of
infected cells to promote replication. Such spatial changes in protein levels and organi-
zation can be probed using the methodologies discussed here and reviewed in detail
by Jean Beltran et al. (80). Briefly, organelle fractionation followed by MS (81, 82) or
proximity-based biotinylation (83–87) have been used in numerous studies to assess
subcellular compartment content and are particularly suited to study how viruses
reshape cell proteome landscape.

Structure MS. Cross-linking mass spectrometry (XL-MS) uses chemical cross-linkers
to covalently bridge reactive amino acid residues in close proximity (43, 88, 89). Pairs
of linked peptides can then be identified by MS. This technique can therefore provide
not only PPI information but structural insights on intra- and intermolecular interaction
surfaces as well. Combined with dedicated structural approaches such as cryo-electron
microscopy (cryo-EM) and structure predictions through deep learning systems such as
AlphaFold (Deepmind), XL-MS facilitates and validates structure determination of chal-
lenging protein complexes (90, 91). Cross-linking can also be performed in combina-
tion with affinity purification of protein baits in order to determine direct interactions
between copurifying proteins and improve AP-MS resolution (92).

Hydrogen/deuterium exchange mass spectrometry (H/DX-MS) allows the study of
protein conformation for individual proteins or protein complexes. H/DX-MS measures
changes in mass associated with the exchange between deuterium isotopes and
hydrogens of the protein backbone amides (93, 94). The rate of the exchange is de-
pendent on the conformational state of the protein and surface accessibility.
Therefore, H/DX-MS is useful to probe folding dynamics, allosteric changes, protein
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conformation, and binding sites (95–99). Applications of H/DX-MS include the charac-
terization of protein structure changes in response to PTMs or characterization of the
binding of small molecules to proteins.

DRUG REPURPOSING STRATEGIES FOR DESIGNING ANTIVIRAL THERAPIES

Drug repurposing can offer an expedited timeline to bring host-directed antiviral
therapies into clinical settings in a cost-effective and timely manner in comparison to
traditional drug discovery, as designing a new compound, characterizing its efficacy,
and demonstrating its safety can be a slow and resource-intensive process with a
higher risk of failure. Successful applications of repurposing have occasionally been
driven by observations of unexpected consequences of drugs, such as the discovery of
minoxidil’s effects on hair growth when it was being tested for hypertension and the
approval of sildenafil for erectile dysfunction treatment even though it was originally
in trial for angina treatment (100, 101). Following advances in various omics technolo-
gies and development of computational methodologies, data-driven approaches are
also increasingly being used to gain valuable insight into identifying the most suitable
candidates for repurposing.

The proteomics approaches described above are suited for repurposing studies, as
they enable the identification of host factors and pathways that are hijacked and
rewired during infection. Combined with functional genetics to identify host depend-
ency factors, the data obtained provide a rich list of potential targets for therapeutic
interventions. Once targets are identified, several databases can be used to determine
their druggability and identify existing chemical matter, ranging from preclinical com-
pounds to INDs and FDA-approved drugs. These databases are also used to gain exten-
sive information on relevant drugs, as they catalog their protein targets, structures,
chemical properties, or clinical profiles (102). DrugBank is a frequently used database
across many studies that make use of drug-target interaction networks and provides
detailed information on various properties of more than 14,000 drugs, including their
targets, pharmacodynamics, mechanism of action, and toxicity (103). Other valuable
resources include DGIdb (the Drug-Gene Interaction Database), ChEMBL, and
PharmGKB (the Pharmacogenomics Knowledgebase). DGIdb characterizes the drug-
gable genome by curating information from various drug- and gene-related databases
for more than 10,000 drugs and 40,000 genes and annotates their associated drug-tar-
get relationships (104). ChEMBL is based on the curation of more than 80,000 publica-
tions and offers a broader scope of nearly 2.1 million compounds by providing
genomic and chemical data on bioactive drug-like small molecules (105). For studies
with a pharmacogenomics focus, PharmGKB is a relevant resource as it curates knowl-
edge on gene-drug associations and effects of genetic variation on drug response
(106). Selection of a particular database is typically tailored to specific aims of the
approach, and frequently multiple resources are integrated with each other to increase
the coverage of drug-gene interaction networks built to connect host factors to rele-
vant drugs.

Several studies have applied proteomics technologies to reveal virus-host interac-
tions and searched for direct interactions between these host factors and drugs, with
the aim to identify compounds or drugs that inhibit processes the virus relies on.
Studies with this strategy include the work by Dapat et al. on respiratory syncytial virus,
where the authors created its interaction network by integrating host factors identified
across nine proteomics and seven transcriptomics studies (107). DrugBank was then
used to query drugs targeting this network, revealing 177 FDA-approved drugs target-
ing 78 host proteins belonging to various categories such as anti-infective and anti-
cancer agents. An AP-MS study by Gordon et al. identified 332 human proteins inter-
acting with 26 SARS-CoV-2 proteins, revealing various complexes and processes
hijacked by the virus, many of which are druggable targets (29). Chemoinformatics
approaches and literature search by experts highlighted 69 compounds that target 62
proteins found in the PPI network. Translation inhibitors and molecules that target
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sigma-1 and sigma-2 receptors emerged as effective antiviral candidates in vitro. The
translation inhibitor plitidepsin was subsequently characterized as a potent antiviral in
vitro and in vivo with ;30-fold-higher efficacy than remdesivir (108). Watanabe et al.
generated an influenza-human protein interaction network via mass spectrometry and
targeted the host factors with small interfering RNAs (siRNAs) to identify those
involved in viral replication (109). Querying various drug databases for chemicals tar-
geting these host factors led to the identification of 61 drugs, where further experi-
mental studies highlighted GBF1 inhibitor golgicide A and JAK1 inhibitor ruxolitinib as
viable candidates for anti-influenza therapy. Phosphoproteomics approaches (110)
have also been successfully used to identify druggable host factors, especially those
targeted by kinase inhibitors, which were shown to have antiviral effects against vari-
ous viruses (111). Dynamics of kinase activity can be inferred computationally follow-
ing characterization of sites phosphorylated upon infection, and kinases whose activity
can explain virus-associated changes in phosphosites are then linked to drugs modu-
lating their activity. This strategy has been applied to various viruses, which led to the
nomination of GRK2 inhibitors for influenza (112), JNK1 inhibitors for Japanese enceph-
alitis virus (113), and various inhibitors targeting casein kinase II, p38/MAPK (mitogen-
activated protein kinase) signaling, and growth factor receptor signaling for SARS-CoV-
2 (61, 114) treatment.

Network-based approaches have also been crucial for nominating drug repurposing
candidates by integrating virus-host protein interaction, human protein-protein inter-
action, and drug-target interaction networks. One key idea behind these approaches is
to consider interactions between host factors within a human PPI network and the
downstream effects that dysregulation of a protein could cause based on these rela-
tionships. These integrative approaches can reveal indirect effects of proteins hijacked
by viruses, and searching for drugs that can modulate these downstream effects can
present additional druggable opportunities. Network-based studies have especially
been valuable for SARS-CoV-2 research, offering resources to identify putative antiviral
therapy options in a timely manner. For instance, the study by Zhou et al. generated a
coronavirus-host interaction network by integrating various experimental resources
that characterized interactions of six different viruses, including SARS-CoV-1 and
Middle East respiratory syndrome (MERS)-CoV, to assemble the set of human proteins
associated with these viruses (115). This study also generated a drug-target interaction
network obtained from various drug databases exemplified above. To identify drugs
with the potential to target SARS-CoV-2, Zhou et al. (115) used a “network proximity
measure,” which computes distances between the host factors and proteins targeted
by a given drug based on the human PPI network’s connectivity and prioritizes drugs
whose targets are in close proximity to the host factors.

In another network-based study, Gysi et al. (116) implemented 12 different pipe-
lines that rely on network proximity, network diffusion, and artificial intelligence princi-
ples, where they searched for drugs that can target the network of SARS-CoV-2 interac-
tors identified by Gordon et al. (29). Proximity-based approaches focused on the
distance between SARS-CoV-2 interactors and targets of drugs to rank drugs based on
proximity scores, whereas diffusion methods ranked them based on the network simi-
larity of drug targets and SARS-CoV-2 targets. Graph neural networks were imple-
mented for artificial intelligence-based approaches. After characterizing the results of
each individual method, the authors used a multimodal approach to combine different
pipelines’ rankings together to generate a consensus list of predictions, taking advant-
age of the strengths of each individual pipeline. Sadegh et al.’s work offers researchers
the opportunity to explore a virus-host interaction network from a drug target identifi-
cation perspective by developing an online tool called CoVex (Coronavirus Explorer)
that provides visualization of virus-host networks, drugs, and their targets (117, 118).
They also implemented various network-based algorithms that can build bridges
between host factors through neighboring, related proteins and connect these pro-
teins to drugs targeting them, such as multi-Steiner tree, closeness centrality, and

Minireview

September/October 2021 Volume 6 Issue 5 e00388-21 msystems.asm.org 6

https://msystems.asm.org


degree centrality. Currently, this resource includes PPI networks for SARS-CoV-1 (119,
120) and SARS-CoV-2 (29) with plans to add networks for additional viruses, and it
allows the researchers to run custom queries that can start from viral or host proteins
of interest to identify a set of drugs that can target them directly or indirectly generat-
ing actionable hypotheses on drug repositioning.

Studies highlighted here focused on drug repurposing strategies that have been
applied to virus-associated data sets to underscore the utility of these algorithms in
identifying antiviral therapies. For additional information on alternative repurposing
approaches with a broader scope, we refer readers to several reviews that discuss
properties of different algorithms and how various omics technologies and data sour-
ces are used for network-based drug repurposing (121–124). Application of these cur-
rently available drug repurposing algorithms or development of new approaches spe-
cifically tailored for viral proteomics data sets have the potential to identify viable
targets for designing effective host-directed antiviral therapies both for viruses that
currently lack effective treatments and emergent pathogens.

OPPORTUNITIES FOR PAN-VIRAL THERAPY DESIGN

Drug repurposing studies we discussed up to now have mostly focused on a single
virus and characterizing its set of druggable targets. However, when we compare char-
acteristics of different viruses, commonalities between proteins and biological proc-
esses that they interact with start to emerge, raising the possibility of identifying drug-
gable host factors shared across multiple viruses (125). These comparisons could focus
on a single family and characterize a set of related viruses in detail while taking their
sequence homology and evolutionary differences into account. One such study com-
paring PPI networks of three coronaviruses revealed the set of interactions that are
conserved across the three and trends that are shared between more closely related
SARS-CoV-1 and SARS-CoV-2 but not identified in MERS-CoV (126). Drugs targeting
proteins shared across viruses were also discussed to exemplify how these networks
can be used to discover drugs that can be effective against multiple pathogens.
Examples of other comparative analyses include ones that go beyond a single family,
such as the study by Pichlmair et al., where they characterized human proteins inter-
acting with 70 viral proteins from 30 different viruses using AP-MS (127) and the study
by Bösl et al., which built an interaction network of 17 viruses by curating AP-MS and
yeast two-hybrid studies (128). Focusing on a broader range of viruses revealed shared
biological processes across distinct viruses that illustrate pathways crucial for viral
infection and enabled comparisons between different groups of viruses, such as
minus-strand single-stranded RNA [ssRNA(2)], plus-strand ssRNA [ssRNA(1)], double-
stranded RNA (dsRNA), and double-stranded DNA (dsDNA) viruses. Additionally, Bösl
et al. (128) queried DGIdb to identify drugs targeting proteins within this host-virus
interaction network, highlighting putative pan-viral therapy options. Cataloging proc-
esses that are unique to individual viruses or shared across viruses will generate a valu-
able resource as we move forward with the design of host-directed antiviral therapies.
It will help prioritize drug repurposing opportunities with the potential to be effective
broad-acting antivirals and match a specific set of drugs to the most relevant group of
viruses based on the intersection between their targets and shared host factors.

CONCLUSION

Proteomics and systems biology approaches are strikingly suited to provide a rapid
and useful functional landscape of host-virus interactions. While requiring cross disci-
pline expertise, the current available pipelines using these methods can identify impor-
tant host factors involved in viral replication. Such insights are critical to develop effi-
cient host-targeted antiviral therapies by allowing us to quickly nominate targetable
host functions using repurposed drugs or by developing new compounds able to in-
hibit specific host-virus protein complex formation or activity. Importantly, as the
description of different virus interactions with their host partner grows, it becomes
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clear that commonalities could be identified and exploited to target essential host fac-
tors shared by several viruses.
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