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Abstract

It has been argued that age-related changes in the neurochemical and neurophysiological 

properties of the GABAergic system may underlie increases in reaction time (RT) in older 

adults. However, the role of GABA levels within the sensorimotor cortices (SMC) in mediating 

interhemispheric interactions (IHi) during the processing stage of a fast motor response, as well as 

how both properties explain interindividual differences in RT, are not yet fully understood.

In this study, edited magnetic resonance spectroscopy (MRS) was combined with dual-site 

transcranial magnetic stimulation (dsTMS) for probing GABA+ levels in bilateral SMC and task­

related neurophysiological modulations in corticospinal excitability (CSE), and primary motor 

cortex (M1)-M1 and dorsal premotor cortex (PMd)-M1 IHi, respectively. Both CSE and IHi were 
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assessed during the preparatory and premotor period of a delayed choice RT task. Data were 

collected from 25 young (aged 18–33 years) and 28 older (aged 60–74 years) healthy adults.

Our results demonstrated that older as compared to younger adults exhibited a reduced bilateral 

CSE suppression, as well as a reduced magnitude of long latency M1-M1 and PMd-M1 

disinhibition during the preparatory period, irrespective of the direction of the IHi. Importantly, 

in older adults, the GABA+ levels in bilateral SMC partially accounted for task-related 

neurophysiological modulations as well as individual differences in RT. In contrast, in young 

adults, neither task-related neurophysiological modulations, nor individual differences in RT were 

associated with SMC GABA+ levels.

In conclusion, this study contributes to a comprehensive initial understanding of how age-related 

differences in neurochemical properties and neurophysiological processes are related to increases 

in RT.
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1. Introduction

Healthy aging is characterized by a progressive slowing of volitional motor actions in 

response to external stimuli (Jordan and Rabbit 1977; Salthouse 2000; Mattay et al., 2002; 

Stewart et al., 2014; Woods et al., 2015). The reduced ability to quickly react to external 

cues may have crucial consequences for daily life when unpredictable changes in the 

environment require rapid adaptive behavior, such as in multiple traffic situations (Depestele 

et al., 2020). Therefore, unraveling the neural mechanisms underlying age-related declines 

in reaction speed has important implications for promoting the functional independence and 

quality of life of the older population.

To estimate age-related declines in reaction speed, visually cued choice reaction time (RT) 

tasks have been commonly used (Salthouse 2000; Yordanova et al., 2004; Falkenstein et 

al., 2006; Kolev et al., 2006; Roggeveen et al., 2007; Cuypers et al., 2013; Serbruyns 

et al., 2015; Woods et al., 2015; Boisgontier et al., 2016; Cuypers et al., 2020). A 

choice RT paradigm comprises different stages of central processing, including stimulus 

identification, action selection, and response programming. Using transcranial magnetic 

stimulation (TMS), it has been shown that rapid action preparation depends on multiple 

inhibitory processes that operate in parallel (see Bestmann and Duque 2016; Duque et al., 

2017 for reviews). These processes are assumed to play a role in the accurate timing of 

response initiation, in assisting action selection through a competitive process, and in the 

modulation of background noise to improve the signal-to-noise ratio (Quoilin and Derosiere 

2015; Duque et al., 2017).

By combining choice RT tasks with single-pulse TMS over the primary motor cortex (M1), 

modulation of corticospinal excitability (CSE) can be probed during these different central 

processing stages of a motor response (e.g., Leocani et al., 2000). More specifically, the 

magnitude of CSE is reflected in the amplitude of the motor evoked potential (MEP), 
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recorded with electromyographic (EMG) electrodes in the contralateral target muscle. 

During the delayed period of pre-cued choice RT tasks, a CSE suppression has been 

observed in motor representations of both the selected and non-selected effectors (Kroeger 

et al., 2010; Duque et al., 2014; Klein et al., 2016; Hinder et al., 2018). In addition, 

previous work of our group demonstrated that the respective CSE suppression was less 

pronounced in older than in young adults, and that this was associated with longer RTs 

in older adults (Cuypers et al., 2013). It has indeed been argued that age-related declines 

in motor function, such as increases in RT, can at least in part be explained by a poorer 

regulation of inhibitory motor processes with increasing age (Levin et al., 2014). However, 

the exact neurophysiological mechanisms and the neurochemical properties associated with 

a dysfunctional regulation of motor inhibition in aging, as well as their role in increased 

RTs, are not yet fully understood.

The principal neurotransmitter for mediating cortical motor inhibition is gamma­

aminobutyric acid (GABA) (Golan et al., 1996; Levin et al., 2014). GABA has a distinct 

affinity for two receptor subtypes, i.e., GABAA and GABAB, and the intracortical activity 

of each can be assessed with specific paired-pulse TMS paradigms over M1 (Kujirai 

et al., 1993; Di Lazzaro et al. 1998; Paulus et al., 2008). Some studies have found 

associations between the capacity to modulate synaptic GABAA receptor-mediated intra­

cortical inhibition and performance of a unimanual go/no-go task (Fujiyama et al., 2012) or 

a choice RT task (Heise et al., 2013) in older adults. Besides intracortical mechanisms, 

modulations in interhemispheric interactions (IHi) are also crucial for preparing fast 

unimanual responses (Duque et al., 2007; Kroeger et al., 2010; Liuzzi et al., 2010; Hinder 

et al., 2012, 2018), and for avoiding mirroring movements of the other, non-moving hand 

(Koch et al., 2006; Duque et al., 2007; Giovannelli et al., 2009). IHi can be assessed using 

dual-site TMS (dsTMS) paradigms, where a test stimulus (TS) over M1 is preceded by a 

conditioning stimulus (CS) over a motor-related brain area in the contralateral hemisphere 

(Ferbert et al., 1992; Ni et al., 2009). More specifically, IHi is quantified by the average 

MEP amplitude in dual-site TMS (i.e., CS + TS) trials, relative to the average MEP 

amplitude in single-pulse TMS (i.e., TS only) trials (i.e., IHi =
MEPCS+TS

MEPTS
). Values > 1 

indicate a facilitatory IHi, whereas values < 1 indicate an inhibitory IHi. At rest, using 

a subthreshold CS can evoke facilitatory IHi under specific conditions (Ferbert et al., 

1992; Hanajima et al., 2001; Bäumer et al., 2006), whereas using a suprathreshold CS 

can evoke inhibitory IHi, which may however become facilitatory under specific task-related 

conditions (Reis et al., 2008; Ni et al., 2009; Levin et al., 2014). IHi using a suprathreshold 

CS can be typically assessed using either short latencies (s-IHi; ISI ≈ 8–10 ms) or long 

latencies (L-IHi; ISI ≈ 40 ms), which are thought to be mediated by separate neural 

pathways (Reis et al., 2008; Ni et al., 2009). Regarding the mechanism at the receptor level, 

neurophysiological (TMS) research suggests that both s-IHi and L-IHi are mediated by post­

synaptic GABAB receptor activity (Daskalakis et al., 2002; Chen et al., 2003; Chen 2004; 

Kukaswadia et al., 2005). Although pharmacological studies strongly support the evidence 

for GABAB receptor involvement in L-IHi, results for s-IHi remain rather inconclusive, with 

evidence for both GABAA and GABAB receptor involvement (Kawaguchi 1992; Irlbacher 

et al., 2007). Both s-IHi and L-IHi predominantly employ callosal pathways (Boroojerdi et 
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al., 1996; Wahl et al., 2007; Reis et al., 2008; Ni et al., 2009), and for L-IHi these pathways 

might be indirect (e.g., multi-synaptic) (Ni et al., 2009; Levin et al., 2014).

Especially in choice RT tasks wherein action selection between hands is required, 

modulations of IHi are expected to play a pivotal role (Maes et al., 2017). Since M1 and 

the dorsal premotor cortex (PMd) are considered key structures during motor preparation 

(Schluter et al., 1998; Rushworth et al., 2003; Cisek and Kalaska 2005; Hoshi and Tanji 

2007; Kroeger et al., 2010; Hinder et al., 2012), investigating task-related IHi modulations 

between homologue M1s (M1-M1) and PMd-M1 is of particular interest in the context of 

between-hands choice RT. One study reported no effect of aging on the ability to modulate 

M1-M1 s-IHi and L-IHi during a simple unimanual RT task, whereas older adults exhibited 

a significantly greater modulation of PMd-M1 L-IHi, and to a smaller extent PMd-M1 s-IHi, 

than young adults (Hinder et al., 2012). Moreover, greater PMd-M1 IHi modulations in older 

adults predicted faster RTs, suggesting that aging might be associated with an increased 

reliance on the PMd to compensate for age-related slowing of RTs (Hinder et al., 2012; 

Stewart et al., 2014). Notably, (pre)motor-motor IHi modulations during bimanual choice 

RT tasks have so far only been investigated in young adults (Koch et al., 2006; O’Shea et 

al., 2007; Kroeger et al., 2010; Hinder et al., 2018). Moreover, to the best of the authors’ 

knowledge, no studies so far have used a design wherein both directions of M1-M1 and 

PMd-M1 s-IHi and L-IHi modulations were assessed during a choice RT task.

Whereas TMS determines phasic, synaptic GABA receptor-mediated activity, magnetic 

resonance spectroscopy (MRS) can reliably quantify total GABA+ (i.e., GABA with the 

contribution of co-edited macro-molecules) concentrations within specific brain regions in 

vivo (Puts and Edden 2012; Yasen et al., 2017; de Graaf 2019). Up to now, studies that 

aimed to identify age-related GABA+ level changes revealed mixed results. While several 

studies showed age-related reductions in GABA+ levels in multiple brain areas (Gao et 

al., 2013; Porges et al., 2017a; Chalavi et al., 2018; Hermans et al., 2018; Cassady et al., 

2019; Cuypers et al., 2020), other studies failed to do so (Mooney et al., 2017; Hermans 

et al., 2018; Ferland et al., 2019; Cuypers et al., 2020). Furthermore, associations between 

GABA+ levels in motor-related areas and behavior were identified (Boy et al., 2010; Sumner 

et al., 2010; Stagg et al., 2011; Hermans et al., 2018). Nevertheless, whether and how local 

GABA+ levels and task-related phasic neurotransmission interact is still poorly understood 

(Levin et al., 2014). Overall, past research mainly focused on mapping associations between 

TMS-derived measures of intracortical synaptic GABA transmission and MRS-derived total 

GABA+ levels within SMC and reported either a poor or no relationship (Stagg et al., 

2011; Tremblay et al., 2013; Dyke et al., 2017; Mooney et al., 2017; Hermans et al., 

2018; Ferland et al., 2019; Cuypers et al., 2020, et al. 2020). Remarkably, only Hermans 

and colleagues investigated the association between resting-state M1-M1 IHi and GABA+ 

levels in the originating SMC but reported no relationship (Hermans et al., 2018). In this 

respect, it is noteworthy that IHi is thought to be mediated by excitatory glutamatergic 

projections that cross the corpus callosum and synapse with local GABAergic interneurons 

in the contralateral target M1 (Daskalakis et al., 2002; Chen 2004; Irlbacher et al., 2007; 

Lee et al., 2007; Reis et al., 2008; Palmer et al., 2012). However, to the best of our 

knowledge, the association between ‘task-related’ IHi modulations and GABA+ levels in 

the target SMC has not been investigated to date. In sum, a bimodal approach combining 
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both MRS and TMS-derived measures for IHi during planning/performance of a motor 

task should deliver a complementary and more comprehensive understanding of how these 

neurochemical properties and neurophysiological processes predict human motor behavior 

(Maes et al., 2017; Cuypers et al., 2018; Cuypers and Marsman 2021).

The goals of the present study were threefold: (1) to investigate how TMS-assessed CSE 

modulations and bidirectional M1-M1 and PMd-M1 IHi modulations during a bimanual 

choice RT as well as MRS-assessed GABA+ levels in SMC are affected by aging; (2) to 

explore whether and how task-related TMS measures are related to SMC GABA+ levels; 

and (3) to identify to what extent SMC GABA+ levels, CSE modulations, and (pre)motor­

motor IHi modulations can predict RTs. We hypothesized reduced SMC GABA+ levels in 

older as compared to young adults, which might be related to altered task-related CSE and 

(pre)motor-motor IHi modulations as well as increases in RT during a bimanual choice RT 

task. We also expected that, within the older adults group, an increase in PMd-M1 IHi 

modulation would predict faster RTs.

2. Methods and materials

2.1. Participants

Twenty-five healthy young adults [aged 18–33 years, 22.08 ± 4.40 (mean ± SD); 12 

males] and twenty-eight healthy older adults [aged 60–74 years, 67.29 ± 4.16 (mean ± 

SD); 12 males] participated in this study. All participants were right-handed according 

to the Edinburgh Handedness Inventory (Oldfield 1971) [laterality quotient: 91.16 ± 

12.39 (mean ± SD)], reported no history of neurological, psychiatric, cardio-vascular, or 

neuromuscular disorders, were free of psychoactive (e.g., anti-depressants, -psychotics, 

-epileptics, sedatives, etc.) medications, and had normal or corrected-to-normal vision. The 

experimental protocol was approved by the Ethics Committee Research UZ/KU Leuven 

(project S58333) and was conducted according to the Declaration of Helsinki (1964) and 

its amendments (World Medical Association 2013). Prior to participation, all participants 

provided written informed consent and were screened for TMS and magnetic resonance 

imaging contraindications.

2.2. Experimental design

The study consisted of one MRS scanning session, followed by two TMS sessions. The 

time between the two TMS sessions was 7 days (median) with an interquartile range of 4 to 

11 days. During the MRS session, a structural T1-weighted image was obtained from each 

participant and GABA+ levels were measured in bilateral SMC using GABA-edited MRS. 

In the two subsequent sessions, a choice RT task was combined with a dsTMS procedure 

(Ferbert et al., 1992; Mochizuki et al., 2004; Koch et al., 2006; Ni et al., 2009; Fujiyama 

et al., 2016a), to assess task-related modulations in M1-M1 and PMd-M1 IHi. Within one 

TMS session, either M1-M1 or PMd-M1 IHi modulations were examined both from left to 

right and right to left hemisphere. The two TMS sessions were performed on two different 

days with a minimum of 48 h between them and their order was counterbalanced across 

participants.
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2.3. Magnetic resonance spectroscopy (MRS)

Scanning was performed on a Philips 3T Achieva MR scanner (Philips Healthcare, The 

Netherlands) with a 32-channel receiver head coil. The imaging protocol consisted of a 

high-resolution 3D magnetization-prepared rapid gradient echo (MPRAGE) T1-weighted 

structural image (TR = 9.6 ms; TE = 4.6 ms; voxel size = 0.98 × 0.98 × 1.20 mm3; field 

of view = 256 × 256 mm2; 160 sagittal slices; flip angle = 8°) that was obtained from each 

participant prior to the acquisition of MRS data. GABA-edited MRS data were acquired 

using the MEGA-PRESS spectral editing method (Mescher et al., 1998): 14-ms editing 

pulses at 1.9 (edit-ON) and 7.46 (edit-OFF) ppm; TR = 2000 ms; TE = 68 ms; 320 averages; 

2048 points; 2 kHz spectral width; MOIST water suppression. Sixteen water-unsuppressed 

averages were also automatically acquired with each voxel acquisition. The water signal 

was used as an internal concentration reference. The left and right SMC voxels (30 × 

30 × 30 mm3) were placed over the hand knob area (Yousry et al., 1997), parallel to 

the anterior-posterior axis. The MATLAB-based (R2019b, The MathWorks Inc., Natick, 

MA, 2000) Gannet (version 3.1.5) software toolkit (https://markmikkelsen.github.io/Gannet­

docs/index.html) (Edden et al., 2014) was used for offline data processing and GABA+ 

quantification. Processing steps and parameter selection were described in detail in (Cuypers 

et al., 2020). Tissue fractions (grey matter, white matter and cerebrospinal fluid) were 

obtained for each SMC voxel using SPM12 (Ashburner and Friston 2005). These tissue 

fractions were used to determine tissue-corrected GABA+ levels (in institutional units, i.u.) 

for each voxel. The alpha correction from Harris et al. (2015) was applied to account for 

the fact that there is about twice as much GABA in grey matter than in white matter 

(Mikkelsen et al., 2016). Additionally, the alpha-corrected GABA+ levels were normalised 

to the average voxel tissue composition of each age group (see Harris et al., 2015, Eq. 6). 

The group averages of tissue compositions and the fit error of the fitted GABA+ model, for 

both SMC voxels in both young and older adults are reported in Table 1.

2.4. Transcranial magnetic stimulation (TMS) and electromyographic (EMG) recording

2.4.1. TMS conditions—Five different TMS measures were acquired: CSE, M1-M1 

s-IHi, M1-M1 L-IHi, PMd-M1 s-IHi and PMd-M1 L-IHi. These measures were assessed at 

three different time points during a choice RT trial (see Fig. 1 A and section “Experimental 

protocol” for a detailed description of these time points). CSE was assessed using single­

pulse TMS (i.e., TS only) over M1 in both hemispheres. For the assessment of M1-M1 

IHi and PMd-M1 IHi, a dsTMS procedure was used, wherein a CS on M1 or PMd in the 

originating hemisphere preceded a TS on M1 in the target hemisphere at three different 

ISIs: 10 ms (M1-M1 s-IHi), 8 ms (PMd-M1 s-IHi) and 40 ms (M1-M1 L-IHi and PMd-M1 

L-IHi) (Mochizuki et al., 2004; Koch et al., 2006; O’Shea et al., 2007; Ni et al., 2009; 

Kroeger et al., 2010; Hinder et al., 2012; Fujiyama et al., 2016a). The CS and TS were 

delivered with two figure-of-eight coils (50 mm inner diameter of each wing), connected to 

a Magstim BiStim2 stimulator (Whitland, Dyfed, UK). IHi was examined in both directions: 

non-dominant M1 to dominant M1 (M1ND − M1D IHi); dominant M1 to non-dominant M1 

(M1D−M1ND IHi); non-dominant PMd to dominant M1 (PMdND−M1D IHi); or dominant 

PMd to non-dominant M1 (PMdD−M1ND IHi); see Fig. 1 B.
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To define the M1 “hotspot ” for TS delivery for each participant, an orthogonal 1 × 1 cm2 

coordinate grid was marked on a swimming cap with references to anatomical landmarks 

(i.e., left and right external auditory meatus, nasion, inion, and vertex). The hotspot was 

then defined as the scalp location from which 5 consecutive stimuli produced the highest 

and most consistent mean motor evoked potential (MEP) in the contralateral relaxed first 

dorsal interosseus (FDI) muscle. The stimulation intensity for the TS was set to the 

stimulator output necessary to evoke a MEP of ~1 mV peak-to-peak amplitude in the resting 

FDI muscle. The coil was rotated 45° lateral from the midline with the handle pointing 

posteriorly (Fig. 1 B) to induce a posterior-anterior electrical current in M1. The CS over 

M1 was delivered over the M1 hotspot, whereas PMd localization was defined based on 

a method similar to the one used in Bäumer et al., 2006; Koch et al., 2006; and Kroeger 

et al., 2010. Specifically, PMd was located at 8% of the nasion-inion distance anterior to 

the ipsilateral M1 hotspot. For the CS over either M1 or PMd, the coil was orientated 

perpendicular to the midline with the handle pointing laterally, to induce a latero-medial 

current in the brain (Fig. 1 B) (Ni et al., 2009). For all dsTMS conditions, CS intensity was 

set to 110% of the individual resting motor threshold (rMT) (Koch et al., 2006; Kroeger 

et al., 2010; Hinder et al., 2012; Fujiyama et al., 2016a). The rMT was defined as the 

lowest stimulation intensity required to elicit MEPs with an amplitude larger than 50 μV 

peak-to-peak in the resting FDI muscle in at least 5 of 10 consecutive trials when stimulating 

the hotspot (Rossini et al., 1994). Mean rMTs for both TMS sessions, hemispheres and age 

groups are summarized in Table 2.

To enable a precise online monitoring of the stimulated areas, the high resolution T1­

weighted anatomical image obtained from each participant in the MRI session was 

entered in a neuronavigation system to guide TMS (Brainsight, Rogue Research Inc, 

Montreal, Quebec, Canada). The mean MNI (Montreal Neurological Institute) coordinates 

corresponding to the stimulation sites on the scalp are summarized in Table 3.

2.4.2. EMG recording—EMG signals from the left and right FDI muscles were 

continuously monitored using EMG (Bagnoli-16, Delsys Inc, Boston, USA). To further 

ensure that the hand musculature was relaxed, the abductor digiti minimi muscle of both 

hands was monitored as well. The raw EMG signals were amplified (gain = 1000), filtered 

(band-pass 4–1500 Hz), eliminated for 50/60 Hz noise (Humbug, Quest Scientific, North 

Vancouver, Canada), digitized at 5000 Hz (CED Signal Version 4.03, Cambridge Electronic 

Design, Cambridge, UK), and stored on a laboratory computer for offline analysis.

2.5. Choice RT task

A pre-cued, bimanual choice RT task was used (Cuypers et al., 2020). Participants were 

seated on a chair with both forearms pronated on a platform, consisting of two pairs of 

contact switches: i.e., two home button switches (Honeywell V-7–2B17D8–162, operating 

force 0.10 N, Honeywell, Charlotte, USA) and two target switches (Omron Electronic 

Components D2FS-FL-N-T, operating force 0.25 N, Omron, Osaka, Japan). A signaling 

apparatus was positioned at eye level 1 m in front of the participant and consisted of a red 

light-emitting diode (LED) centrally at the top and two green LEDs at the bottom right and 

left corner, as illustrated in Fig. 1A. The red LED was used to display a neutral warning 
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signal (WS), whereas the right and left green LEDs were used to display the imperative 

signal (IS) for either a dominant (right) index finger response; a non-dominant (left) index 

finger response; a bilateral index finger response; or no response.

Participants had their index fingers resting on their respective home button switch. At the 

beginning of each trial, the WS was displayed for 500 ms (“preparatory period ”). Then, 

the WS was switched off and the IS was presented immediately for 1000 ms. According to 

the displayed IS, participants were instructed to react as fast as possible by abducting their 

dominant and/or non-dominant index finger(s) towards their respective target switch(es). 

After each trial, participants were instructed to reposition their finger(s) on the home 

button(s). In “no-response ” trials, during which the WS was not followed by any green 

light, participants were instructed to refrain from moving their index fingers. RT was defined 

as the time between IS onset and release of the home button switch. This period is referred 

to as the “premotor period ”. The intertrial interval (i.e., time between two WSs) varied 

randomly between 4 and 6 s.

2.6. Experimental protocol

The course of a TMS session is illustrated in Fig. 1C. In the first TMS session only, a 

familiarization block of 40 choice RT trials without TMS (12 dominant response trials, 

12 non-dominant response trials, 12 bimanual response trials, and 4 no-response trials in 

random order) was implemented. Before starting the main experiment in both TMS sessions, 

all participants performed an identical “no-TMS block ”, to calculate the average time 

between the IS and EMG onset in the responding muscle for each participant, required to set 

the TMS timing for stimulating at approximately 75% of the EMG onset.

After this no-TMS block, the main experiment started in which the choice RT task was 

combined with TMS to examine task-related modulations in CSE and IHi. The main 

experiment of each session consisted of six blocks. In three consecutive blocks, IHi was 

measured from the dominant to the non-dominant hemisphere, while in the three other 

consecutive blocks, IHi was measured from the non-dominant to the dominant hemisphere. 

The order of the direction of IHi measurement was counterbalanced across participants of 

each age group.

Each experimental block consisted of 78 choice RT trials that were presented in a random 

order, of which 72 trials were performed with TMS. During a trial with TMS, the time 

point of TS delivery was either at the onset of WS, at the onset of the IS, or at 75% of the 

expected time for voluntary EMG onset in the responding FDI muscle (referred to as time 

point 75%EMG); see Fig. 1 A. The first time point (WS) served as a baseline measurement. 

The second time point (IS) was chosen because CSE suppression is expected to become 

most prominent in anticipation of the IS (e.g., Bestmann and Duque 2016; Lebon et al., 

2016). Finally, the third time point (75%EMG) was selected since it was expected that CSE 

facilitation (in case that the targeted FDI was selected for movement, either unimanually 

or bimanually) or inhibition (in case that the targeted FDI was not selected for movement, 

either during a unimanual response of the non-targeted FDI or during no response) would 

reach its peak around this time point (e.g., Cuypers et al., 2013). Specifically, the 72 trials 

with TMS consisted of 12 TMS trials delivered at time point WS; 12 TMS trials at time 
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point IS; and 48 trials at time point 75%EMG. The 12 TMS trials at time point WS and 

IS each consisted of 4 (always consisting of a dominant, non-dominant, bimanual, and 

no-response trial) TS only trials; 4 CS + TS trials for s-IHi assessment; and 4 CS + TS 

trials for L-IHi assessment. The 48 trials at time point 75%EMG consisted of 16 (always 

consisting of 4 dominant, 4 non-dominant, 4 bimanual, and 4 no-response trials) TS only 

trials; 16 CS + TS trials for s-IHi assessment; and 16 CS + TS trials for L-IHi assessment. 

Finally, the remaining 6 trials of each experimental block (i.e., 2 dominant, 2 non-dominant, 

and 2 bimanual response trials) were performed without TMS delivery. Trials without TMS 

were included in order to obtain an unbiased measure for RT as it has been shown that TMS 

delivery prior to the onset of voluntary movement can influence RT (Pascual-Leone et al., 

1992; Leocani et al., 2000).

2.7. Data processing

From the total of 28 included older adults in this study, two older adults did not start the 

TMS sessions since they had a rMT > 80%. Therefore, RT data were collected from 26 older 

adults [aged 60–74 years, 67.42 ± 4.29 (mean ± SD); 11 males]. RTs were calculated from 

the trials without TMS, as the TMS pulse can influence RT (Pascual-Leone et al., 1992). 

Trials with erroneous or premature responses, and trials with RTs exceeding 1400 ms were 

discarded. These criteria resulted in an elimination of 6.72 ± 11.37% (mean ± SD) and 10.56 

± 8.43% (mean ± SD) of the RT data for young and older adults, respectively.

For TMS analysis, one older adult exhibited excessive muscle activity prior to TS delivery 

in more than 80% of the choice RT trials and was therefore excluded from TMS data 

analysis. Therefore, the sample of older adults for the TMS data analysis comprised 25 

participants [aged 60–74 years, 67.48 ± 4.37 (mean ± SD); 11 males]. MEPs were excluded 

from analysis in case of (1) either premature or incorrect response to the choice RT task; (2) 

if they occurred after the onset of voluntary EMG activity in the FDI or ADM muscle; (3) 

if they did not appear in a window 10–50 ms after the onset of TMS; (4) if the root mean 

square of the EMG signal in at least one of the four monitored muscles exceeded 20 μV 

during the 50 ms period immediately preceding the onset of the TS (i.e., high background 

EMG) (see also Cuypers et al., 2020). In total, 8.67 ± 10.98% (mean ± SD) of all MEPs 

were excluded for the young adults and 13.72 ± 8.64% (mean ± SD) for older adults (p = 

0.004, Wilcoxon Rank Sum test).

CSE was assessed in terms of the average peak-to-peak MEP amplitude in the target FDI 

muscle in TS only trials. MEPs at WS and IS were averaged across all response trials 

and for each participant. MEPs at the expected time point of 75%EMG in the premotor 

period were averaged for each participant across all trials of the same required response 

(i.e., dominant response, non-dominant response, bimanual response, or no response). CSE 

modulations in the preparatory and the premotor period were calculated using the following 

equations: (1) CSENORM(prep ) =
CSEIS

CSEWS
 for CSE modulation in the preparatory period; and 

(2) CSENORM(prem) =
CSE75 % EMG

CSEIS
 for CSE modulation in the premotor period. Here, values 

> 1 indicate an increase of CSE from WS to IS or from IS to the end of the premotor 

period (i.e., a relative CSE facilitation of the FDI muscle) whereas values < 1 indicate a 
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decrease of CSE from WS to IS or from IS to the end of premotor period (i.e., a relative CSE 

suppression).

As for CSE, IHi measured at WS and IS was averaged across all trials and for each 

participant; and IHi at time point 75%EMG was averaged for each participant across all 

trials of the same required responses. IHi modulations in the preparatory and premotor 

period were calculated using the following equations: (1) IHiNORM(prep) =
IHiIS

IHiWS
 for 

IHi modulation in the preparatory period; and (2) IHiNORM prem =
IHi75%EMG

IHiIS
 for IHi 

modulation in the premotor period. Values > 1 indicate a relative disinhibitory/facilitatory 

IHi modulation from WS to IS or from IS to the end of the premotor period, whereas values 

< 1 indicate a relative inhibitory IHi modulation from WS to IS or from IS to the end of 

premotor period.

2.8. Statistical analyses

The statistical software RStudio (version 1.3.959, RStudio Team 2020) was used to perform 

all statistical analyses.

2.8.1. Aging effects—Aging effects were analysed using linear mixed effects models 

(nlme package, version 3.1–131, Pinheiro et al., 2017), with SUBJECT added in each 

model as a random intercept, to account for repeated measures within one subject. The 

original models included all 2-way and 3-way interaction effects, which were then simplified 

by stepwise model building (i.e., removing stepwise non-significant interaction effects). 

Significant interaction and/or main effects in the final models were further explored 

using Tukey HSD post hoc pairwise comparisons, which control for multiple comparisons 

(emmeans package, version 1.3.0, Lenth 2018). The level of significance was set at α < 0.05.

2.8.1.1. Choice RT performance.: RT was analysed by a 2 [AGE: Young vs. Older] × 3 

[RESPONSE: non-dominant vs. dominant vs. bimanual] linear mixed model, with AGE and 

RESPONSE as fixed effects.

2.8.1.2. Task-related TMS measures.: For analysing task-related modulations in CSE, 

M1-M1 and PMd-M1 IHi, the factor TARGET HEMISPHERE was added. TARGET 

HEMISPHERE has two levels (“dominant ” versus “non-dominant ”) and is defined as the 

hemisphere of TS delivery. For CSE, there was no difference in task-related MEP sizes 

between the two TMS sessions (p > 0.42). Therefore, the CSE data of both sessions were 

collapsed to increase the statistical power of the further analyses.

CSENORM(prep) was analysed by a 2 [AGE: Young vs. Older] × 2 [TARGET 

HEMISPHERE: dominant vs. non-dominant] linear mixed model, with AGE and TARGET 

HEMISPHERE as fixed effects. For analysing M1-M1 IHiNORM(prep) and PMd-M1 

IHiNORM(prep), we additionally added the fixed effect IHi TYPE (2 levels: s-IHi vs. L-IHi) to 

differentiate between the two types of IHi assessment.
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CSENORM(prem) was analysed by a 2 [AGE: Young vs. Older] × 2 

[TARGET HEMISPHERE: dominant vs. non-dominant] × 4 [HAND ACTION: 

selectedunimanual response vs. non-selectedunimanual response vs. bimanual vs. no response] 

linear mixed model, with AGE, TARGET HEMISPHERE and HAND ACTION added as 

fixed effects. Similarly, we analysed M1-M1 IHiNORM(prem) and PMd-M1 IHiNORM(prem), 

with the fixed effect IHi TYPE [s-IHi vs. L-IHi] added into the model.

Direct comparisons of the absolute levels of CSE, M1-M1 s-IHi, M1-M1 L-IHi, PMd-M1 

s-IHi, and PMd-M1 L-IHi at WS and IS between age groups are provided in the appendix 

(see Tables A.1 and A.2).

2.8.1.3. GABA+ levels.: GABA+ levels in bilateral SMC were analysed using a 2 [AGE: 

Young vs. Older] × 2 [VOXEL: SMCD vs. SMCND] linear mixed model, with AGE and 

VOXEL implemented as fixed effects.

2.8.2. Associations between SMC GABA+ levels and task-related TMS 
measures—Exploratory correlational analyses were performed to investigate the 

correlation between task-related TMS measures and GABA+ levels in the target SMC. If 

the assumption of normality of the data (Shapiro-Wilk test) was met, Pearson’s r correlations 

were calculated. Otherwise, Spearman’s ρ correlations were used. All correlations were 

clustered per family of tests (i.e., by age group and TMS measure). A false discovery 

rate (FDR) correction method (Benjamini and Hochberg 1995) was applied to correct for 

multiple testing within each cluster.

2.8.3. Predicting RT—Multiple linear regression models (stats package, version 

3.4.1, R Core Team 2017) were built for predicting RT of a unimanual dominant 

hand and non-dominant hand response, for young and older adults separately. A 

step-wise selection procedure was used, employing a combined forward-backward 

F–test-based selection criterion. For controlling multi-collinearity, Variance Inflation 

Factor (VIF) scores were calculated and were considered problematic if > 10. 

For the dominant hand RT model, the included predictor candidates were TMS­

derived CSENORM(prep),D, M1ND−M1D s-IHiNORM(prep), M1ND−M1D L-IHiNORM(prep), 

PMdND−M1D s-IHiNORM(prep) and PMdND−M1D L-IHiNORM(prep) during the preparatory 

period; CSENORM(prem),D, M1ND−M1D s-IHiNORM(prem), M1ND−M1D L-IHiNORM(prem), 

PMdND−M1D s-IHiNORM(prem) and PMdND−M1D L-IHiNORM(prem) during the premotor 

period in the trials with a unimanual selection of the dominant FDI; and MRS-derived 

SMCD GABA+ and SMCND GABA+. For non-dominant hand RT prediction, the respective 

predictor candidates were CSENORM(prep),ND, M1D−M1ND s-IHiNORM(prep), M1D−M1ND 

L-IHiNORM(prep), PMdD−M1ND s-IHiNORM(prep) and PMdD−M1ND L-IHiNORM(prep) during 

the preparatory period; CSENORM(prem),ND, M1D−M1ND s-IHiNORM(prem), M1D−M1ND L­

IHiNORM(prem), PMdD−M1ND s-IHiNORM(prem) and PMdD−M1ND L-IHiNORM(prem) during 

the premotor period in the trials with a unimanual selection of the non-dominant FDI; 

SMCND GABA+ and SMCD GABA+.
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3. Results

3.1. Aging effects

3.1.1. Choice RT performance—Fig. 2 displays the performance by age group and 

response condition. There was a significant AGE × RESPONSE interaction effect (F(2,98) = 

3.23, p = 0.04), indicating that the effect of RESPONSE on RT differed between age groups. 

Post hoc Tukey contrasts yielded that for all response conditions, older adults (mean RT ± 

SD = 419 ± 63 ms) were slower than young adults (mean RT ± SD = 334 ± 67 ms, all p < 

0.004). Only in older adults, RTs for a bimanual response (mean RT ± SD = 407 ± 58 ms) 

were faster than RTs for a non-dominant hand response (mean RT ± SD = 431 ± 69 ms; t(96) 

= −3.45, p = 0.01). All other pairwise comparisons between response conditions within an 

age group yielded no significant differences (all p > 0.51).

3.1.2. Task-related TMS measures

3.1.2.1. CSE modulations.: Results for CSENORM during the preparatory and premotor 

period are illustrated in Fig. 3 A.

For CSE modulation during the preparatory period, the AGE × TARGET HEMISPHERE 

interaction just failed to reach significance (F(1,48) = 3.76, p = 0.06). There was a significant 

main effect of AGE (F(1,48) = 6.08, p = 0.02), with significantly lower CSENORM(prep) in 

young adults (mean ± SD = 0.74 ± 0.20) than in older adults (mean ± SD = 0.92 ± 0.38). 

An exploratory post hoc test of the AGE × TARGET HEMISPHERE interaction factor 

suggested that the main effect of AGE was mainly driven by age differences of CSENORM 

in the non-dominant hemisphere (t(48) = 3.11, p = 0.003), rather than in the dominant 

hemisphere (t(48) = 1.12, p = 0.27, and see Fig. 3 A). There was no significant main effect of 

TARGET HEMISPHERE (F(1,49) = 0.03, p = 0.87).

The model for CSE modulation during the premotor period only yielded a main effect of 

HAND ACTION (F(3346) = 29.72, p < 0.001). Post hoc Tukey contrasts yielded significantly 

higher CSENORM(prem) when the target FDI was selected for movement either during a 

unimanual (mean ± SD = 1.46 ± 0.65) or bimanual response (mean ± SD = 1.50 ± 

0.74), than when the target FDI was required not to move either in the unimanual (“non­

selectedunimanual response”, mean ± SD = 1.13 ± 0.37) or “no response ” condition (mean ± 

SD = 0.99 ± 0.24, all p < 0.001), irrespective of age group and targeted hemisphere. The 

remaining two contrasts yielded no significant differences (both p > 0.12). All other main 

and interaction effects were not significant (all p > 0.36).

In sum, the results indicated a reduced bilateral CSE suppression in older, as compared to 

young adults during the preparatory period. In the premotor period, the facilitatory CSE 

modulation in anticipation of a unimanual (selected) or bimanual response did not differ 

between age groups and hemispheres.

3.1.2.2. M1-M1 IHi modulations.: M1-M1 IHiNORM results during the preparatory and 

premotor period are presented in Fig. 3 B.
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The model for M1-M1 IHi modulation during the preparatory period yielded two significant 

main effects. The main effect of AGE (F(1,48) = 5.03, p = 0.03) indicated higher 

IHiNORM(prep) in young adults (mean ± SD = 1.19 ± 0.39) as compared to older adults 

(mean ± SD = 1.06 ± 0.41), irrespective of TARGET HEMISPHERE and IHi TYPE. An 

additional exploratory analysis revealed that age differences in M1-M1 IHiNORM were the 

largest for M1ND−M1D L-IHi (t(48) = −2.15, p = 0.03, and see Fig. 3B). The main effect of 

IHi TYPE (F(1140) = 17.21, p < 0.001) showed higher IHiNORM(prep) values for L-IHi (mean 

± SD = 1.24 ± 0.44) as compared to s-IHi (mean ± SD = 1.01 ± 0.33). Neither the main 

effect of TARGET HEMISPHERE, nor the interaction effects were significant (all p > 0.19).

The model for M1-M1 IHi modulation during the premotor period yielded two significant 

interaction effects. The AGE × HAND ACTION interaction effect (F(3704) = 2.78, p = 

0.04) showed that the age effect was task-dependent. However, all post hoc pairwise Tukey­

corrected comparisons yielded no further differences between the combined (AGE × HAND 

ACTION) groups (all p > 0.45). Post hoc tests for the significant HAND ACTION × 

IHi TYPE interaction effect (F(3704) = 2.99, p = 0.03) indicated, irrespective of AGE and 

TARGET HEMISPHERE, higher IHiNORM(prem) values for s-IHi (mean ± SD = 1.20 ± 

0.48) than for L-IHi (mean ± SD = 0.99 ± 0.32) when the targeted FDI was selected for 

unimanual movement (t(704) = −4.15, p = 0.001). Similarly, higher IHiNORM(prem) values for 

s-IHi (mean ± SD = 1.21 ± 0.39) than for L-IHi (mean ± SD = 1.04 ± 0.36) were observed 

during a bimanual response (t(704) = −3.12, p = 0.04). All other interaction effects and the 

main effect of TARGET HEMISPHERE were not significant (all p > 0.08).

To summarize, during the preparatory period, bidirectional disinhibitory M1-M1 IHi 

modulations were more prominent for L-IHi as compared to s-IHi. In older adults, the 

magnitude of this disinhibitory modulation was lower than in young adults. In contrast, 

irrespective of age, bidirectional disinhibitory IHi modulations during the premotor period 

were more prominent for s-IHi, as compared to L-IHi, when a unimanual (selected) or 

bimanual response was required.

3.1.2.3. PMd-M1 IHi modulations.: Fig. 3 C illustrates the task-related PMd-M1 IHi 

modulations during the preparatory and premotor period.

For PMd-M1 IHi modulation during the preparatory period, the main effect of IHi TYPE 

(F(1140) = 9.61, p = 0.002) showed significantly higher IHiNORM(prep) values for L-IHi (mean 

± SD = 1.13 ± 0.39) than for s-IHi (mean ± SD = 0.99 ± 0.29), irrespective of AGE and 

TARGET HEMISPHERE. Age differences in PMd-M1 IHiNORM(prep) were significantly 

dependent on which M1 was targeted (AGE × TARGET HEMISPHERE interaction effect: 

F(1140) = 4.18, p = 0.04). A post hoc test suggested that, irrespective of IHi TYPE, in 

young adults PMdD−M1ND IHiNORM(prep) was higher than in older adults, but this result 

just failed to reach significance (t(48) = −2.58, p = 0.06). An additional exploratory analysis 

revealed that this AGE × TARGET HEMISPHERE interaction effect was mainly driven by 

age differences in PMdD−M1ND L-IHiNORM (t(48) = −2.22, p = 0.03, and see Fig. 3 C). All 

other interaction effects were not significant (all p > 0.21).

Verstraelen et al. Page 13

Neuroimage. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The model for PMd-M1 IHi modulation in the premotor period yielded a significant AGE 

× TARGET HEMISPHERE × IHi TYPE interaction effect (F(1699) = 8.14, p = 0.005). 

Tukey-corrected post hoc tests indicated significantly higher IHiNORM(prem) values for 

PMdD−M1ND s-IHi in older adults (mean ± SD = 1.28 ± 0.51) than young adults (mean 

± SD = 1.00 ± 0.29, t(48) = 4.97, p < 0.001). In older adults, IHiNORM(prem) for s-IHi was 

significantly greater for PMdD−M1ND than for PMdND−M1D (mean ± SD = 0.98 ± 0.34, 

t(699) = −6.10, p < 0.001), and IHiNORM(prem) for PMdD−M1ND s-IHi was greater than for 

PMdD−M1ND L-IHi (mean ± SD = 1.13 ± 0.43, t(699) = 3.13, p = 0.04). Interestingly, this 

pattern was independent of HAND ACTION (4-way interaction effect: F(6687) = 0.37, p = 

0.90). The remaining interaction effects and the main effect of HAND ACTION were not 

significant (all p > 0.09).

In sum, as for M1-M1 IHi modulations during the preparatory period, bidirectional 

disinhibitory PMd-M1 IHi modulations were more prominent for L-IHi as compared to 

s-IHi. In older adults, the magnitude of the disinhibitory PMdD−M1ND IHi modulation 

tended to be lower than in younger adults. During the premotor period, older adults 

showed significantly greater disinhibitory PMdD−M1ND s-IHi modulation than young 

adults, irrespective of the upcoming response.

3.1.3. GABA+ levels—Individual GABA+ spectra, exemplary voxel positions and 

GABA+ levels by AGE and VOXEL are illustrated in Fig. 4. The linear mixed model 

yielded a main effect of AGE (F(1,48) = 14.32, p < 0.001) indicating that, irrespective of 

voxel, GABA+ levels in young adults (mean ± SD = 2.42 ± 0.23 i.u.) were on average 

significantly higher than in older adults (mean ± SD = 2.20 ± 0.27 i.u., t(48) = −3.78, p 
< 0.001). The main effect of VOXEL and the AGE × VOXEL interaction effect were not 

significant (F(1,46) = 0.08, p = 0.76 and F(1,45) = 0.04, p = 0.83, respectively).

3.2. Associations between SMC GABA+ levels and task-related TMS measures

Older adults with higher target SMC GABA+ levels exhibited significantly lower 

IHiNORM(prem) values for PMdND−M1D L-IHi when the dominant FDI was required not 

to move during a unimanual response of the non-dominant FDI (Pearson’s r = −0.62, 

FDR-corrected p = 0.02, Fig. 5).

There were no other significant associations between target SMC GABA+ levels and task­

related CSE, M1-M1 IHi and PMd-M1 IHi modulations after FDR correction for multiple 

testing (see Tables A.3–A.7 in the appendix for uncorrected p-values).

3.3. Predicting RT

In young adults, model building for RT of the dominant FDI resulted in one significant 

predictor, which was M1ND−M1D s-IHi modulation during the premotor period of a 

response with the dominant FDI (F(1,17) = 6.34, β = 0.07, p = 0.02, Adj. R2 = 0.23), 

indicating more disinhibitory M1ND−M1D s-IHi modulation was related to longer RTs; see 

Table 4. For RT of the non-dominant FDI, none of the predictor candidates were significant 

in younger adults (all p > 0.09).
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In older adults, model building for RT of the dominant FDI resulted in three significant 

predictors (F(3,12) = 8.95, p = 0.002, Adj. R2 = 0.61); see Table 5. Specifically, this model 

indicated that longer RTs of the dominant FDI were related to higher SMC GABA+ levels 

in the dominant hemisphere (β = 0.09, p = 0.02), lower SMC GABA+ levels in the non­

dominant hemisphere (β = −0.22, p < 0.001), and more disinhibitory M1ND−M1D L-IHi 

modulation during the preparatory period (β = 0.10, p = 0.02). The highest VIF score was 

1.53. The model for the non-dominant FDI RT prediction also yielded three significant 

predictors (F(3,10) = 11.5, p = 0.001, Adj. R2 = 0.71); see Table 6. More specifically, during 

the preparatory period, longer RTs were related to more disinhibitory M1D−M1ND L-IHi 

modulation (β = 0.08, p = 0.01) and less disinhibitory PMdD−M1ND L-IHi modulation (β 
= −0.16, p < 0.001). During the premotor period, more CSEND facilitation predicted faster 

RTs of a non-dominant FDI response (β = −0.12, p < 0.001). The highest VIF score for this 

model was 2.05.

4. Discussion

The present study yielded three major findings. First, aging effects were present for both 

TMS-derived measures for neurophysiological modulation, as well as for GABA+ levels 

in the primary motor areas. More specifically, older adults exhibited a reduced bilateral 

CSE suppression, and a reduced magnitude in bidirectional long latency interhemispheric 

(pre)motor-motor disinhibition during the preparatory period, as compared to young adults. 

Moreover, GABA+ levels in bilateral SMC were reduced in older as compared to young 

adults. Second, only in older adults, the exploratory correlational analyses indicated multiple 

associations between SMC GABA+ levels and task-related neurophysiological modulations. 

However, most associations did not survive the p-value correction for multiple testing. Third, 

according to the regression analyses, (slower) RTs within the older adults’ group could 

at least in part be explained by SMC GABA+ levels and task-related neurophysiology. 

Remarkably, in young adults, neither physiological (pre)motor-motor modulations, nor RTs 

were dependent on SMC GABA+ levels.

4.1. Age-related differences in neurophysiological modulations underlying increases in 
reaction time and the role of SMC GABA+ levels

4.1.1. Preparatory period—Overall, age-related differences in neurophysiology were 

most prominent during the preparatory period as compared to the premotor period (see also 

Cuypers et al., 2013; Cuypers et al., 2020). In accordance with findings of previous studies, 

the current results indicated a CSE suppression during the preparatory period (Hasbroucq et 

al., 1997; Touge et al., 1998; Sinclair and Hammond 2008; Duque and Ivry 2009; Kroeger et 

al., 2010; Hinder et al., 2012, 2018; Cuypers et al., 2013; Duque et al., 2014; Bestmann and 

Duque 2016; Klein et al., 2016). Importantly, the respective CSE suppression was reduced in 

older as compared to young adults, supporting our previous work (Cuypers et al., 2013).

Regarding the role of bilateral CSE suppression during the delayed period following a 

non-informative cue, two non-mutually exclusive hypotheses have been proposed (Bestmann 

and Duque 2016; Duque et al., 2017). First, CSE suppression might serve to reduce noise 

during motor preparation in order to assist the gain of excitatory inputs against a more 
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quiescent background (Greenhouse et al., 2015; Quoilin and Derosiere 2015; Duque et al., 

2017). In this view, an age-related decline in CSE suppression might reflect less effective 

background noise reduction. This could at least in part be reconciled with the hypothesis 

of age-related brain dedifferentiation (Cabeza 2002; Goh 2011; Grady 2012; King et al., 

2017; Cassady et al., 2019). More specifically, brain dedifferentiation refers to a reduced 

distinctiveness and increased activation of brain regions across various cognitive and motor 

tasks in older adults. Interestingly, findings of Cassady et al. (2019) strongly suggest that 

age-related brain dedifferentiation might be a direct consequence of reduced SMC GABA 

levels. Results of the current study indeed indicated lower GABA+ levels in bilateral SMC 

in older as compared to young adults at the group level. Furthermore, in line with the 

dedifferentiation hypothesis, lower GABA+ levels (thus, possibly implying increased noise) 

in the non-dominant SMC predicted slower RTs of the dominant hand within the older adults 

group. The same association was observed between non-dominant SMC GABA+ levels and 

RTs of the non-dominant hand, but this result failed to reach significance (p = 0.08). Second, 

CSE suppression of a potentially selected effector could represent a mechanism for “impulse 

control ”, which entails a process that operates by temporarily inhibiting excitability at the 

spinal level (Touge et al., 1998; Hasbroucq et al., 1999; Duque et al., 2010; Kroeger et al., 

2010). Impulse control thereby allows cortical excitatory preparatory processes to unfold 

without causing a premature release of the actual movement (Duque et al., 2017). Consistent 

with this hypothesis, our data showed that an overall disinhibition (rather than facilitation, 

see Figs. A.2 and A.3 in the appendix) of long latency M1-M1 and PMd-M1 IHi co-occurred 

with the CSE suppression in the target M1 in both age groups (see also Hinder et al., 2012, 

2018). Remarkably, older adults exhibited reduced disinhibitory modulations of L-IHi (i.e., 

less release of inhibition) for both PMd-M1 and M1-M1 interactions, apparently due to 

a reduced baseline inhibitory tone (Figs. A.2 and A.3, and Table A2). Interestingly, an age­

related reduction in resting-state intra-cortical inhibition is suggested to predict a reduced 

capacity to modulate inhibitory processes during a motor task, which relates to motor 

function declines (Heise et al., 2013). In our experiment, however, we did not probe baseline 

measures at complete rest, but at the start of each trial to control for the processes related to 

the task-driven increases in attention (Kastner et al., 1999; Labruna et al., 2011; Vassiliadis 

et al., 2020). An interesting hypothesis for future research would be to investigate to what 

extent our observed relation between motor performance and (dis)inhibitory fronto-motor 

modulations are driven by the inhibitory state measured at baseline. Overall, since L-IHi 

in rest appears not to be affected by aging (Talelli et al., 2008; Hermans et al., 2018), the 

present findings are indicative for an age-related difference in the task-related modulatory 

capacity of the GABAB receptor-mediated neuronal circuit. Accordingly, earlier studies 

reported age-related reductions in M1-M1 L-IHi modulation during voluntary contraction 

of the non-targeted homologue muscle (Talelli et al., 2008) and reduced modulations in 

contralateral silent period during a hand-foot coordination task (Fujiyama et al., 2009), 

denoting altered GABAB receptor activity under motor task conditions (Reis et al., 2008).

An intriguing result in older adults during the preparatory period was the discrepancy 

between modulation of bidirectional M1-M1 L-IHi and PMdD−M1ND L-IHi and their 

relation to RT performance. More specifically, in older adults, stronger long latency M1­

M1 disinhibition was related to slower RTs, whereas stronger long latency PMdD−M1ND 
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disinhibition was associated with faster RTs. The former result was rather unexpected, 

since young adults showed higher long latency M1-M1 disinhibition than older adults, but 

faster RTs. One could therefore speculate that M1-M1 disinhibition during the preparatory 

period in older adults reflects dysfunctional activation spreading. This was supported by 

an additional a-posteriori analysis, correlating preparatory M1-M1 L-IHi modulations with 

preparatory CSE modulations (see Fig. A6). Specifically, results indicated that only in young 

adults more long latency M1-M1 disinhibition was related to more CSE suppression, while 

no significant relation was observed in older adults.

Since the global preparatory CSE suppression likely contributes to a more quiescent 

background in the M1 area, a reduced CSE suppression combined with a reduced long 

latency PMd-M1 disinhibition suggests a lower signal-to-noise ratio in older adults in the 

target M1. This is supported by the finding that older adults with greater PMdD−M1ND 

disinhibition exhibited faster RTs. Since the respective PMdD−M1ND L-IHi modulation was 

only significantly related to RT in older, but not in young adults, the present findings are 

consistent with an overall increased reliance on premotor areas in older adults during the 

preparatory period (see also Berchicci et al., 2012; Hinder et al., 2012; Stewart et al., 2014).

4.1.2. Premotor period—Whereas CSE suppression during the preparatory period was 

reduced in older as compared to young adults, both age groups showed a comparable CSE 

facilitation towards EMG onset in the premotor period (see also Cuypers et al., 2013). More 

specifically, the bilateral CSE suppression during the preparatory period was followed by a 

CSE facilitation towards EMG onset in the premotor period during a (selected) unimanual 

or bimanual response (see also Fig. A1). This observation substantiates earlier reported 

CSE dynamics during both simple (Chen and Hallett 1999; Leocani et al., 2000; Levin et 

al., 2011; Hinder et al., 2012) and choice RT tasks (Duque et al., 2005, 2014; Duque and 

Ivry 2009; Kroeger et al., 2010; Cuypers et al., 2013; Bestmann and Duque 2016; Klein et 

al., 2016; Hinder et al., 2018). It has been argued that the discrepancy in CSE modulation 

between selected and non-selected response options reflects a competitive process that 

serves to assist action selection (Bestmann and Duque 2016; Duque et al., 2017). Notably, 

only in older adults, more CSE facilitation in the non-dominant hemisphere predicted faster 

non-dominant FDI RTs. Fujiyama et al. (2012) reported a similar association between CSE 

facilitation in the dominant hemisphere in the late premotor period and dominant FDI RT 

using a simple go/no-go task in older, but not in young adults.

As for CSE modulations, M1-M1 IHi modulations were not affected by aging during 

the premotor period, which is in accordance with the results of Hinder et al. (2012) 

who used a simple pre-cued RT task. Strikingly, in young adults, greater short latency 

M1ND−M1D disinhibition was predictive for slower RTs of the dominant FDI. In an 

additional a-posteriori analysis, results indicated that greater short latency M1ND−M1D 

disinhibition during the premotor period was related to less facilitatory modulation of CSE 

of the dominant M1 in young adults (see Fig. A7). Together, these findings suggest that the 

conditioning M1 is not facilitating subsequent movement initiation directly through target 

M1 CSE facilitation. Along these lines, a recent study reported that young adults with more 

resting-state M1-M1 short and long latency interhemispheric inhibition exhibited higher 

resting-state CSE in the target M1 by means of MEP recruitment curves, suggesting that the 
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ability to recruit a larger number of corticospinal pathways within the target M1 is related 

to the ability to activate local inhibitory circuits (Hermans et al., 2018). Interestingly, some 

studies suggest M1-M1 IHi modulations to be engaged in maintaining a continuous intrinsic 

state of inhibition towards movement onset (Kroeger et al., 2010; Liuzzi et al., 2010). In this 

view, the observed relationship between M1-M1 IHi modulations and RT or CSE could be 

interpreted as a role of the conditioning M1 in controlling the background noise in the target 

M1 to an optimal level, which assists the gain of excitatory processes, expressed by the CSE 

modulation towards facilitation (Duque et al., 2017).

Regarding PMd-M1 IHi modulations in older adults, the present study yielded two notable 

results. First, higher GABA+ levels in the dominant SMC were significantly related to 

lower PMdND−M1D L-IHiNORM during the premotor period, when the target (dominant) 

FDI was required not to respond (i.e., during a unimanual response condition of the non­

targeted, non-dominant FDI). More specifically, the data suggest that higher GABA+ levels 

in the dominant SMC were associated with PMdND−M1D L-IHi modulation towards more 

inhibition, while lower GABA+ levels were related to modulation towards disinhibition and 

even facilitation. A plausible hypothesis to be tested in future studies is that more inhibitory 

PMd-M1 L-IHi modulation contributes to performance in terms of low error rate, i.e., by 

suppressing the intrinsic tendency for mirror movements (e.g., Swinnen 2002; Swinnen and 

Wenderoth 2004; Boisgontier et al., 2014) when the effector is not selected for movement.

A second prominent finding was that PMdD−M1ND s-IHi modulation was disinhibitory/

facilitatory in older, but not in young adults (see also Fig. A5 in the appendix). In line 

with this result, Hinder et al. (2012) reported PMdD−M1ND disinhibitory modulations 

between IS onset and response initiation to be present in older adults only. The most 

plausible explanation for the age-related increase in disinhibitory/facilitatory PMdD−M1ND 

s-IHi modulation during the premotor period could be that it reflects an overall increased 

recruitment of premotor areas in older adults (Berchicci et al., 2012; Hinder et al., 

2012; Stewart et al., 2014). However, whether this increased PMd recruitment is either 

compensatory or dysfunctional is hard to determine since no relation with RT was evident 

in the current data. Notably, findings of Hinder et al. (2012) suggested that in older adults 

more PMd-M1 disinhibition early in the preparatory period was related to faster RTs, 

while more PMd-M1 disinhibition in the late premotor period was related to slower RTs. 

This suggests that early PMd-M1 disinhibition is beneficial, whereas on the contrary, late 

PMd-M1 disinhibition is detrimental for fast motor responses. In accordance, results of an 

additional a-posteriori analysis showed that in both age groups more PMdD−M1ND s-IHi 

disinhibition was related to less CSEND facilitation during the premotor period (see Fig. A8 

in the appendix). Since in older adults, less CSEND facilitation was predictive for slower 

RTs, this additional analysis supports indirectly the hypothesis that age-related increases 

in PMd-M1 disinhibition in anticipation of a motor response are detrimental, rather than 

beneficial for fast RTs.

4.1.3. Age-related differences in the role of SMC GABA+ levels—In contrast 

to young adults, SMC GABA+ levels in older adults explained at least in part both 

task-related physiological modulations, as well as RT. One could therefore speculate that 

when GABA levels fall below a critical limit, as it might be the case in older adults, 
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the consequent lower signal-to-noise ratio becomes a critical factor in the effectiveness 

of the (pre)motor-motor modulatory capacity and motor behavioural output. On the other 

hand, if GABA levels reach above that critical limit, a further increase in GABA levels 

would not affect physiological dynamics and motor behavior. Likewise, this would explain 

why SMC GABA levels did neither predict RT (Greenhouse et al., 2017), nor task-related 

neurophysiological dynamics (Cuypers et al., 2020) in young adults. However, caution is 

needed to not oversimplify the interaction between GABA level and its functionality. For 

example, regarding RT of the dominant FDI in older adults, the current findings indicated 

that faster RTs were related to more SMCND GABA+, but less SMCD GABA+. It is difficult 

to interpret this discrepancy without considering other properties of the GABAergic system, 

for example receptor availability (Cuypers et al., 2020), and future multimodal studies 

are needed to further elucidate this complexity. Taken together, these data underscore that 

task-related neurophysiological modulations might just reflect the tip of the iceberg: when 

considering the (non-)existence of relationships between neurophysiological dynamics and 

motor behavior, this should best be interpreted with respect to trait-based interindividual 

differences in GABA levels and GABA receptor availability. Indeed, similar to the 

neurochemical GABA+ measure, in young adults neurophysiological (pre)motor-motor 

modulations during motor preparation were overall not predictive for RT performance. This 

suggests that the observed significant modulations during motor preparation within this 

group may rather be an epiphenomenal byproduct of brain physiology, than causal to RT 

motor behavior.

4.2. Hemispheric (a)symmetry of M1-M1 and PMd-M1 interactions

An important novel aspect in this study was that both IHi directions, originating in either 

PMd or M1, as well as CSE in both the dominant and non-dominant hemisphere, were 

probed in one single experimental design. This offered a unique opportunity to directly 

compare interhemispheric (im)balances of the (pre)motor-motor pathways during a delayed 

choice RT task. Importantly, irrespective of age, only PMd-M1 IHi modulations, but not 

M1-M1 IHi modulations, were dependent on the measured direction. This suggests a more 

lateralized PMd function during motor planning, as compared to M1 (but see Duque et 

al., 2007). Overall, irrespective of which hand was selected, these findings indicate a more 

dominant PMdD−M1ND interaction as compared to the PMdND−M1D interaction (see also 

Fujiyama et al., 2016a, Fujiyama et al. 2016b) in right-handed subjects, while interactions 

between homologue M1s are more balanced.

4.3. Limitations and future directions

The current study is subject to some limitations. Most important are the methodological 

limitations of the normalization/correction procedure when comparing MRS-derived 

GABA+ levels directly between age groups. Due to the lack of a golden standard, different 

correction methods have been used in literature so far (e.g., Gao et al., 2013; Mooney et 

al., 2017; Porges et al., 2017a; Chalavi et al., 2018; Hermans et al., 2018; Ferland et al., 

2019; Cuypers et al., 2020), which might explain the inconsistent conclusions regarding 

the aging effect on GABA+ levels (Porges et al., 2017b; Maes et al., 2018). In line with 

previous studies (e.g., Chalavi et al., 2018; Cuypers et al., 2020; Maes et al., 2021) and 

in order to obtain an accurate GABA+ estimation for each age group, we normalised the 
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GABA+ measurements to a voxel that is representative for each investigated population. 

An important limitation of this procedure is that the observed age differences in GABA+ 

levels may also be in part driven by age differences in tissue composition, despite the 

alpha correction (see Table S.1 and Figure S.1 in the Supplementary Material for an a 

posteriori re-analysis of the aging effect on GABA+ levels, using a different normalization 

procedure). Nevertheless, our results showed lower overall GABA+ levels in older adults 

in the SMC voxels, which may have functional implications. Future research is warranted 

to establish the most appropriate metric for GABA+ (i.e., overall or tissue-specific) for the 

study of brain–behavior associations. A second methodological limitation in the GABA+ 

processing, specifically for older adults, is the external validity of the internal standard. 

More specifically, even though the water signal was corrected for tissue-specific relaxation 

times and visible water content (Harris et al., 2015), the assumed parameters in these 

corrections were derived from studies with participants younger than 51 years (Wansapura 

et al., 1999; Lu et al., 2005; Piechnik et al., 2009). It is currently unknown whether (and/or 

to what extent) these parameters would further change with older age (> 60 years). Thus, it 

cannot be ruled out that particular age-related biophysical changes in the water signal could 

have an effect on the results.

Third, as interhemispheric interactions assessed with TMS likely involve glutamatergic 

projections that cross the corpus callosum before synapsing with GABAergic interneurons 

(Carr and Sesack 1998; Daskalakis et al., 2002; Chen 2004; Lee et al., 2007; Reis et al., 

2008; Palmer et al., 2012), the resulting MEP amplitudes following dual-site TMS do not 

exclusively reflect GABAergic neurotransmission. Nevertheless, given that modulations in 

contralateral silent period, which also reflects GABAB receptor-mediated neurotransmission, 

are also reduced in older adults during specific motor tasks (Fujiyama et al., 2009), and 

baclofen (a GABAB agonist) strengthens resting-state interhemispheric inhibition to a great 

extent (Irlbacher et al., 2007), we propose that a change in GABAergic neurotransmission 

is very likely contributing to our observed aging effects on the TMS metrics, although an 

additional contribution of changes in glutamatergic neurotransmission cannot be precluded.

A fourth limitation encompasses the limited amount of time points for TMS assessment 

during a trial due to the comprehensive TMS design of the current study, i.e., including 

bidirectional PMd-M1 and M1-M1 s-IHi and L-IHi assessment. Therefore, modulations 

during time intervals where early selection processes are expected (i.e., immediately after IS 

onset; Koch et al., 2006; O’Shea et al., 2007) were not assessed, although it would have been 

informative to collect data in this phase as well.

A fifth limitation is the exploratory nature of the correlation analyses between SMC 

GABA+ availability and task-related neurophysiology. This resulted in a high number of 

statistical tests, which in turn resulted in rather conservative corrected p-values (e.g., Lee 

and Lee 2018). Consequently, almost none of the observed correlations in older adults 

remained significant after correction. Although one reason could be that both metrics differ 

significantly in spatial resolution [i.e., for MRS, a relatively large voxel size is necessary 

to offset the inherent low signal to noise ratio for GABA spectra (Mullins et al., 2014)], 

it would be interesting to test the observed trends for associations in older adults in future 

studies in a hypothesis-driven manner to either confirm or reject these associations.
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In contrast to young adults, older adults did not show significant interhemispheric inhibition 

at the time of WS onset (see Figs. A.2.–A.5 in the appendix), irrespective of IHi type 

(s-IHi versus L-IHi), target hemisphere and conditioned region. This raises the question 

whether the used TMS stimulation parameters were effective in older adults to evoke 

interhemispheric inhibition. Therefore, another limitation of our study is that we did not 

record resting-state TMS data to validate this. However, previous studies of our group, using 

identical stimulation parameters, indicated that in rest interhemispheric inhibition can be 

evoked in both young and older age groups, irrespective of IHi type, target hemisphere and 

conditioned region (Fujiyama et al., 2016b; Hermans et al., 2018).

Lastly, it should be noted that the interpretations concerning aging effects are inferred from 

statistical contrasts between a young adult group (< 33 years) and an older adult group (> 

60 years) in a cross-sectional study design, which is why caution is needed to interpret 

group differences in MRS and TMS measures as changes of these measures over time. On 

a similar note, some caution is warranted to interpret the observed age-related alterations in 

neurochemical/-physiological characteristics as being the actual “cause ” of age-related RT 

slowing, since the used analyses were merely correlational in nature.

The current results indicate that the relation between bulk GABA+ levels and GABAergic 

neurotransmission is complex. Therefore, future studies using multimodal approaches, 

for example by mapping GABA receptor availability as well, are recommended and 

are expected to deliver additional understanding about how different surrogates of 

the GABAergic system interact and shape human motor behavior. Finally, this study 

presents a robust paradigm to investigate the (pre)motor-motor inter-hemispheric interplay 

throughout motor preparation in healthy adults of distinct ages. Similar future approaches 

would be useful to unravel interhemispheric (pre)motor-motor interactions in pathological 

conditions, as well as their impact on motor control. Such studies justify research on 

healthy aging processes to constitute a reference for elucidating abnormal or pathological 

neurophysiological and neurochemical processes with a typically higher incidence in the 

aged population, such as in stroke or dementia (e.g., Rossini et al., 2007).

5. Conclusions

To the best of our knowledge, this is the first study that presents such a comprehensive 

perspective on bilateral CSE and inter-hemispheric (pre)motor-motor dynamics at both 

short and long latencies, during a pre-cued bimanual choice RT task in a single study 

design. Moreover, associations between these neurophysiological dynamics and static MRS 

GABA+ levels in SMC were explored, as well as their contribution to RT in healthy 

young and older adults. Results yielded that older adults exhibited a reduced bilateral CSE 

suppression as well as a reduced magnitude of bidirectional long latency interhemispheric 

(pre)motor-motor disinhibition during the preparatory period, suggesting deficiencies in 

GABAB receptor-mediated neurotransmission. Our findings also indicated that task-related 

(pre)motor-motor modulations and slower RTs in older adults might at least in part be 

explained by lower GABA+ levels in bilateral sensorimotor cortices. In contrast, neither 

physiological (pre)motor-motor modulations nor RTs were dependent on SMC GABA+ 

levels in young adults.
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Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

Table A1

Group comparisons of CSE, expressed in mV, at WS and IS. If the assumption of equal 

variances was met, a parametric unpaired t-test was used. Otherwise, a Welch test was used 

(indicated by superscript “W”). A false discovery rate (FDR) correction method (Benjamini 

and Hochberg 1995) was applied to correct for multiple testing. No significant results were 

observed.

Time point Target hemisphere Young (mean ± SD) Older (mean ± SD) t-value (DF) p-value

WS D 2.11 ± 0.94 1.92 ± 1.25 1.22 (184)W 0.23

ND 2.16 ± 1.26 2.09 ± 1.42 0.38 (198) 0.70

IS D 1.58 ± 0.71 1.63 ± 1.17 −0.32 (163)W 0.73

ND 1.53 ± 0.96 1.73 ± 1.13 −1.38 (198) 0.18

Abbreviations: CSE, corticospinal excitability; WS, warning signal; IS, imperative signal; D, dominant hemisphere; ND, 
non-dominant hemisphere.
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Table A2

Group comparisons of s-IHi and L-IHi metrics at WS and IS. If the assumption of equal 

variances was met, a parametric unpaired t-test was used. Otherwise, a Welch test was used 

(indicated by superscript “W ”). A false discovery rate (FDR) correction method (Benjamini 

and Hochberg 1995) was applied to correct for multiple testing. Values in bold survived 

FDR correction.

Time 
point IHi type Target 

hemisphere
Young (mean ± 
SD)

Older (mean ± 
SD) t-value (DF) p-value

WS M1-M1 s-IHi D 0.80 ± 0.24 0.93 ± 0.31 −3.52 (189)W <0.001 ***

ND 0.82 ± 0.23 1.05 ± 0.43 −4.58 (151)W <0.001 ***

M1-M1 L-
IHi

D 0.75 ± 0.19 0.94 ± 0.25 −5.96 (186)W <0.001 ***

ND 0.82 ± 0.23 0.91 ± 0.54 −1.50 (133)W 0.14

PMd-M1 s-
IHi

D 1.04 ± 0.21 0.97 ± 0.26 1.89 (198) 0.06

ND 0.99 ± 0.23 1.02 ± 0.26 −0.80 (198) 0.43

PMd-M1 L-
IHi

D 0.93 ± 0.22 0.98 ± 0.19 −1.51 (198) 0.13

ND 0.82 ± 0.21 1.01 ± 0.32 −4.99 (172)W <0.001 ***

IS M1-M1 s-IHi D 0.85 ± 0.25 0.92 ± 0.27 −1.90 (198) 0.06

ND 0.86 ± 0.25 0.87 ± 0.29 −0.38 (198) 0.70

M1-M1 L-
IHi

D 1.05 ± 0.46 1.01 ± 0.27 0.73 (159) 0.47

ND 1.09 ± 0.41 1.01 ± 0.35 1.46 (198) 0.14

PMd-M1 s-
IHi

D 1.06 ± 0.31 1.03 ± 0.24 0.76 (187)W 0.45

ND 0.99 ± 0.21 0.88 ± 0.30 3.02 (180)W 0.003 **

PMd-M1 L-
IHi

D 1.10 ± 0.28 1.04 + 0.29 1.48 (198) 0.14

ND 0.99 ± 0.28 1.00 ± 0.22 −0.21 (189)W 0.84

Abbreviations: s-IHi, short latency interhemispheric interaction; L-IHi, long latency interhemispheric interaction; WS, 
warning signal; IS, imperative signal; D, dominant hemisphere; ND, non-dominant hemisphere; M1, primary motor cortex; 
PMd, dorsal premotor cortex.
**

p (uncorrected) < 0.01
***

p (uncorrected) < 0.001

Table A3

Pearson’s r or Spearman’s ρ correlations (indicated by superscript “ρ”) between SMC 

GABA+ levels and corticospinal excitability (CSE) modulation: r(p-value) or ρ(p-value). No 

result survived FDR correction.

YOUNG OLDER

Dominant Non-dominant Dominant Non-dominant

Preparatory Period 0.33(0.12) ρ 0.15(0.49) −0.14(0.52) ρ −0.16(0.50) ρ

Premotor Period Selected −0.08(0.70) ρ −0.03(0.90) ρ 0.29(0.18) ρ 0.34(0.14) ρ

Non-selected −0.06(0.79) ρ −0.14(0.52) 0.09(0.67) ρ 0.02(0.93) ρ
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YOUNG OLDER

Dominant Non-dominant Dominant Non-dominant

Bimanual 0.02(0.92) ρ −0.02(0.92) 0.07(0.76) ρ 0.47(0.04) ρ, *

No response 0.20(0.35) ρ −0.02(0.94) ρ −0.38(0.07) 0.16(0.49)

*
p (uncorrected) < 0.05.

Table A4

Pearson’s r or Spearman’s ρ correlations (indicated by superscript “ρ”) correlations 

between SMC GABA+ levels and modulation of the M1-M1 short latency interhemispheric 

interaction (s-IHiNORM): r(p-value) or ρ(p-value). No result survived FDR correction.

YOUNG OLDER

Dominant Non-dominant Dominant Non-dominant

Preparatory Period 0.27(0.21) ρ 0.06(0.80) 0.09(0.67) 0.13(0.59) ρ

Premotor Period Selected −0.25(0.27) ρ −0.05(0.84) ρ 0.03(0.88) 0.05(0.85) ρ

Non-selected −0.02(0.93) ρ −0.04(0.84) 0.29(0.19) 0.34(0.14)

Bimanual −0.22(0.33) ρ −0.16(0.46) −0.21(0.34) 0.09(0.72)

No response −0.04(0.84) ρ −0.26(0.22) 0.10(0.65) ρ −0.00(0.99)

Table A5

Pearson’s r or Spearman’s ρ correlations (indicated by superscript “ρ”) between SMC 

GABA+ levels and modulation of the PMd-M1 short latency interhemispheric interaction 

(s-IHiNORM): r(p-value) or ρ(p-value). No result survived FDR correction.

YOUNG OLDER

Dominant Non-dominant Dominant Non-dominant

Preparatory Period −0.08(0.73) ρ −0.27(0.20) −0.10(0.66) 0.04(0.86)

Premotor Period Selected 0.35(0.10) ρ 0.24(0.28) 0.13(0.56) ρ −0.20(0.41)

Non-selected 0.41(0.05) ρ −0.16(0.46) ρ −0.24(0.29) ρ 0.39(0.10)

Bimanual 0.13(0.55) ρ 0.09(0.70) 0.13(0.57) −0.06(0.81)

No response −0.12(0.59) ρ −0.11(0.60) −0.09(0.70) −0.14(0.58) ρ

Table A6

Pearson’s r or Spearman’s ρ correlations (indicated by superscript “ρ”) between target SMC 

GABA+ levels and modulation of the M1-M1 long latency interhemispheric interaction 

(l-IHiNORM): r(p-value) or ρ(p-value). No result survived FDR correction.

YOUNG OLDER

Dominant Non-dominant Dominant Non-dominant

Preparatory Period −0.18(0.40) ρ −0.08(0.73) −0.13(0.55) 0.57(0.01) **

Premotor Period Selected −0.34(0.12) ρ −0.40(0.06) 0.07(0.75) 0.15(0.55) ρ

Non-selected 0.02(0.93) ρ 0.20(0.36) −0.18(0.43) ρ −0.03(0.91)

Bimanual 0.13(0.56) ρ −0.11(0.61) 0.22(0.33) −0.25(0.31)
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YOUNG OLDER

Dominant Non-dominant Dominant Non-dominant

No response −0.29(0.18) ρ −0.16(0.46) −0.07(0.74) −0.17(0.48) ρ

**
p (uncorrected) < 0.01.

Table A7

Pearson’s r or Spearman’s ρ correlations (indicated by superscript “ρ”) between SMC 

GABA+ levels and modulation of the PMd-M1 long latency interhemispheric interaction 

(l-IHiNORM): r(p-value) or ρ(p-value). Values in bold survived FDR correction.

YOUNG OLDER

Dominant Non-dominant Dominant Non-dominant

Preparatory Period −0.09(0.70) ρ −0.24(0.26) ρ 0.53(0.01) ** −0.07(0.77)

Premotor Period Selected 0.09(0.69) ρ 0.19(0.38) ρ −0.34(0.13) 0.08(0.74)

Non-selected 0.20(0.37) ρ 0.08(0.71) ρ −0.62(0.00) ** 0.18(0.44)

Bimanual −0.18(0.43) ρ −0.07(0.77) −0.12(0.60) −0.03(0.89)

No response −0.26(0.26) ρ 0.10(0.65) −0.46(0.03) * 0.08(0.72)

*
p (uncorrected) < 0.05.

**
p (uncorrected) < 0.01.
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Fig. A1. 
Corticospinal excitability (CSE) at each time point during a trial, for each age group (Young 

vs. Older) and target hemisphere (D vs. ND). Line plots in different colours represent the 

different response conditions (selected vs. non-selected vs. bimanual vs. no response). The 

dashed line indicates CSE at rest. Error bars indicate 95%CIs. Abbreviations: D, dominant; 

ND, non-dominant; WS, warning signal; IS, imperative signal; 75%EMG, 75% of the time 

between IS onset and EMG onset.
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Fig. A2. 
Long latency interhemispheric M1-M1 interactions (M1-M1 L-IHi) at each time point during 

a trial, for each age group (Young vs. Older) and target hemisphere (D vs. ND). Line plots 

in different colours represent the different response conditions (selected vs. non-selected 

vs. bimanual vs. no response). Values below the dashed line indicate an inhibitory M1-M1 

L-IHi, whereas values above the dashed line indicate a facilitatory M1-M1 L-IHi. Error 

bars indicate 95%CIs. Abbreviations: D, dominant; ND, non-dominant; WS, warning signal; 

IS, imperative signal; 75%EMG, 75% of the time between IS onset and EMG onset; M1, 

primary motor cortex; CS, conditioning stimulus; TS, test stimulus.
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Fig. A3. 
Long latency interhemispheric PMd-M1 interactions (PMd-M1 L-IHi) at each time point 

during a trial, for each age group (Young vs. Older) and target hemisphere (D vs. ND). 

Line plots in different colours represent the different response conditions (selected vs. non­

selected vs. bimanual vs. no response). Values below the dashed line indicate an inhibitory 

PMd-M1 L-IHi, whereas values above the dashed line indicate a facilitatory PMd-M1 L-IHi. 

Error bars indicate 95%CIs. Abbreviations: D, dominant; ND, non-dominant; WS, warning 

signal; IS, imperative signal; 75%EMG, 75% of the time between IS onset and EMG onset; 

PMd, dorsal premotor cortex; M1, primary motor cortex; CS, conditioning stimulus; TS, test 

stimulus.
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Fig. A4. 
Short latency interhemispheric M1-M1 interactions (M1-M1 s-IHi) at each time point during 

a trial, for each age group (Young vs. Older) and target hemisphere (D vs. ND). Line plots 

in different colours represent the different response conditions (selected vs. non-selected 

vs. bimanual vs. no response). Values below the dashed line indicate an inhibitory M1-M1 

s-IHi, whereas values above the dashed line indicate a facilitatory M1-M1 s-IHi. Error 

bars indicate 95%CIs. Abbreviations: D, dominant; ND, non-dominant; WS, warning signal; 

IS, imperative signal; 75%EMG, 75% of the time between IS onset and EMG onset; M1, 

primary motor cortex; CS, conditioning stimulus; TS, test stimulus.
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Fig. A5. 
Short latency interhemispheric PMd-M1 interactions (PMd-M1 s-IHi) at each time point 

during a trial, for each age group (Young vs. Older) and target hemisphere (D vs. ND). 

Line plots in different colours represent the different response conditions (selected vs. non­

selected vs. bimanual vs. no response). Values below the dashed line indicate an inhibitory 

PMd-M1 s-IHi, whereas values above the dashed line indicate a facilitatory PMd-M1 s-IHi. 

Error bars indicate 95%CIs. Abbreviations: D, dominant; ND, non-dominant; WS, warning 

signal; IS, imperative signal; 75%EMG, 75% of the time between IS onset and EMG onset; 

PMd, dorsal premotor cortex; M1, primary motor cortex; CS, conditioning stimulus; TS, test 

stimulus.
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Fig. A6. 
Relationship between (1) CSENORM(prep) of the target M1 and (2) M1-M1 L-IHiNORM(prep) 

for young (red triangles) and older adults (black circles). Results are collapsed for 

both directions (L-IHiNORM(prep)) and bilateral M1 (CSENORM(prep)). Abbreviations: O, 

Older adults; Y, Young adults; r, Pearson’s r correlation coefficient; ρ, Spearman’s ρ 
correlation coefficient; CSENORM(prep), modulation of corticospinal excitability during the 

preparatory period; M1, primary motor cortex; L-IHiNORM(prep), modulation of long latency 

interhemispheric interaction during the premotor period; *, p < 0.05.
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Fig. A7. 
Relationship between (1) CSENORM(prem) of the dominant M1 and (2) M1ND−M1D s­

IHiNORM(prem) when the target (dominant) FDI is selected for a unimanual response, for 

young (red triangles) and older adults (black circles). Abbreviations: O, Older adults; 

Y, Young adults; ρ, Spearman’s ρ correlation coefficient; CSENORM(prem), modulation 

of corticospinal excitability during the premotor period; M1, primary motor cortex; ND, 

non-dominant; D, dominant; s-IHiNORM(prem), modulation of short latency interhemispheric 

interaction during the premotor period; FDI, first dorsal interosseus; *, p < 0.05.
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Fig. A8. 
Relationship between (1) CSENORM(prem) of the non-dominant M1 and (2) PMdD−M1ND 

s-IHiNORM(prem) when the target (non-dominant) FDI is selected for a unimanual response, 

for young (red triangles) and older adults (black circles). Abbreviations: O, Older adults; Y, 

Young adults; r, Pearson’s r correlation coefficient; ρ, Spearman’s ρ correlation coefficient; 

CSENORM(prem), modulation of corticospinal excitability during the premotor period; M1, 

primary motor cortex; PMd, dorsal premotor cortex; ND, non-dominant; D, dominant; 

s-IHiNORM(prem), modulation of short latency inter-hemispheric interaction during the 

premotor period; FDI, first dorsal interosseus; *, p < 0.05; **, p < 0.01.

Abbreviation:

CS conditioning stimulus

CSE corticospinal excitability

CSENORM(prep) modulation of corticospinal excitability during the 

preparatory period
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CSENORM(prem) modulation of corticospinal excitability during the 

premotor period

D dominant

dsTMS dual-site transcranial magnetic stimulation

EMG electromyography

FDI first dorsal interosseus muscle

GABA gamma-aminobutyric acid

GABA+ gamma-aminobutyric acid with the contribution of co­

edited macro-molecules

IHi interhemispheric interaction

IHiNORM(prep) modulation of interhemispheric interaction during the 

preparatory period

IHiNORM(prem) modulation of interhemispheric interaction during the 

premotor period

IS imperative signal

ISI inter-stimulus interval

L-IHi long latency interhemispheric interaction

LED light-emitting diode

M1 primary motor cortex

MEP motor evoked potential

MRS magnetic resonance spectroscopy

ND non-dominant

PMd dorsal premotor cortex

rMT resting motor threshold

RT reaction time

s-IHi short latency interhemispheric interaction

SMC sensorimotor cortex

TMS transcranial magnetic stimulation

TS test stimulus

VIF variance inflation factor
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WS warning signal

75%EMG 75% of the time between IS onset and EMG onset
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Fig. 1. 
Experimental TMS protocol for investigating corticospinal excitability (CSE), and 

interhemispheric interactions (IHi) between homologous primary motor cortices (M1-M1) 

and the dorsal premotor cortex (PMd) and M1 during a choice reaction time (RT) task: 

(A) Trial design. At the start of each trial, a warning signal (WS, 500 ms duration) was 

displayed, followed by an imperative signal (IS, 1000 ms duration) indicating that either a 

left, right, bimanual, or no response [indicated by the green LED(s) and the corresponding 

arrow(s)] was required. The test stimulus (TS) was delivered either at the WS, IS, or at 

75% of the time between the IS and the EMG onset (75%EMG); (B) Coil positioning 

and orientation for the different TMS conditions. The conditioning stimulus (CS) coil is 

visualized in grey and the TS coil in black; (C) Experimental protocol during a TMS 

session. In one session, the CS was applied on either the PMd or M1. Following the 

no-TMS block, there were six blocks with TMS. In three consecutive TMS blocks, IHi 
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was measured from the dominant to the non-dominant hemisphere, whereas in the other 

three consecutive TMS blocks, the other direction was measured. Each block consisted 

of 78 trials, from which 72 with TMS. The order of all trials within a block was 

randomised. Abbreviations: s-IHi, short latency interhemispheric interaction; L-IHi, long 

latency interhemispheric interaction; resp, response; D, dominant hand; ND, non-dominant 

hand; B, bilateral hand.
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Fig. 2. 
Choice RT task performance by AGE and RESPONSE. Mean RTs (s) are plotted for the 

bimanual, the non-dominant, and the dominant FDI response, for younger (light grey bars) 

and older adults (dark grey bars). Error bars indicate 95% CIs. Significant Tukey-corrected 

pairwise comparisons between age groups within each response condition are indicated by 

asterisks. Abbreviations: RT, Reaction Time; O, Older adults; Y, Young adults; **, p < 0.01; 

***, p < 0.001.
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Fig. 3. 
Aging effects on task-related TMS measures: (A) Corticospinal excitability modulation 

(CSENORM); (B) M1-M1 IHi modulation (M1-M1 IHiNORM); and (C) PMd-M1 

IHi modulation (PMd-M1 IHiNORM). The orange bars and green bars represent 

modulation during the preparatory period TMSNORM(prep) =
TMSIS

TMSWS
 and premotor period 

TMSNORM(prem) =
TMS75 % EMG

TMSIS
, respectively. For the preparatory period, results are 

presented for each target hemisphere and type of IHi (B, C). For the premotor period, an 

additional distinction is made between hand actions. Note that for M1-M1 IHiNORM(prem), 

data are collapsed for the factor TARGET HEMISPHERE, since there were no significant 

(interaction) effects with/of this factor. Note that for the PMd-M1 IHiNORM(prem), the 

data are collapsed for the factor HAND ACTION, since there were no significant 

(interaction) effects with/of this factor. Values below the dashed line indicate an inhibitory 
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modulation relative to TMSWS (for modulation during the preparatory period) or TMSIS 

(for modulation during the premotor period), whereas values above the dashed line 

indicate a relative facilitatory/disinhibitory modulation. Error bars represent 95% CIs. 

Abbreviations: D, Dominant; ND, Non-Dominant; O, Older, Y, Young; PMd; dorsal 

premotor cortex; M1; primary motor cortex; IHi, interhemispheric interaction; s-IHi, short 

latency interhemispheric interaction; L-IHi, long latency interhemispheric interaction.
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Fig. 4. 
GABA+ results by AGE and VOXEL: (A) Exemplary voxel positions in the axial, coronal 

and sagittal plane; (B) Individual difference-edited spectra, with red frames highlighting the 

GABA+ peak at 3 ppm; (C) Mean GABA+ levels in young and older adults are plotted 

for SMCD, SMCND. Error bars indicate 95% CIs. Significant exploratory Tukey-corrected 

pairwise comparisons between age groups within each voxel are indicated by asterisks. 

Abbreviations: O, Older adults; Y, Young adults; SMC, sensorimotor cortex; D, Dominant 

hemisphere; ND, Non-Dominant hemisphere; i.u., institutional units; **, p < 0.01.
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Fig. 5. 
Relationship among older adults between (1) non-dominant dorsal premotor cortex 

and dominant primary motor cortex (PMdND−M1D) L-IHiNORM(prem) when the target 

(dominant) FDI was required not to move during a unimanual response of the non-targeted 

(non-dominant) FDI and (2) dominant SMC (SMCD) GABA+ levels. Abbreviations: 

SMC, sensorimotor cortex; L-IHiNORM(prem), modulation of long latency interhemispheric 

interaction during the premotor period; i.u., institutional units; *, p < 0.05.
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Table 2

Average resting motor threshold (rMT) (mean ± SD) of the left (dominant) and right (non-dominant) 

hemisphere for each age group (young and older adults), for each TMS session (1 and 2). Values are expressed 

in % of maximal stimulator output (MSO).

rMT (% MSO) DOMINANT (LEFT) NON-DOMINANT (RIGHT)

YOUNG OLDER YOUNG OLDER

SESSION 1 52.48 ± 7.59 52.96 ± 9.91 52.84 ± 8.26 53.72 ± 9.66

SESSION 2 51.72 ± 8.01 53.72 ± 11.22 53.08 ± 8.60 55.64 ± 9.80
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