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Abstract

Purpose of Review—Pediatric obese asthma is a complex disease that remains poorly 

understood. The increasing worldwide incidence of both asthma and obesity over the last few 

decades, their current high prevalence and the challenges in treating obese asthmatic patients 

all highlight the importance of a better understanding of the pathophysiological mechanisms in 

obese asthma. While it is well established that patients with obesity are at an increased risk of 

developing asthma, the mechanisms by which obesity drives the onset of asthma, and modifies 

existing asthma, remain unclear. Here, we will focus on mechanisms by which obesity alters 

immune function in asthma.

Recent Findings—Lung parenchyma has an altered structure in some pediatric obese 

asthmatics, known as dysanapsis. Central adiposity is linked to reduced pulmonary function and 

a better predictor of asthma risk in children than body mass index. Obesity in young children is 

associated with an increased risk of developing asthma, as well as early puberty, and hormonal 

alterations are implicated in obese asthma. Obesity and asthma each yield immunometabolic 

dysregulation separately and we are learning more about alterations in these pathways in pediatric 

obese asthma and the potential impact of bariatric surgery on those processes.

Summary—The recent progress in clarifying the connections between childhood obesity and 

asthma and their combined impacts on immune function moves us closer to the goals of improved 

understanding of the pathophysiological mechanisms underpinning obese asthma and improved 

therapeutic target selection. However, this common inflammatory disease remains understudied, 

especially in children, and much remains to be learned.
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Introduction

Obese asthma (OA) is the intersection of the two most commonly occurring chronic diseases 

of childhood (1). Over the last few decades, both asthma and obesity have increased 
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significantly worldwide (2) and currently 42% of adults(3) and 18% of children(4) in the 

United States are obese and 8% of adults and children are asthmatic(5). Moreover, 11% 

of obese adults (6), including 14.6% of obese women(6), and 15.7% of obese children 

(7) also have asthma. To add complexity, asthma is not a single condition but a disease 

encompassing a complex set of overlapping clinical phenotypes, including atopy and 

obesity (8). Both asthma and obesity(9) independently impact the immune system in many 

complex ways (10). Finally, there is substantial evidence that obesity and asthma may be 

pathophysiologically linked. First, it is well established that asthma is more prevalent in 

obese children (13–24) and adults (24–26), compared to their healthy weight counterparts. 

Second, obesity is an independent risk factor for development of pediatric asthma (12–

23), with approximately one quarter of new pediatric asthma cases reported as directly 

attributable to obesity(11). Third, weight loss in OA adults and children has been shown to 

improve control of asthma symptoms in some patients (27–41). Finally, obesity is associated 

with both an increased risk of asthma development and increased asthma severity (26,42–

46), and there is evidence that asthma may be an independent predictor of obesity(47,48), 

suggesting the link between obesity and asthma may be bidirectional(46).

Adult (22,24) and pediatric (21,22,49–51) OA patients experience a treatment-refractory 

form of asthma that is less responsive to preventative regimens. OA patients generally 

have more significant asthma exacerbations (49,52) and typically experience increased 

health care utilization (49) and require greater health care expenditures to control their 

asthma symptoms. Taken together, these data suggest obesity is both a powerful predictor 

of asthma incidence and a clear modifiable factor influencing asthma control. However, 

the multifactorial nature of both asthma and obesity makes establishing mechanistic 

pathophysiological link(s) between the two chronic inflammatory disorders quite complex. 

Furthermore, just as asthma is considered to be an “umbrella” diagnosis that encompasses 

many different mechanistic endotypes and clinical phenotypes, OA is also likely to have 

a variety of relevant altered molecular pathways underlying clinical heterogeneity(53–55). 

For example, while the majority of pediatric asthma patients are atopic(56), including in 

pediatric OA(57), atopy is not a uniform finding in OA. In order to optimize medical care 

for this complex disease, it is crucial to better understand the impact of OA on key immune 

pathways and on the functioning of immune cells and apply those mechanistic insights to 

optimizing therapeutic strategies.

In this review, we summarize recent work elucidating the mechanisms by which obesity 

impacts inflammation and immune function in asthma and thus contributes to the severe 

symptomatology observed in OA (Figure 1). We will focus on pediatric OA, but given the 

limitations of the literature and the importance of long-term impacts, we will incorporate 

data from adult human subjects as well as mouse models. It is important to note that 

when engaging in mechanistic studies of asthma or obesity that mouse models can be quite 

helpful. However, only a minority of mouse models of OA have defined mechanistic links 

between obesity and asthma and here we will focus on the subset of studies that include 

evaluation of the impact of obesity and asthma on pulmonary function in OA, non-obese 

asthma, non-asthmatic obesity and control cohorts (58–69) (Table 1).
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Structural Alterations in Lung Parenchyma and Function

Obesity is linked to reductions in pulmonary function in both adult and pediatric populations 

which could be secondary to asthma or could, in part, be independent of asthma. While 

obese adults typically demonstrate a restrictive deficit in pulmonary function, characterized 

by a reduction in forced vital capacity (FVC) in the presence of a normal ratio between 

forced expiratory volume in 1 second (FEV1) and FVC (70,71), obese children typically 

demonstrate an obstructive pattern of pulmonary dysfunction characterized by increases 

in both FEV1 and FVC, but a lower FEV1/FVC ratio (72–74). Diminished pulmonary 

function in obese children may be partially a reflection of an altered relationship between 

lung parenchyma and airway caliber, known as dysanapsis. In the setting of dysanapsis, 

the growth of lung parenchyma is out of proportion to airway caliber, with normal 

measurements of FEV1 and FVC in the presence of an abnormal FEV1/FVC ratio(71). 

Children classified as overweight or obese were more likely to have airway dysanapsis, 

independent of asthma status (71). Importantly, in children with OA, dysanapsis was closely 

associated with increased severity of asthma symptoms and poor asthma control (71). 

Ekström et al. recently found the same pattern of airway resistance associated with persistent 

pediatric weight gain(75). To our knowledge, dysanapsis has not yet been evaluated in 

mice. A pathophysiological link between obesity and lung parenchymal growth (out of 

balance with airway caliber) has not been established and those mechanisms and potential 

connections to inflammation and immune dysregulation require further study.

Central Adiposity is Associated with Impaired Pulmonary Function and 

Increased Visceral Adipose Tissue

The quantification of extent and impact of obesity is challenging and age dependent. It 

is well-established that obesity, typically assessed in adults and children using body mass 

index (BMI), is an independent predictor of asthma risk (11,12,14–18,21,49,51,76). Children 

are considered overweight at BMI > 85th percentile and obese at BMI > 95th percentile 

for sex and age. However, in recent years the clinical relevance of BMI as a predictor of 

asthma risk has been called into question(77–79). BMI is a calculated assessment of the 

relationship of weight to height and therefore cannot not differentiate between muscle mass 

and adipose tissue, nor can it account for body fat distribution. This may explain why some 

authors have reported no association between obesity and asthma incidence(72,80–82). It 

is increasingly appreciated that specific patterns of body fat distribution, mainly abdominal 

obesity (also known as central obesity), may be a better predictor than BMI of pediatric 

asthma incidence (83–89). The mechanistic relationship between abdominal obesity and 

asthma remains unclear, especially in pediatric OA. However, there is evidence that poor 

lung function in asthmatic adults can be attributed to increases in visceral adipose tissue 

(VAT) (90). Furthermore, increases in VAT, as measured by magnetic resonance imaging or 

dual-energy x-ray absorptiometry, are associated with impaired pulmonary function and 

increased asthma risk in pediatric OA (83,89). Given the highly immunologically and 

metabolically active nature of VAT(9), and its role as a niche for key immune cells(91), 

it has also been proposed as an important mediator in OA (85). Moreover, several recent 

studies have reported that obesity-associated inflammatory signaling alters the inflammatory 
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characteristics of VAT (9) in both mice(92–94) and humans (34,95,96). The potential roles 

of dysregulated VAT resident immune cells and peripheral immune cells impacted by the 

inflammatory environment in OA is discussed below (in “Immune Dysregulation in OA”).

The Role of Sex Hormones and Pubertal Timing

There are clear connections among sex hormones and asthma and obesity and pubertal 

timing. First, there is a well-known peripubertal shift in sex bias in asthma incidence(97). 

Specifically, in pre-pubescent populations asthma and other atopic diseases are more 

prevalent in males than females, but this trend is reversed post-puberty (97–100). This is 

seen in both more boys “growing out” of school-age asthma diagnoses, as well as late 

childhood (97,101) and adult-onset (102,103) asthma being more prevalent in females. 

Recent investigations have demonstrated potential roles for sex hormones in mediating 

asthma pathogenesis. For example, early pubertal onset is associated with increased asthma 

incidence (104,105). The mechanisms underlying this phenomenon remain unclear.

Obesity also has clear impacts on the hormonal state of the individual. Pre-pubescent rapid 

weight gain has been proposed to accelerate pubertal onset which may then hasten or 

otherwise encourage the development of asthma (106). A growing body of literature reports 

that early puberty appears to be correlated with the development of asthma in obese girls 

(107). A recent retrospective cohort study demonstrated pre-pubescent obesity conferred the 

highest risk of asthma development (108). Premenarchal females demonstrated an increased 

risk of developing obesity-related asthma compared to pre-pubertal males. In contrast, a 

separate study an increase in asthma risk in obese children of both sexes with early puberty 

(105). Recently, it was shown that in children in the Severe Asthma Research Program 

(SARP) increased serum androgen was correlated with improved lung function in boys, 

whereas increased serum estrogen was correlated with reduced lung function in girls (109). 

A separate population-based study of hormone levels in adult OA patients demonstrated that 

in obese women, but not non-obese women, increased serum levels of testosterone were 

associated with decreased asthma risk (110). This supports previous findings suggesting that 

sex hormones are potent modifiers of asthma and are influenced by obesity (111).

While female sex hormones are generally associated with increased airway inflammation 

and male sex hormones associated with decreased airway inflammation(112) in human 

studies, estrogen (113–117) and androgens, including testosterone (118–121), have each 

demonstrated protective (113–115,118,121) and pro-inflammatory (114–117,119) roles in 

mouse models of asthma. To our knowledge, only one study has been published that 

attempts to elucidate a mechanistic link between sex hormones and OA in mice, wherein 

estrogen mitigated airway inflammation by downregulating NLRP3 activation(122).

Overall, these data highlight the need for improved understanding of immunomodulatory 

capabilities of estrogen and testosterone, as well as other sex hormones, and the resulting 

mechanisms by which obesity may alter pubertal timing and affect both asthma onset and 

severity.
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Immune Dysregulation in OA

Asthma and obesity are both chronic states of systemic, low-grade inflammation and 

have the ability to disrupt normal control points in a wide array of networks in our 

core physiological systems, ranging from the immune system to the cardiovascular 

and endocrine systems. In obesity(9,123) and asthma separately(124–129), and in their 

intersection in OA(34,130), there are alterations in adipokines (e.g. leptin)(124,130), 

chemokines(127), cytokines(34,125,128), and both innate(126,129) and adaptive cellular 

immune responses(34,123,129). In addition, there are well known alterations in the serum 

metabolites that bathe our circulating immune cells (e.g. glutamate(131) and short chain 

fatty acids(132)) as well as changes in the microbiome that are at least partially responsible 

for producing those altered metabolite levels(133)). All of these components exist in 

a complex network, which is carefully balanced. In obesity and asthma individually, 

there is evidence that this network has been disrupted and in OA we see evidence of 

immunometabolic dysfunction across human and mouse systems (Tables 1 and 2).

Systemic inflammation is typically measured by acute-phase reactants (e.g. C-reactive 

protein (CRP), serum amyloid A (SAA), interleukin 6 (IL-6) and fibrinogen), which 

were recently reported to be significantly increased in the serum of OA and obese 

adults(134,135). Interestingly, SAA, but not CRP, has previously been linked to allergic 

airway inflammation in human adults (136). In addition, critical roles for SAA in mediating 

inflammatory responses have been shown in mouse models of asthma(137,138) and 

obesity(139,140). It is possible that these acute phase reactants, including SAA, may have 

direct mechanistic roles in OA and should be explored further.

Adipokine dysregulation, including altered leptin, is also a feature of OA. Obesity is 

associated with elevated serum leptin, which has many effects on immune function(141). 

Increases in serum leptin were associated with increased atopy in a cohort of children with 

allergic rhinitis, a related atopic condition (142). Leptin is known to impact immune function 

in pleotropic ways, including being a neutrophil chemoattractant(143), altering neutrophil 

chemotaxis and superoxide production in adult OA (144) and is connected to eosinophilic 

inflammation (145). Additionally, there is evidence that production of leptin by pulmonary 

tissue, as opposed to the systemic increases in leptin reported in obesity, enhances airway 

eosinophilia (146). Finally, leptin is known to have direct effects on immune cell function, 

particularly T cells(147–149), and the alterations in leptin level may have effects on this key 

anti-viral cell in OA as well(130,150).

Within the myriad of subsets of lymphocytes, CD4 T cells play an important role in guiding 

the character of the adaptive immune response and produce key cytokines driving that 

process. It is important to link our understanding of the more easily accessible peripheral 

blood immunophenotype(151,152) to the more challenging to access immunophenotype of 

the target tissues (e.g. adipose tissue)(95,153). In the peripheral blood, the inflammatory 

state triggered by obesity is classically thought to skew CD4+ T helper cells towards a 

T helper type 1 cell (Th1) phenotype(152,154,155). Allergic (or atopic) asthma, which 

accounts for more than half of all asthma cases in the United States(150), is classically 

associated with type 2 immune responses(156). Atopic asthma is linked to type 2 immunity, 
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including alterations in the three main implicated cell types: eosinophils, type 2 Innate 

lymphoid cells (ILC2s) and CD4 T helper type 2 cells (Th2 cells). Here, we focus on the 

nature of the immune response in OA. Early studies showed that patients with OA and early 

onset asthma were more likely to be atopic (and thus likely have type 2 immune skewing) 

and more likely to have severe asthma(54). Using unsupervised clustering of asthmatic 

patients, two separate studies a cluster of older, obese, non-eosinophilic female asthmatics 

was identified (157,158). However, many of the OA patients were found outside this cluster, 

highlighting again that OA contains multiple endotypes (159). After those initial studies, 

with very limited immunophenotyping, peripheral blood studies in OA have provided a 

mixed picture, with evidence of increased (154,160), equivalent(160) and reduced(161) 

Th1-skewing, as well as evidence for decreased (160) and equivalent (161) Th2-skewing in 

OA patients compared to asthma alone. To add to the complexity in OA peripheral blood, 

sputum and endobronchial biopsies, in some settings, show increased eosinophil-relevant 

IL-5 and eosinophilia respectively in a subset of OA patients(162). Allergic asthma is the 

predominant form of asthma in children and may be underappreciated as a key endotype of 

OA, especially in pediatrics. Of note, there are racial and ethnic backgrounds wherein OA is 

known to be strongly associated with atopy, including in Puerto Rican children(20). Overall, 

there is not a monomorphic picture of CD4 T cell differentiation in OA, neither Th1 nor 

Th2, but the impression that there are multiple immune profiles possible in OA.

At the core of the symptomatology of OA is the severity of exacerbations, which are most 

often caused by viral respiratory infections. CD8 T cells play a key role in combating viral 

infections and there is recent evidence that obesity may alter their function. Specifically, 

there is an increase in inhibitory receptor expression (e.g. PD-1) in CD8 T cells from 

obese patients(163), suggestive of immune dysregulation in these patients. In the setting of 

persistent antigenic stimulation and chronic inflammation (e.g., chronic viral infection or 

malignancy) T cells can become exhausted, with altered expression of cell surface markers 

(including inhibitory receptors), transcriptional pathways and function(164). One of the 

recent advances in cancer therapy is the use of biologics targeting inhibitory receptors 

on immune cells to reinvigorate exhausted T cells(164) and improve immune targeting 

of tumors. Consistent with increased inhibitory receptor levels in obesity, obese patients 

with melanoma had better responses to these strategies (165,166). Further, should the 

immune dysregulation in CD8 T cells in obesity be similar to exhaustion, we could also 

expect concomitant altered mitochondrial function which has been shown in human T 

cell exhaustion(167).The impact of OA on CD8 T cell immunometabolic function and 

immunophenotype in the periphery has not yet been assessed in OA, though our group is 

studying these questions in humans and mice.

Metabolomics of obese and asthmatic patient samples, including from serum/plasma, 

breath condensate and urine(168–173), have identified altered water soluble and lipid 

metabolites. There are clear alterations in peripheral metabolites in obesity, including altered 

short chain fatty acids (SCFA) and water-soluble metabolites (e.g. elevated glutamate)

(170–174). These metabolites may be altered in subject serum by diet directly or by 

alterations of the microbiome in content and/or function by inflammation and/or diet. In 

diet induced obesity in mice, high fat diet has been shown to yield higher acetate with 

blockade of allergic asthma and addition of propionate to mouse diet has been shown 
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to impair Th2 differentiation and atopy(175). In addition, characterization of the adult 

respiratory metabolome delineated a metabolic phenotype in OA(176). This is relevant 

to immune function in OA because it is clear that SCFA and water soluble metabolites 

can directly skew T cell differentiation (e.g. elevated acetate and increased mouse Th17 

differentiation(177)) and activation, including impacts on infection responses (e.g. acetate 

and influenza responses(178)). Thus, both water soluble and lipid metabolites may play 

important roles in the known increased severity of viral induced asthma exacerbations in OA 

via altered T cell function.

Beyond enumerating immune cell subsets and their individual functional states, 

transcriptional and epigenetic studies can guide our interpretation of immune profiling 

and immunometabolic dysregulation in OA. Work from Rastogi et al has shown altered 

methylation in both activation associated (PI3K pathway) and Th1 associated genes in 

pediatric OA(179). The former could possibly foster immune dysregulation via mimicry of 

persistent immune cell activation(164). Subsequent work in peripheral blood transcriptional 

studies in pediatric OA (both whole blood and CD4 T cells (155,180) and sputum cells from 

adult OA subjects(129)) has yielded evidence of complex immune dysregulation in these 

patients. Peripherally, there was evidence of altered CDC42 pathway signaling(152,155), 

involved in various aspects of CD4 T cell activation and differentiation(155), as well as 

altered NFκB, integrin and Hedgehog signaling in whole blood(180). In the target tissue, 

sputum cell RNA sequencing demonstrated a number of transcriptomic alterations, including 

in a gene module consistent with CTL function(181). This module was inversely correlated 

with BMI and included a number of markers of both CD8 T cell function (e.g. Granzyme 

B, IFN-γ, etc) and T cell exhaustion (e.g. TOX). Of note, many markers of CTL function 

are seen in exhaustion in a dysregulated pattern(167). However, it was unclear whether this 

suggests that CTL function was impaired in OA (given low gene module activity in OA) 

or whether an exhausted-like state was instead diminished in OA. Further studies of T cell 

signaling and activation pathways in OA are needed, including how they connect to clinical 

outcomes.

With regards to evidence of dysfunction, beyond alterations in cytokines, adipokines, 

metabolite and immune cell subset and function, we can look to infection responses as 

an evaluation of cellular function. Both H1N1 influenza(182) and COVID-19(183) have 

shown increased morbidity and mortality in obese adults and children, and COVID-19, 

unexpectedly, does not seem to show increased morbidity and mortality in atopic 

asthma(184). We currently lack information about the impact of OA on COVID-19 in 

humans and more broadly, additional insight will be gained by studies of baseline immune 

dysregulation and infection responses in mouse models of OA.

Altering weight and recovering immune function

What is the evidence that obesity is a modifiable factor in OA whose improvement 

can lead to clinical change? There is evidence that surgical weight loss interventions in 

adults (27,32,37–40) and non-surgical interventions in both adults (35,36) and children (29–

31,33,34,41) lead to an improvement in asthma symptoms. While many of these studies 

do not report on pro-inflammatory biomarkers (27,29–32), there is evidence that weight 
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loss may lead to a reduction in systemic inflammatory markers in children (34,41) and 

adults (35,40). However, the influence of bariatric surgery on inflammation and immune 

function is not well understood and much remains to be learned, especially in children. 

Some authors report improved asthma control in both children (33) and adults (36) without 

concomitant improvement in pro-inflammatory markers. Moreover, the efficacy of weight 

loss interventions in ameliorating asthma symptoms is reportedly influenced by atopy 

(37,39) and metabolic syndrome (38). To our knowledge, only two studies have investigated 

the effects of weight loss on systemic inflammation in pediatric OA (34,41). In these 

studies, non-surgical weight loss reduced systemic inflammatory markers in OA children 

compared to control groups. In a recent report on obese (non-asthmatic) children, weight 

loss following lifestyle intervention led to a reduction in serum markers of inflammation 

compared to baseline(185). The above data suggest the pro-inflammatory obesogenic 

environment worsens asthma and reductions in body weight can improve asthma control, 

but the underlying mechanisms warrant further investigation. Our group and others are 

learning more about alterations in pre/post bariatric surgery immune networks using studies 

of peripheral blood and adipose tissue.

CONCLUSION

Pediatric OA is a complex condition at the intersection of two chronic inflammatory 

diseases. Recent work has focused on structural alterations both in lung structure and 

location of adipose tissue, dysregulation of hormonal and immunometabolic function, with 

poorly characterized connections among these systems. Recent multi-modal studies in adult 

and pediatric subjects, with future work planned in human cells and mouse models, bring 

us closer to the goal of improved therapeutic targeting in these complex patients. However, 

there remains a dearth of immunometabolic data, especially in pediatric OA, and much 

remains to be done.
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OA Obese Asthma

AHR Airway Hyperresponsiveness

ATM Adipose Tissue Macrophages

BMI Body Mass Index

FENO Fractional exhaled nitric oxide

SARP Severe Asthma Research Program
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FVC Forced Vital Capacity

FEV1 Forced Expiratory Volume in 1 Second
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Key Points

• OA is a heterogenous disease comprising multiple clinical phenotypes that are 

not likely to be explained by a singular mechanism and may be affected by 

race, age, sex and atopic state, among other phenotypes.

• There are significant immunometabolic and structural alterations in pediatric 

OA that remain incompletely understood.

• Mechanistic investigations into pediatric OA, especially as it relates to 

immune dysfunction and response to viral respiratory infections, are of 

fundamental importance especially in the era of COVID-19 wherein obesity is 

a clear risk factor for morbidity and mortality.
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Figure 1: Proposed Mechanisms Mediating OA in Children.
Pediatric OA is a complex, heterogenous disease that is likely explained by multiple 

mechanisms. There is evidence to support roles for obesity-associated changes to lung 

structure, cytokine expression, metabolite production and hormone secretion in worsening 

asthma severity.
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Table 2:
Impact of OA on human immune cell subsets in adults and children.

Up arrows (↑) indicate enriched populations, down arrows (↓) indicate less prevalent populations, sideways 

arrows (→) indicate no significant difference measured for each comparison specified in the column header. 

Italicized entries indicate results from adult studies and non-italicized entries are from pediatric studies. OA = 

obese asthma, A= asthma (non-obese), O= obese (non-asthma), HC= healthy control (non-asthma, non-obese).

Human Obese Asthma

Results OA vs HC OA vs A OA vs O

Immune Function

Innate Immune Cells

Eosinophils ↑(143) submucosal
→(143) sputum and blood

↑(161)

Monocytes
CD14+CD16- ↓(141)
CD14dimCD16+ ↓(141)

Adaptive Immune Cells

CD4 T cells

→(128) →(162) →(162)

→(163) →(155,163) →(163)

Th1 ↑(140,141) ↑(140,141)

Th2 ↓(140,141)

Treg ↑(163) ↑(163) ↑(163)

IgE ↑(161)

Type 2 cytokines 
(serum)

IL-4 →(140) →(140,142,164)
↓(165) →(140,142,166)

IL-5 →(140) →(140,164)
↑(143) sputum →(140)

IL-13 →(140) ↓(140,164) →(140)

Type 1 cytokines 
(serum)

IFN-g
↑(165)
→(140,141)
↓(142)

↑(165)
→(140–142,164) →(140–142)

TNF-α ↑(140)
→(127) →(140) →(140)

IL-6 ↑(140) →(140,164) →(140)

IL-8 ↑(164)

Adipokines
Leptin ↑(165)

→(140,166)
↑(140,141,165–167)
↑(166) →(140,166)

Adiponectin →(161) →(161) →(161)

Pulmonary Function FEV 1 /FVC →(161) ↓(140)
→(50,156,162,165)

↓(140)
→(161)
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