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Abstract

Local heating using pulsed laser-induced photothermal effects on plasmonic nanostructured 

substrates can be used for intracellular delivery applications. However, the fabrication of 

plasmonic nanostructured interfaces is hampered by complex nanomanufacturing schemes. Here, 

we demonstrate the fabrication of large-area plasmonic gold (Au) nanodisk arrays that enable 

photothermal intracellular delivery of biomolecular cargo at high efficiency. The Au nanodisks 
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(350 nm in diameter) were fabricated using chemical lift-off lithography (CLL). Nanosecond laser 

pulses were used to excite the plasmonic nanostructures, thereby generating transient pores at the 

outer membranes of targeted cells that enable the delivery of biomolecules via diffusion. Delivery 

efficiencies of >98% were achieved using the cell impermeable dye calcein (0.6 kDa) as a model 

payload, while maintaining cell viabilities at >98%. The highly efficient intracellular delivery 

approach demonstrated in this work will facilitate translational studies targeting molecular 

screening and drug testing that bridge laboratory and clinical investigations.

Graphical Abstract

Intracellular delivery of exogenous cargo, such as nucleic acids,1–4 proteins,5,6 

and membrane-impermeable drugs,6–8 is of great importance across a spectrum of 

biomedical and therapeutic applications, including precision gene modification,9–12 

immunotherapy,13–15 intracellular imaging/sensing,16,17 drug delivery,6,8,18,19 and 

regenerative medicine.20,21 To date, efforts towards intracellular delivery have been 

advanced by carrier-based and membrane-disruption-based approaches.22–24 Viral-vector­

based methods remain the most clinically advanced carrier-based strategies, achieving 

nucleic acid delivery with high efficiencies and specificities.25,26 However, challenges 

associated with their potential immunogenicity, safety concerns from off-target effects, 

complexity, and high costs have limited their broader application.25 Moreover, viral­

based carrier systems suffer from intrinsic limitations in their cargo-carrying capacity, 

which preclude effective complex biomolecules or mixtures of components. Membrane­

disruption-based approaches,23,27,28 where transient pores are created in cell membranes 

via mechanical,24,29–35 electrical,36,37 or photothermal methods,38–44 are less dependent 

on cargo and cell type.45 Electroporation-based methods yield appropriate efficiencies but 

suffer from low viability and require specialized equipment and reagents.22,46–49 Strategies 

using nanostructures, such as nanowires,50,51 nanostraws,52–54 and nanoneedles30,55–58 to 

create pores in cell membranes, have also been shown to have suitable efficiencies and 

viabilities for intracellular delivery, but are limited by poor reproducibility, slow processing 

throughputs, and complicated fabrication processes.

Photothermal strategies that utilize the generation of cavitation bubbles induced by laser 

irradiation of noble metal nanoparticles or metal plasmonic structures represent another 
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promising membrane-disruption method.59,60 Upon laser irradiation, metallic nanostructures 

absorb incident photon energy through electron oscillations, which results in an abrupt 

temperature increase in the surrounding aqueous medium.61,62 Explosive cavitation bubbles 

nucleate when the temperature exceeds the critical temperature of the aqueous medium.43 

Large fluid shear stress induced by the rapid expansion and collapse of cavitation generates 

transient and localized pores an adjacent cell membrane.63 The size of cavitation bubbles 

dependents on the laser fluences radiated, which has been previously studied to be in 

the range of 100 nm to 1 μm.64 Previous studies have demonstrated that noble metal 

nanoparticles, such as Au nanoparticles, are well suited to serve as high-efficiency delivery 

agents.38–44,65,66 However, the cytotoxicity of Au nanoparticles is still under investigation, 

and this method also suffers from limitations in reproducibility. For example, it has been 

shown that the number and the location of pores created on each cell is not well controlled 

due to the random distribution of nanoparticles. Moreover, high delivery efficiencies 

achieved with increased nanoparticle concentration typically resulted in compromised cell 

viability.67 Alternatively, substrate-supported plasmonic structures, fabricated using micro- 

and nanolithography techniques, serve as promising platforms for high-efficiency and high­

viability intracellular delivery.6,8,19,68 In addition, because of the physical separation of 

the nanostructures, the stoichiometry of the interactions with the cells can be controlled 

precisely (as compared to the case for plasmonic nanoparticles). Current methods of 

producing plasmonic architectures for photothermal delivery applications are limited by time 

consuming and costly conventional nanolithographic fabrication processes (e.g., electron­

beam lithography) used to pattern metal layers, which hinder the scalability of these 

techniques and represent a critical barrier to applying these technologies to clinical targets. 

Alternatively, nanofabrication approaches that yield repeatable, scalable, and economical 

processing of plasmonic nanostructures could facilitate consideration of this approach for 

wide-scale clinical applications. Recent advances have been made in producing plasmonic 

structures using template-stripping processes. For example, nanopyramid structures have 

been fabricated in an economical and high-throughput manner.8 However, challenges remain 

for a facile fabrication process as the template stripping process requires the fabrication on a 

polymer layer and an extra transfer process.

Soft lithography uses soft polymeric stamps to fabricate a range of micro- and nanoscale 

features in a high-throughput, large-scale, and cost-effective manner.69,70 Microcontact 

printing (μCP), as a representative soft lithography method, transfers molecular inks, such 

as alkanethiols, from stamp to target surfaces.70,71 A complementary, subtractive soft 

lithography process chemical lift-off lithography (CLL), uses oxygen plasma-activated 

polydimethylsiloxane (PDMS) stamps to remove self-assembled monolayer (SAM) 

molecules selectively from contacted areas on surfaces to create patterns over large areas, 

and may be used to achieve high-fidelity chemical patterns with line widths approaching 5 

nm (corresponding to patterns ~10 molecules across).72–79 The remaining SAM molecules 

in the non-lifted-off regions can act as resists to enable selective etching of exposed Au to 

produce Au nanostructures, such as Au nanolines, nanocircles, and nanosquares.74,79–81

In this work, we apply CLL to achieve fabrication of Au plasmonic nanostructures over 

large areas for photothermal intracellular delivery. Large-area two-dimensional (2D) Au 

nanodisk arrays are fabricated across centimeter length scales on a variety of substrates, 
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such as silicon wafers, glass slices, and plastic petri dishes, which provides a significant 

advantage for versatile intracellular delivery environments and creates opportunities for 

integration with medical devices. Nanodisk arrays of different sizes have been fabricated in 

this study to measure delivery efficiencies and cell viabilities as a function of nanostructure 

surface density per cell. Upon excitation of the nanodisks with a nanosecond laser, delivery 

efficiencies of >98% and cell viabilities of >98% were achieved using 0.6 kDa cell 

membrane-impermeable calcein as a model cargo molecule, which is comparable with 

current photothermal intracellular delivery platforms. This work demonstrates a promising 

economical and reproducible intracellular delivery approach, with widespread applicability 

for drug delivery, nanoparticle delivery, and regenerative medicine.

We exploit the plasmonic properties of the gold nanodisks whereby exposure to nanosecond 

laser pulses generates cavitation bubbles with energies sufficient to puncture cellular 

membranes, forming pores that facilitate intracellular delivery of desired cargo (Figure 1). 

HeLa cells, used as a model cell line, were cultured onto CLL-patterned nanodisk substrates 

and placed in a growth medium containing calcein. By scanning the laser across the wafer­

scale Au plasmonic substrate, plasmonic hotspots formed upon illumination. Cavitation 

bubbles generated at these local regions in contacting the plasma membranes of the target 

HeLa cells serve as projectiles that render the cells transiently permeable. Cargo molecules 

within the surrounding medium are able to enter the cytoplasm via diffusion.6 Precision 

control of the pulsed-laser spot position across the substrate is maintained with a pair of X-Y 

scanning mirrors. It takes 10 s to scan across the entire 25-mm2 chip, with over 104 cells per 

chip.

The fabrication of periodic metal nanostructures with micron-scale features can be achieved 

readily via conventional photolithography, while producing sub-micron features often 

requires specialized tools such as electron beam lithography (EBL) and focused ion beam 

lithography (FIB). However, these serial writing processes systems are time consuming 

and costly to operate, leading to extremely limited production yields and output. Transfer 

printing techniques, such as nanotransfer printing, provide an alternative solution for 

nanofabrication over large areas while achieving higher processing throughputs.82 Existing 

nanoscale printing approaches are limited to certain substrates based on surface energy 

constraints that are critical for successful and reproducible pattern transfer. In this study, 

we extend the applications of CLL for biomedical applications. Double-patterning CLL has 

been recently reported as a means of fabricating Au plasmonic nanodisk arrays (Figure 

2a).81 Polydimethylsiloxane stamps, textured with lines of different widths and pitches are 

activated by exposure to oxygen plasma to generate hydrophilic silanol groups at the stamp 

surface. Substrates for CLL (e.g., silicon wafers) are coated with a thin layer of Au (30 nm) 

that is functionalized with a hydroxyl-terminated alkanethiol (11-mercapto-1-undecanol) 

SAM. Conformal contact between the stamp and the substrate leads to condensation 

reactions between OH-groups of SAM and the silanol groups of activated PDMS, leading to 

the formation of covalent bonds (Si–O–SAM). Lifting the stamp from the substrate results in 

selective removal of the SAM corresponding to the stamp’s pattern, leaving SAM molecules 

within the non-contacted regions that establish a series of nanoscale lines. A second CLL 

step was then carried out using a re-activated stamp that is rotated 90° and registered to the 

initial pattern. After the second patterning step, arrays comprised of SAM nanosquares are 
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produced, which serve as molecular resists during the subsequent wet etching to generate 2D 

Au nanodisk substrates.

A representative image of a Au nanodisk array on a petri dish is shown in Figure 2b, where 

the central area contains uniformly patterned plasmonic nanostructures over cm scales. We 

extend the capabilities of this technique by demonstrating fabrication on multiple materials 

(e.g., plastic petri dishes) that are easily coated with Au thin films and then modified via 
CLL patterning (Figure 2c). The ease of integration with commercially available cell culture 

products demonstrates the potential of our platform to add new functionality to existing 

medical devices, enabling opportunities for controlled in situ drug delivery and molecular 

screening. Stamps with periodic lines of different feature sizes were used in this study, with 

widths ranging from 350 nm to 10 μm and pitches ranging from 700 nm to 20 μm. To 

create sub-micron features, we used commercial optical storage products, such as DVDs 

(~ $1 each), as masters that contain large-area, periodic gratings with 350 nm wide at 

700 nm pitch to circumvent the need for expensive and slow lithographic techniques such 

as EBL. Atomic force microscope (AFM) images show the morphology of the fabricated 

Au nanodisks, with widths of 350 nm (Figure 2d), 1 μm (Figure 2e), and 2 μm (Figure 

2f). The nanostructures maintain uniform shape with sharp edges, as seen in the AFM 

images. Corresponding optical microscope images that demonstrate the capability to tune 

the microscale widths of the patterned structures at 350 nm (Figure S1), 1 μm (Figure 2g), 2 

μm (Figure 2h), and 10 μm (Figure 2i).

Plasmonic nanodisk arrays fabricated in this manner are promising candidates for substrates 

for surface plasmonic resonance (SPR) measurements.81 Surface plasmon resonance 

properties of Au nanodisks are studied in separate work.81 Therefore, we hypothesized 

that these plasmonic structures could be applied for photothermal delivery, where sharp 

edges concentrate effectively laser energy to generate cavitation bubbles in the cell culture 

medium.68 Explosive boiling of water will occur when the temperature reaches 80–90% of 

its critical temperature (~650 K) that enables the bubbles formed in close proximity to a cell 

to puncture its outer membrane discretely.6,8 Finite element analysis simulations (COMSOL, 

Multiphysics 4.4) were conducted that estimate that the aqueous cell culture medium reaches 

above 640 K (~360 °C) locally at laser irradiances of 11 mJ/cm2 (Figure 3h,i), which is 

sufficient to initiate cavitation bubble formation. We have performed the simulations on 

different dimensions of Au nanodisk arrays, which show temperature increases between 

636 and 644 K upon laser radiation across different nanodisk array sizes (Figure S2). 

Calcein AM (AM = acetoxymethyl), a cell membrane permeable variant of calcein, was 

used for short-term labeling of HeLa cells, as shown in Figure 3a, prior to fixation on a 

1-μm wide nanodisk array. A scanning electron microscope (SEM) image of same region 

after cell fixation (Figure 3b) illustrates that cells are able to adhere to the Au nanodisk 

arrays substrates. An overlay of the optical and SEM images, within the green box (Figure 

3b), is presented in Figure 3c with matching cell distribution and morphology. Results of 

florescence image of calcein, cell fixation, and an image overlay on 2-μm wide nanodisk 

arrays are shown in Figure 3d–3f, respectively. Single cell morphology on a 2-μm wide 

nanodisk array was shown in Figure 3g with diameters of ca. 20 μm.
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We next demonstrated delivery of Calcein green (0.6 kDa membrane impermeable cargo) 

with high efficiency and high viability. A schematic of optical setup is shown in Figure 

S3. Calcein delivery using Au nanodisks (1 μm radius, 2 μm pitch, 30 nm thick) under 11 

mJ/cm2 laser irradiation can be seen in Figure 4a. Hoechst 33342, a cell-permeable nucleus 

fluorescence dye that emits at 497 nm, was used to label cell nuclei to quantify the total 

number of cells (Figure 4b). Propidium iodide (PI), which is not permeable to live cells, 

was used to detect dead cells (Figure 4c). Overlaid images of Calcein green fluorescence, 

Hoechst 33342 nucleus staining, and PI staining were taken 90 min after laser pulsing and 

are shown in Figure 4d. Efficiency was determined to be 98 ± 1%, with a viability of 99 ± 

1% under the condition described above, with three independent experiments of ~740 cells 

in total. Control experiments were performed on uniformly flat gold films (30 nm thick) 

under the same conditions show negligible delivery efficiency, which verifies the critical role 

of the Au nanostructure in the intracellular delivery of Calcein green under laser irradiation. 

It has been shown previously for similar systems that the cells will have minimal Au residue 

after laser radiation.8

Different laser fluences, ranging from 7 to 21 mJ/cm2, were studied to optimize delivery 

performance (Figure 5a,b). We observed that the number of cells receiving the calcein 

cargo (green) decreased while cytotoxicity (red) increased with increasing laser fluence. 

Additional experiments studying the effect of different laser fluences were performed 

with results plotted in Figure 5e. Over 2,500 cells were counted for each sample tested. 

Delivery efficiencies increased when the laser fluence was increased from the minimum 

laser intensity up to 11 mJ/cm2, reaching 98 ± 1% efficiency. At higher laser fluences, both 

cell viability and efficiency decreased significantly (with viability decreasing to 16 ± 2% and 

6 ± 1% efficiency at 21 mJ/cm2). We attribute this cytotoxicity to irrecoverable membrane 

disruption occurring at the higher laser intensities.6,8,19,83 The delivery efficiency decrease 

with cell viability is expected, as calcein will only remain in live cells with intact plasma 

membranes.

We also studied the effects of width and pitch of the periodic nanodisk arrays on delivery 

performance. Fewer calcein-delivered cells were observed as the sizes of Au nanodisks were 

increased from 2 μm to 10 μm (Figure 5c,d) while the numbers of dead cells (red) remained 

the same relative to the total number of cells (blue). This phenomenon can be explained 

by the density of cavitation bubbles induced by the gold plasmonic structures per cell.6 

Results from our simulations of photothermal response (Figure 3f) indicate that hotspots 

occur at the corner of each nanodisk where the pitch of nanodisk array is twice the width 

of an individual disk. Disk arrays with larger disk widths have fewer hotspots and thus form 

fewer cavitation bubbles. Delivery efficiency therefore decreases on these substrates, due to 

the smaller numbers of cavitation bubbles. Our data indicate that the delivery efficiency is 

maximized for disks with widths smaller than 2 μm. Delivery efficiency and cell viability 

results on nanodisk arrays with different feature widths are shown in Figure 5f. Cargoes 

with different sizes were also studied, including 0.6 kDa calcein, 4 kDa calcein, and a 150 

kDa dextran (Figure 5g). Delivery efficiencies of 98 ± 1% and 94 ± 1% were achieved for 

0.6 kDa and 4 kDa calcein, respectively. Decreased efficiency of 36 ± 5% was observed for 

the dextran, which we infer is related to its lower diffusion coefficient. Note that the gold 
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nanodisk substrates have the added benefit of being reusable as we did not notice any drop in 

performance after five experiments (Figure S4).

In summary, effective and safe delivery of biomolecular cargos intracellularly was achieved 

by exposing large-area gold plasmonic substrates fabricated using double-patterning CLL 

to nanosecond-laser pulses. Gold surfaces patterned with 2D SAM nanosquare arrays 

were used to create sub-micron nanostructures. Illuminating the gold nanostructures with 

nanosecond laser pulses induced cavitation bubbles at the plasmonic hotspots through a 

photothermal effect. Cells seeded on the nanostructures were rendered transiently porous 

upon contact with the bubbles, enabling delivery of exogenous biomolecular cargo. Laser 

fluences and nanodisk sizes were optimized to achieve delivery efficiencies of over 98% 

for 0.6 kDa calcein with cell viability maintained at over 98%. Note that we attribute the 

photothermal delivery predominantly to the sheer force generated by the formation and 

collapse of the cavitation bubble, but we do not exclude the effects of local thermal heating 

of the plasma membrane.

Desirable features of this CLL-based strategy include: (1) cost-effective and high-throughput 

fabrication of uniform nanostructures over large (square centimeter) areas, (2) versatile 

substrate selection, (3) scalability and reproducibility, and (4) economical setup that 

does not require specialized instrumentation. Efficient delivery of membrane impermeant 

small molecules to HeLa cells with minimal cell death was achieved, which opens 

new opportunities for testing and manipulating in disease-relevant cellular targets and 

potential integration with medical devices. Both the PDMS stamps and the fabricated 

plasmonic substrates are reusable, enabling scale-up to larger formats. Compared with 

femtosecond lasers sometimes used in laboratory studies, the nanosecond pulsed laser used 

here is economical and straightforward to operate. This study demonstrates a promising 

method for high-efficiency intracellular delivery for cellular therapeutic and drug-discovery 

applications. In this work, we focused on delivery of small molecules into HeLa cells. 

Previously, we have shown that our photothermal delivery platform can be applied to deliver 

large functional cargoes, such as live bacteria, proteins, and plasmids, into a variety of 

cell types, including primary normal human dermal fibroblasts and human B lymphocyte 

cells.22,68 Future optimization and investigations of the Au nanodisk arrays will focus on 

advancing this technique so as to enable clinical applications, such as gene therapy and 

cancer immunotherapy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustration of photothermal intracellular delivery enabled by localized surface plasmon 

resonance (LSPR) of gold nanodisks excited by a nanosecond laser. After cell seeding, 

the laser was rastered over cells seeded onto the nanostructures and cultured in a medium 

containing membrane impermeable biomolecules. Upon irradiation, the gold plasmonic 

structures heat up rapidly and generate cavitation bubbles, which facilitate the delivery of the 

biomolecular cargo into targeted cells by creating transient pores along nearby their outer 

membranes.
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Figure 2. 
Gold plasmonic disk arrays fabricated by double-patterning chemical lift-off lithography 

(CLL). (a) Schematic of the patterning process. Substrates were coated with gold (Au) 

before being functionalized with self-assembled monolayers (SAMs). Polydimethylsiloxane 

(PDMS) stamps with line patterns were “activated” by exposure to an oxygen plasma to 

generate hydrophilic silanol groups on their surfaces. The stamps were then placed in 

conformal contact with the substrate. Molecules were selectively removed in the contact 

region upon lifting the stamp. A second patterning step was then performed by rotating 

the stamp 90° to generate two dimensional (2D) nanosquare chemical patterns. Exposed 

metal was removed via wet etching to generate Au 2D nanodisk arrays. (b,c) Representative 

images of large-area 350-nm-wide Au nanodisk arrays on a plastic petri dish. (d-f) Atomic 

force microscope images of Au nanodisk arrays comprised of (d) 350-nm wide, (e) 1-μm 

wide, and (f) 2-μm wide features. (g-i) Optical microscope images of gold nanodisk arrays 

with feature widths (g) 1 μm, (h) 2 μm, and (i) 10 μm. Scale bars: 10 μm. CNSI at UCLA 

logo used with permission.
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Figure 3. 
(a) Fluorescence microscope images of HeLa cells on 1-μm-wide gold (Au) nanodisk 

arrays labeled with a cell membrane-impermeable dye (Calcein AM). (b) Scanning electron 

microscope images of fixed cells on a substrate. (c) Overlay of the green-box-designated 

region seen in (b) with (a). (d) Fluorescence microscope images of HeLa cells on 2-μm-wide 

gold (Au) nanodisk arrays labeled with a cell membrane impermeable dye (Calcein AM). 

(e) Scanning electron microscope images of fixed cells on a substrate. (f) Overlay of the 

green box-designated region seen in (b) with (a). (g) Scanning electron microscope image 

of single Hela cell on 2-μm-wide Au nanodisk array substrate. (h,i) Simulation results of 

surface temperature at the gold nanodisk array (1-μm wide) interface in water. Scale bars: 

(a-f) 100 μm, (g) 20 μm.
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Figure 4. 
Delivery efficiency and cell viability testing. (a-d) Delivery of calcein to HeLa cells using 

gold nanodisk arrays (1 μm wide, 2 μm pitch, 30 nm thickness) under laser irradiation with 

11 mJ/cm2 fluence. (a) Representative image of delivery of calcein (green) to targeted cells. 

(b) Cell nuclei are stained with Hoechst 33342 to label both live and dead cells (blue). 

(c) Propidium iodide (PI) assay to identify dead cells (red). (d) Overlaid image of calcein, 

Hoechst 33342, and PI dyes. Efficiency was found to be 98 ± 1%, and viability is 99 ± 1%. 

(e–h) Control experiment using flat gold thin film under the same laser irradiation of 11 

mJ/cm2 fluence, where (e) corresponds to the calcein channel, (f) is the Hoechst dye, (g) is 

the PI dye, and (h) is the overlaid image of (e–g). Scale bars: 100 μm.

Zhao et al. Page 16

ACS Mater Lett. Author manuscript; available in PMC 2021 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Delivery efficiency and cell viability at different laser fluences and gold disk sizes are shown 

in overlaid images (a-d) of 0.6 kDa calcein delivery (green), Hoechst dye (blue), and PI dye 

(red). Delivery results under different laser fluence at (a) 7 mJ/cm2, and (b) 21.2 mJ/cm2, 

respectively, both on 1-μm wide nanodisk arrays. Delivery results using different sizes of 

gold nanodisk arrays of (c) 2 μm and (d) 10 μm widths, respectively, both under laser 

fluence of 7 mJ/cm2. (e) Delivery efficiencies and viabilities after 90 min as a function of 

laser fluence on 1-μm wide nanodisk arrays. Error bars represented standard error mean 

(s.e.m.) (n = ~2,500 cells for all tests). (f) Delivery efficiencies and viabilities with different 

sizes of gold nanodisk arrays at 7 mJ/cm2. Error bars, s.e.m. (n = ~1,900 cells for all tests). 

(g) Delivery efficiencies and viabilities with different cargoes at 11 mJ/cm2 on 1-μm wide 

nanodisk arrays. Error bars, s.e.m. (n = ~2,000 cells for all tests). Scale bars: 100 μm.
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