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Abstract Recent omics analyses of human biofluids provide opportunities to probe selected
species of biomolecules for disease diagnostics. Fourier-transform infrared (FTIR) spectroscopy
investigates the full repertoire of molecular species within a sample at once. Here, we present a
multi-institutional study in which we analysed infrared fingerprints of plasma and serum samples
from 1639 individuals with different solid tumours and carefully matched symptomatic and non-
symptomatic reference individuals. Focusing on breast, bladder, prostate, and lung cancer, we

find that infrared molecular fingerprinting is capable of detecting cancer: training a support vector
machine algorithm allowed us to obtain binary classification performance in the range of 0.78-0.89
(area under the receiver operating characteristic curve [AUC]), with a clear correlation between AUC
and tumour load. Intriguingly, we find that the spectral signatures differ between different cancer
types. This study lays the foundation for high-throughput onco-IR-phenotyping of four common
cancers, providing a cost-effective, complementary analytical tool for disease recognition.

Introduction
To address the ever-growing cancer incidence and mortality rates, effective treatment methods are
indispensable (Bray et al., 2018). They rely on detection of the disease at the earliest possible stage
to allow antitumour interventions and thus improve survival rates (Bannister and Broggio, 2016;
Schiffman et al., 2015). Early detection is therefore a crucial factor in the global fight against cancer.
However, the clinical benefits versus the potential harms and costs of several cancer detection
approaches remain controversial (Schiffman et al., 2015). Due to the limited sensitivity and specificity
of current medical diagnostics, cancer can either be overlooked (false negatives) or falsely detected
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(false positives), leading to either delayed interventions or unnecessary, potentially harmful investi-
gations or psychological stress (Srivastava et al., 2019). Hence, there is a high need to complement
current medical diagnostics with time- and cost-efficient, non-invasive or minimally invasive methods
that could possibly lead to new screening and detection approaches, prior to tissue-biopsy-based
molecular profiling or prognosis (Wan et al., 2017).

Molecular analyses of human serum and plasma provide systemic molecular information and
enabling novel routes of diagnostics (Amelio et al., 2020, Wan et al., 2017). So far, most liquid
biopsies predominantly rely on the analysis of a few pre-selected analytes and biomarkers. Although
the emergence of highly sensitive and molecule-specific methods in the fields of proteomics (Geyer
etal., 2019, Geyer et al., 2017, Uzozie and Aebersold, 2018), metabolomics (Roig et al., 2017, Xia
etal., 2013), and genomics (Abbosh et al., 2017, Han et al., 2017, Otandault et al., 2019) has led to
the discovery of thousands of different biomarker candidates, only a few of them have been validated
and transferred to the clinic so far (Poste, 2011).

Technological developments of the last decade brought a paradigm change regarding liquid biop-
sies. Instead of relying on a single molecular marker, recent approaches focus on combining infor-
mation across a broad range of molecules to investigate changes in molecular patterns and identify
disease-specific physiologies. However, the combination of various omics techniques (i.e. multi-omics)
still requires complex and target-specific sample preparation as well as elaborate ways of merging
different datasets (Hasin et al., 2017, Karczewski and Snyder, 2018; Malone et al., 2020; Yoo et al.,
2018). Moreover, increasing the number of analytical methods involved often leads to unfeasibly high
costs for broad clinical use.

This is where infrared molecular spectroscopy prevails — it captures signals from all types of mole-
cules in a sample in a single time- and cost-effective measurement in a label-free fashion. When
applied to blood serum or plasma samples, infrared spectroscopy provides a so-called infrared molec-
ular fingerprint (IMF) reflecting the chemical composition of a sample, that is, the person’s molecular
blood phenotype (Huber et al., 2021). Even though the IMF of a highly complex biofluid such as
blood serum and plasma can only partially be traced back to its molecular origin, it may deliver a
plethora of information sensitive and specific to the health state of the individual. In a recent longi-
tudinal study, we have shown that defined workflows to collect, store, process, and measure human
liquid biopsies lead to reproducible IMFs in healthy, non-symptomatic individuals that are stable over
clinically relevant time scales (Huber et al., 2021).

Numerous studies have shown the potential of blood-based IMFs for the detection of cancer,
notably brain (Butler et al., 2019, Hands, 2014; Sala et al., 2020b), breast (Backhaus et al., 2010;
Elmi et al., 2017; Ghimire et al., 2020; Zelig et al., 2015), bladder (Ollesch et al., 2014), lung
(Ollesch et al., 2016), prostate (Medipally et al., 2020), and other cancer entities (Anderson et al.,
2020; Ollesch et al., 2014; Sala et al., 2020a), with some of the studies reporting specificities and
sensitivities higher than 90% (Anderson et al., 2020; Backhaus et al., 2010; Butler et al., 2019,
Ghimire et al., 2020; Medipally et al., 2020; Ollesch et al., 2014). Despite these promising initial
results, only a few studies involved more than 75 individuals per group (Anderson et al., 2020).
Additionally, the majority of these studies had a high risk of bias due to patient selection applied
(Anderson et al., 2020). In fact, it was shown that IMFs are susceptible to external confounding
factors, such as those related to sample handling and data collection, as well as to inherent biolog-
ical variations (e.g. age and gender) unrelated to cancer (Diem, 2018). Furthermore, the differences
observed in IMFs may be due to the innate immune response and other concomitant factors (Diem,
2018; Fabian et al., 2005). Thus, the specificity of IMF to a certain cancer must be evaluated by inves-
tigation of appropriate, carefully selected reference groups.

Altogether, there is a need for studies that address the issues listed above by (i) systematically
investigating the pre-analytical factors (Cameron et al., 2020; Huber et al., 2021), (ii) studying the
molecular origin of the infrared fingerprints (Voronina et al., 2021), and (iii) adequately applying
machine learning tools with involvement of a sufficient number of participants. To date, the latter
requirement has only been met in studies investigating the applicability of infrared fingerprinting to
bladder (Ollesch et al., 2014), breast (Backhaus et al., 2010), and brain cancer detection (Butler
et al., 2019). In addition to the capacity to detect cancer, whether different cancer entities have suffi-
ciently different infrared spectral signatures to be distinguished from each other has so far not been
evaluated.
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Our present multi-institutional, multi-disease study addresses the above issues to rigorously assess
the feasibility of IMFs for high-throughput detection of four common cancer entities as phenotypes,
thus referred to as ‘onco-IR-phenotyping.” Using Fourier-transform infrared (FTIR) transmission spec-
troscopy of liquid samples, we measured blood serum and plasma samples from 1927 individuals,
among these 161 breast cancer, 118 bladder cancer, 278 prostate cancer, and 214 lung cancer
patients, prior to any cancer-related therapy, along with non-symptomatic reference individuals and
study participants with diseases and/or benign pathologies of the same organ (i.e. organ-specific
symptomatic references). By applying support vector machine (SVM) to train models for binary classifi-
cation, we obtained detection efficiencies in the range of 0.78-0.89 (area under the receiver operating
characteristic [ROC] curve [AUC]), with the detection efficiency strongly correlating with the severity
of the disease. The results of this prospectively conducted study suggest that infrared fingerprinting
of liquid plasma and serum may offer a means of robust and reliable detection of different types of
cancer. Furthermore, we reveal that the spectral signatures attributable to different cancer types differ
significantly from each other, which facilitates classification between different states and thus carries a
translational potential not previously reported.

Results
Study setup and workflow

In this study, we tested infrared molecular spectroscopy for medically relevant blood profiling in a
prototypical multi-institutional setting, assessing the usefulness of IMFs as a source of complemen-
tary information for cancer diagnostics. The study included cohorts of therapy-naive, lung, prostate,
bladder, and breast cancer patients (cases), and organ-specific symptomatic references as well as non-
symptomatic reference individuals (Figure 1a, Figure 1—source data 1).

Blood sera and plasma were collected at several clinical sites according to well-defined stan-
dard operating procedures to minimize pre-analytical errors (Figure 1b; Huber et al., 2021). An
automated sample delivery system was applied for high-throughput, high-reproducibility, and cost-
efficient infrared fingerprinting of liquid sera and plasma of 1927 individuals with an FTIR spectrom-
eter (Figure 1c). Special care was taken to match the characteristics of the case and reference cohorts
for each question separately — by age, gender, and body mass index (BMI) - to avoid patient selec-
tion bias, although this step reduced the number of individuals analysed within this study to 1639
(Figure 1d). The acquired IMFs were used for training machine learning models to perform binary
classification of the samples (Figure 7Te) into case and reference groups, allowing the investigation
of various clinically relevant questions (see below). Model training was performed by applying SVM
algorithm to pre-processed IMFs by splitting the data into train and test sets, employing 10-fold cross-
validation, repeated 10-times with randomization. For assessing the classification performance, we
evaluated the AUC of the respective ROC curves for the test sets.

Diagnostic performance of infrared molecular fingerprinting for cancer
detection

In a first step, we evaluated the diagnostic performance of IMFs obtained from serum samples for
the binary classification of each of the four common cancer types individually against matched non-
symptomatic reference groups (see Table 1 and Figure 2—source data 1 for details on the character-
istics of the individual cohorts). Since our approach produces results in terms of continuous variables
(disease likelihood) rather than binary outcomes (disease, non-disease), we use the AUC of the ROC
as the main performance metric, and thus take advantage of incorporating information across multiple
operating points, not limited to a particular clinical scenario.

The highest detection efficiencies in the test sets were obtained for the lung and breast cancer
cohort SVM models, with a ROC AUC of 0.89 and 0.88, respectively (Figure 2a). A lower classification
performance of 0.79 and 0.78 (ROC AUC) was obtained for the prostate and bladder cancer cohorts,
respectively. Table 1 also lists the optimal combination (see Methods) of sensitivity and specificity
for all cancer entities. For making our results comparable to other studies and possibly to gold stan-
dards in cancer detection, we present lists with sensitivity/specificity pairs (see Table 1). In particular,
we present the optimal pairs extracted by minimizing the distance between the ROC curve and the
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Figure 1. Infrared molecular fingerprinting workflow and clinical study design. (a) Cohorts of therapy-naive, lung, breast, prostate, and bladder cancer
patients (cases), and organ-specific symptomatic references as well as non-symptomatic reference individuals were recruited at three different clinical
sites — in total, 1927 individuals. (b) Blood samples from all individuals were drawn, and sera and plasma were prepared according to well-defined
standard operating procedures. (c) Automated Fourier-transform infrared spectroscopy of liquid bulk sera and plasma were used to obtain IMFs. The

Figure 1 continued on next page

Huber, Kepesidis, et al. eLife 2021;10:€68758. DOI: https://doi.org/10.7554/eLife.68758 4 of 20


https://doi.org/10.7554/eLife.68758

eLIfe Research article Medicine

Figure 1 continued

displayed IMFs were pre-processed using water correction and normalization (see Methods). (d) For each clinical question studied, the characteristics
of the case and the reference cohorts were matched for age, gender, and body mass index (BMI) to avoid patient selection bias. This resulted in total
number of 1639 individuals upon matching. (e) Machine learning models were built on training datasets and evaluated on test datasets to separately
evaluate the efficiency of classification for each of the four cancer entities.

The online version of this article includes the following figure supplement(s) for figure 1:

Source data 1. Breakdown of the overall participant pool used within the study.

upper-left corner — a standard practice in studies of this type. In addition, we set the specificity to 95%
and present the resulting sensitivities.

In clinical practice, however, patients may suffer from pathologies that affect the same organ as the
cancer under scrutiny. Therefore — in a second step, we tested the capability of IMFs to classify cancer,
when organ-specific comorbidities (e.g. chronic obstructive pulmonary disease [COPD] in the lung
cancer cohort) and organ-specific benign conditions (e.g. hamartoma of the lung in the lung cancer
cohort or benign prostate hyperplasia [BPH] in the prostate cancer cohort — see Figure 1—source
data 1 for details) were added to the reference group. In this case, the detection efficiency decreased
significantly, from 0.89 to 0.77, for lung cancer and slightly, from 0.79 to 0.75, for prostate cancer
(Figure 2b). If the reference group contained only organ-specific symptomatic references, the detec-
tion efficiency was reduced further, to 0.74 for lung cancer and 0.70 for prostate cancer (Figure 2c).

To test whether sample collection, handling, and storage have a potential influence on classifica-
tion results, we examined data from matched, non-symptomatic, healthy individuals from the three
major clinics using principal component analysis (PCA). Considering the first five principal components
(responsible for 95% of the explained variance), we could not observe any clustering effect related to
data from different clinics (Figure 2—figure supplement 1). However, potential bias due to the above-
mentioned influences cannot be fully excluded at the present stage. To this end, samples at different
clinical sites are being collected to form a large independent test dataset, specifically designed to
allow us evaluate the effects of clinical covariates — as well as measurement-related ones - relevant
for the proposed IMF-based medical assay. One typically obtains a different AUC by using different
control groups, collected at different sites (Figure 2—source data 3). These variations have many
potential causes, including measurement-related effects, differences in sample handling, unobserved
differences between the clinical populations recruited at different clinical sites, and of course the size
of the training sets used for model training, which can significantly affect the model performance.

Table 1. Detection efficiency for different binary classifications.

Different cancer types were compared to each other, as well as the impact of using different
reference groups was analysed. Detailed cohort characteristics can be found in Figure 2—source
data 1 (NSR: non-symptomatic references; MR: mixed references; SR: symptomatic references; AUC:
area under the receiver operating characteristic curve; *sensitivity and specificity values are obtained
by minimizing the distance of the receiver operating characteristic [ROC] curve to the upper-left

corner).

Clinical question for Sensitivity/ sensitivity at
binary classification # of Individuals AUC specificity* 95% specificity
Lung cancer vs. NSR  214/193 0.89 = 0.05 0.86/0.79 0.45

Lung cancer vs. MR 214/208 0.77 = 0.06 0.72/0.67 0.36

Lung cancer vs. SR 214/143 0.74 + 0.07 0.67/0.71 0.24

Prostate cancer vs.

NSR 278/278 0.78 + 0.06 0.71/0.71 0.36

Prostate cancer vs. MR 278/278 0.75 = 0.06 0.71/0.68 0.23

Prostate cancer vs. SR 278/278 0.70 = 0.06 0.65/0.68 0.20

Breast cancer vs. NSR  161/161 0.88 = 0.06 0.82/0.81 0.35

Ellggder cancer vs. 118/118 0.79 = 0.09 0.72/0.73 0.23
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Figure 2. Diagnostic performance of lung, prostate, bladder, and breast cancer detection based on infrared molecular fingerprints (IMFs) of blood
sera. Receiver operating characteristic (ROC) curves for the binary classification of the test set with support vector machine (SVM) models trained on
water-corrected and vector-normalized IMFs. The different cancer entities were tested against (a) non-symptomatic references, (b) mixed references
that also include organ-specific symptomatic references, and () organ-specific symptomatic references only. Detailed cohort characteristics can be
found in Figure 2—source data 1. (d) Area under the receiver operating characteristic curve (AUC) for the test sets according to different spectral pre-
processing of the IMFs. The error bars show the standard deviation of the individual results of the cross-validation (LuCa: lung cancer; PrCa: prostate
cancer; BrCa: breast cancer; BlCa: bladder cancer; NSR: non-symptomatic references; MR: mixed references; SR: symptomatic references).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Characteristics of the matched groups of individuals utilized for the analysis as presented in Table 1, Figures 2 and 3a-c.

Source data 2. Zipped folder with trained machine learning models and application instructions.

Source data 3. Potential impact of clinical site to classification performance.

Figure supplement 1. Unsupervised comparison between data from the three clinical sites as well as quality control (QC) analysis of measurements.

Figure supplement 1—source data 1. Characteristics of the matched groups utilized for the analysis presented in Figure 2—figure supplement 1.

Figure supplement 2. Performance comparison of serum- and plasma-based fingerprints for cancer detection.

Figure supplement 2—source data 1. Characteristics of the matched groups utilized for the analysis presented in Figure 2—figure supplement 2.

Although important, it is currently not feasible to rigorously disentangle these effects. Furthermore,

we investigated the influence of different pre-processing of the IMFs on the classification results and
reassuringly found that these are not significantly affected by the applied pre-processing (Figure 2d).

Model diagnostics yielded no signs of overfitting as we added different layers of pre-processing into

the pipeline (see Methods for details). Since water-corrected and vector-normalized spectra typically

resulted in slightly higher AUCs but still low overfitting, this pre-processing was kept in all other

analyses.

It is generally known that blood serum and blood plasma provide largely overlapping molecular

information, and both can be used as a basis for many further investigations. The extent to which this
also applies to infrared fingerprinting has not been extensively studied. In a previous comparative
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study, we were able to show that healthy phenotypes can be better identified on the basis of serum
(Huber et al., 2021).

Here we compare the diagnostic performance of IMFs from serum and plasma collected from the
same individuals for the detection of lung and prostate cancer compared to non-symptomatic and
symptomatic organ-specific references. Given that plasma samples were only available for a subset
of the lung and prostate cohorts, the results for serum slightly deviate from those presented above
due to the different cohort characteristics (Figure 2—figure supplement 2—source data 1). The
detection efficiency based on IMFs from plasma samples was 3% higher in the case of lung cancer
and 2% higher in the case of prostate cancer than the same analysis based on IMFs from serum
samples. In both cases, the difference in AUC was only of low significance. It is noteworthy that the
corresponding ROC curves show similar behaviour (Figure 2—figure supplement 2). These results
suggest that either plasma or serum samples could in principle be used for detection of these cancer
conditions. However, for carefully assessing whether (i) the same amount of information is contained
in both biofluids and (ii) whether this information is encoded in a similar way across the entire spectra
requires yet an additional dedicated study with higher sample numbers.

Investigation of cancer-specific infrared signatures

In many clinical settings, a simple binary classification may not be sufficient; instead, a simple, quick,
and reliable test that indicates a specific cancer or disease is preferred. To investigate the possible
existence of cancer-specific IMFs (or onco-IR-phenotypes), we first examined and compared the spec-
tral signatures that are relevant for distinguishing cancer cases from non-symptomatic references.
For this purpose, we evaluated the differential fingerprints (defined as the difference between the
mean IMF of the case cohort and that of the reference cohort), determined the two-tailed p-value of
Student's t-test, and calculated the AUC per wavenumber using the U statistic of a Mann-Whitney
U test (see Methods) for all cohorts (Figure 3a—c). The obtained patterns differed significantly for all
four cancer entities.

It is noteworthy that for lung and breast cancer the magnitude of the differential fingerprint
compared to the variation of the IMFs of the reference group (grey area in Figure 3a) is more
pronounced than for bladder and prostate cancer. This is also reflected in the p-values (Figure 3b),
reaching many orders of magnitude lower levels for the former cancer entities, and higher spectrally
resolved AUCs (Figure 3c). Compared to evaluation based on the entire spectral range, spectral
containment significantly reduces detection efficiency for all cancer entities, although the reduction is
smaller for lung and breast cancer. For these two cancer entities, classification based on a few selected
spectral regions is possible. By contrast, for prostate and bladder cancer, the cancer-relevant informa-
tion appears to be distributed over the entire spectral range and a high classification rate relies on the
entire spectral range accessible.

The fact that the cancer entities studied here have different spectral signatures raises the question
of whether it is possible to get first indication of the type of cancer detected, which can become
relevant, for example, if the primary origin of a cancer type is unknown. Therefore, we performed a
multiclass classification aiming to distinguish between lung, bladder, and breast cancer for a matched
female cohort (Figure 3d) and between lung, bladder, and prostate cancer for a matched male cohort
(Figure 3e). Note that the number of included cancer cases had to be significantly reduced in multi-
class classification, as compared to the binary classification, in order to preserve balanced cohort char-
acteristics. Details on this are given in Figure 3—source data 1. Overall, the classification accuracy was
73% and 74%, respectively. These findings suggest that primary tumours evolving in different organs
indeed induce differing changes in the overall molecular composition of blood sera - as reflected in
differing spectral signatures — and thus offering potential for cancer stratification in future. However,
due to the small dataset, these findings need to be verified with larger, independent cohorts.

Often, a patient may reveal symptoms suggestive of a certain cancer entity (e.g. lung cancer), but
same time also symptoms indicative of additional further diseases or benign conditions. Therefore,
we tested the ability of infrared fingerprinting to detect signatures that would be specific to lung and
prostate cancer in comparison to organ-specific (benign) diseases in each case. To this end, we evalu-
ated the differential fingerprints of the different organ-specific symptomatic references compared to
non-symptomatic individuals and compared these signatures to the cancer-related IMFs, respectively
(Figure 3—figure supplement 1). We found that the differential fingerprint for asthma and lung
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Figure 3. Infrared spectral signatures of lung, prostate, bladder, and breast cancer. (a-a'"") Differential fingerprints (standard deviations of the reference
cohorts are displayed as grey areas), (b-b'"") two-tailed p-value of Student’s t-test, and (c-¢'"') area under the receiver operating characteristic curve
(AUC) per wavenumber (extracted by application of Mann—-Whitney U test) compared to the AUC of the combined model (dashed horizontal lines).
Confusion matrix summarizing the per-class accuracies of multiclass classification of (d) lung, bladder, and breast cancer (matched female cohort) with
overall model accuracy of 0.73 = 0.11, and (e) lung, bladder, and prostate cancer (matched male cohort) with overall model accuracy of 0.74 + 0.13.

Figure 3 continued on next page
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Figure 3 continued

Detailed cohort characteristics can be found in Figure 3—source data 1. Chance level for the three-class classification corresponds to 0.33 (LuCa: lung
cancer; PrCa: prostate cancer; BrCa: breast cancer; BICa: bladder cancer).

The online version of this article includes the following source data and figure supplement(s) for figure 3:
Source data 1. Characteristics of the matched groups utilized for the analysis presented in Figure 3d and e.
Figure supplement 1. Comparison of signatures from different organ-specific pathologies.

Figure supplement 1—source data 1. Characteristics of the matched groups utilized for the analysis presented in Figure 3—figure supplement 1.

hamartoma clearly differs from the ones obtained for lung cancer and COPD. However, the differen-
tial fingerprints of the latter two diseases, although distinguishable, exhibit strong similarities in their
main spectral features. This explains why the presence of COPD in the reference group lowers the
detection efficiency of lung cancer (Figure 2a vs. Figure 2b). In contrast, the differential fingerprints
of BPH and prostate cancer differ considerably. Consequently, BPH in the reference group does not
strongly affect the detection efficacy of prostate cancer.

Lung cancer is often accompanied by COPD, and the previous analysis showed that the differen-
tial fingerprint of COPD and lung cancer exhibits similarities. Thus, we investigated whether infrared
fingerprinting could possibly identify any infrared signals specific only to lung cancer (and not to
COPD). Towards that end, we separated individuals from the above analysis into sub-cohorts with
subjects negative and positive for COPD. We found that the detection of lung cancer was less efficient
when the reference cohort contained only COPD-positive individuals (Figure 4—figure supplement
1,). Both conditions (lung cancer and COPD) are often accompanied by an inflammatory response.
Considering that the spectral signatures relevant for cancer detection are based on typical molecular
changes that also occur in inflammatory conditions (Voronina et al., 2021), the presence of COPD
likely masks, at least in part, cancer-relevant signals.

Another relevant question is whether a distinction between cancer and corresponding organ-
specific benign pathologies can be made. Here, we evaluated to what extent this was possible for
lung and prostate cancer. In both cases, we observed that the cancer detection was only moderately
higher against a group of non-symptomatic individuals as compared to a group of patients with a
benign condition (lung hamartoma and BPH, respectively; see Figure 4a and b).

Finally, we explored the possibility of creating multiclass classification models to simultaneously
discriminate between multiple groups: cancer patients, individuals with benign conditions, and non-
symptomatic reference subjects (Figure 4c and d). In both cases, the classification accuracy was well
above chance. Although the accuracy may not yet be sufficient for clinical use, these accuracies may
significantly improve with more samples available for training.

Dependence of cancer detection performance on tumour progression
Challenges for cancer detection include the enormous biological and clinical complexity of cancer,
and detection is further complicated by the significant intratumour heterogeneity (McGranahan and
Swanton, 2017) as well as by the impact of the tumour microenvironment (Boothby and Rickert,
2017). To evaluate whether the blood-based IMFs are sensitive to tumour progression, we first inves-
tigated whether the binary classification efficiency depends on tumour size, characterized in terms of
clinical TNM staging (Amin et al., 2017).

In general, we observe that the classification efficiency exhibits a positive correlation with tumour
size or tumour grade. In the case of lung cancer, when compared to the non-symptomatic refer-
ences, the classification efficiency for T4 tumours is (in terms of AUC) 9% higher than that for T1
tumours (Figure 5a). Also, for breast and bladder cancer, a significantly higher detection efficiency
for T3 tumours was observed. This is also reflected by the fact that a more pronounced differential
fingerprint can be found in these cancers in higher T classes (Figure 5a-c). Although the absolute
(integrated) deviation — between the cases and the matched references — increases for all four cancer
phenotypes, the spectral features are partly different for the different T stages. This could be due to
the fact that, due to the moderate number of individuals considered, the actual onco-IR-phenotype is
masked by biological variability, or that the heterogeneity of tumour growth leads to different molec-
ular changes and thus to different IMFs.
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Figure 4. Detection efficiency of benign conditions and multiclass classification. (a) Pairwise classification performance results between lung cancer
(LuCa), hamartoma (Hamart.) and non-symptomatic reference group (NSR) with overall model accuracy of 0.46 + 0.18, and (b) pairwise classification
performance between prostate cancer (PrCa), benign prostate hyperplasia (BPH), and NSR with overall model accuracy of 0.43 + 0.06. The error bars
show the standard deviation of the individual results of the cross-validation. Confusion matrix summarizing the per-class accuracies of multiclass
classification in (c) the LuCa cohort and (d) the PrCa cohort. The characteristics of the cohort used for this analysis are given in Figure 4—source data 1.
Chance level for the three-class classification corresponds to 0.33.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Characteristics of the matched groups utilized for the analysis presented in Figure 4.

Figure supplement 1. Influence of chronic obstructive pulmonary disease (COPD) in lung cancer (LuCa) detection.

Figure supplement 1—source data 1. Characteristics of the matched groups utilized for the analysis presented in Figure 4—figure supplement 1.

In contrast, prostate cancer with higher T stage shows neither a significantly better AUC nor a more
pronounced differential fingerprint (Figure 5d). Instead, the detection efficiency does increase signifi-
cantly with tumour grade score (Amin et al., 2017; Figure 5e). A strong correlation between the AUC
and Gleason score (Figure 5f) could also not be observed.

Finally, the size of the lung cohort allowed us to also investigate the possible effect of metastasis
(TNM M1) on the IMFs and their classification performance. As expected from our previous find-
ings, higher AUCs (although not statistically significantly higher) were found in the cohort of locally
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Figure 5. Efficiency of binary classification and infrared spectral changes in dependence of tumour progression. (a-d) Binary classification performance
of lung, breast, bladder, and prostate cancer against references as a function of T-classification (of TNM-staging). (a'-d’) Differential fingerprints in
relation with the tumour size (TNM class T) for all four cancer entities. (a"—d") Area under the absolute differential fingerprints in relation with the
tumour size for all dour cancer entities. The y-axes of the diagrams in the panels (a'-d') and (a''-d"') each have the same linear scaling, thus directly
comparable. (e) Classification performance of prostate cancer versus references as a function of tumour grade score. (f) Classification performance of

Figure 5 continued on next page
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Figure 5 continued

prostate cancer as a function of the Gleason score (Gs). (g) Classification performance of lung cancer versus references as a function of the metastasis
status. The detailed cohort breakdown and classification results are given as Figure 5—source data 1, Figure 5—source data 2, Figure 5—source
data 3, Figure 5—source data 4. Some cohorts did not include sufficient number of participants so that a reliable machine learning model could not
be built and were therefore not evaluated. LuCa: lung cancer; PrCa: prostate cancer; BrCa: breast cancer; BICa: bladder cancer; NSR: non-symptomatic
references; MR: mixed references; n.s.: not significant; *p<107%; **p<107%; ***p<107, ****p<107; The error bars show the standard deviation of the
individual results of the cross-validation.

The online version of this article includes the following figure supplement(s) for figure 5:

Source data 1. Characteristics of the matched groups utilized for the analysis presented in Figure 5a-d, a'-d" and a"-d".
Source data 2. Characteristics of the matched groups utilized for the analysis presented in Figure 5e.

Source data 3. Characteristics of the matched groups utilized for the analysis presented in Figure 5f.

Source data 4. Characteristics of the matched groups utilized for the analysis presented in Figure 5e.

Figure supplement 1. Relation between the effect size and the area under the receiver operating characteristic curve (AUC) per wavenumber.

advanced and metastatic lung cancer as compared to cohort of non-metastatic cancer patients only
(Figure 5g).

Overall, we observe a consistent pattern in agreement with the hypothesis that the signal utilized
by the learning algorithm increases with more progressed disease stage (either larger tumour volume,
metastatic spread, or tumour grade score). This suggests that the information retrieved from the
measured differences between the IMFs of cases and references is connected to tumour-related
molecular changes. These changes may be due to larger tumour load leaving a more extensive foot-
print on the composition of peripheral blood, or to the fact that tumour progression could have
caused a higher systemic response, or to a combination of both. While the correlation between AUC
and tumour size was most evident for lung, breast, and bladder cancer, spectral signatures relevant for
prostate cancer detection were more strongly connected to the tumour grade score. It is important
to note, however, that the observed relation — between the spectrum of the disease and classification
efficiency - is not conclusively proven by the current analysis, but only suggested.

Discussion

We demonstrated the feasibility of blood-based IMF to detect lung, breast, bladder, and prostate
cancer with good efficiency. Although previous smaller studies have yielded fairly high classification
efficiencies (Backhaus et al., 2010; Elmi et al., 2017, Ghimire et al., 2020, Medipally et al., 2020,
Ollesch et al., 2016; Ollesch et al., 2014; Zelig et al., 2015), they were either based on low number
of participants or might have been affected by confounding factors. Here we provided a rigorous
multi-institutional study setup with more than 100 individuals in each case and reference group, 1927
individuals in total, with all case and reference cohorts matched for major confounding factors (n =
1639 individuals upon matching). In addition, we observed that visible infrared spectral signatures
correlate with tumour stage, suggesting that the IMFs are significantly affected not only by the pres-
ence of tumours but also by the progression of the disease. Furthermore, similar cancer detection
efficiencies were achieved with IMFs obtained from blood serum and plasma. This not only confirms
the robustness of the results, but also reveals that the method is applicable to both biofluids.

This study provides strong indications that blood-based IMF patterns can be utilized to identify
various cancer entities, and therefore provides a foundation for a possible future in vitro diagnostic
method. However, IMF-based testing is still at the evaluation stage of essay development, and further
steps have to be undertaken to evaluate the clinical utility, reliability, and robustness of the IMF
approach (Ignatiadis et al., 2021).

First, the machine learning models built within this work will have to be tested with fully inde-
pendent sample sets. Although the study was designed to account for and minimize the effect of
confounding factors, we are aware that these cannot be fully excluded, especially considering that
machine learning algorithms are susceptible to them (Zhao et al., 2020). To this end, we freeze the
current machine learning models, each trained on the data of the entire cohorts of the current study
(Figure 2—source data 2), and will apply them to a consecutively prospective sample collection to
better rule out potential confounders.
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Second, it needs to be studied in more detail whether IMFs pick up molecular patterns that are
specific to a primary disease process or, more generally, to any secondary inflammatory response. At
the current stage, both options seem possible as altered immune responses are also known as primary
disease drivers in the context of cancer and may affect genome instability, cancer cell proliferation,
anti-apoptotic signalling, angiogenesis, and, last but not least, cancer cell dissemination (Hanahan
and Weinberg, 2011). This link to systemic effects makes it still difficult to distinguish cancer-specific
IMFs (onco-IR-phenotypes) from comorbidities with a strong immune signature (like COPD) in humans
in vivo. Nevertheless, we did obtain distinct spectral patterns for all four common cancer entities
(Figure 3b) indicating different, potentially disease-specific molecular alterations of the IMFs. These
changes are likely to be linked to cancer-induced changes since classification accuracy is higher with
more advanced cancer stages, which is also reflected in more pronounced differential fingerprints with
larger tumour size.

To gain deeper understanding of the specificity of observed spectral changes to the disease
patterns studied, it is helpful to investigate their molecular origin. In this context, we do not consider
the approach of assigning spectral positions/features to characteristic vibrational modes of functional
molecular entities most appropriate. Although widely used in the IR community, due to the very many
molecular assignments possible for each spectral position, unambiguous statements of molecular
changes herein are not feasible. Instead, a much deeper analysis is required, as recently revealed by
Sangster et al., 2006; Voronina et al., 2021. The latter work involves combination of infrared spec-
troscopy and quantitative mass spectrometry on the part of the lung cancer sample set used in the
current study as well, identifying the molecular origin of the differential infrared fingerprints. These
can be partially explained by a characteristic change of proteins that are known to also change due to
systemic inflammatory signals. Thereby we highlight the need for further biochemical investigations
into the molecular origin of the observed spectral signatures, generally required in the field to address
this question conclusively.

In-depth information about the molecular origin of the observed spectral disease patterns will
help identify the clinical setting(s) where infrared fingerprinting can make largest contributions to
cancer care (e.g. screening, diagnosis, prognosis, treatment monitoring, or surveillance). The speci-
ficity of spectral signatures to cancer, along with the obtained sensitivity and specificity in the binary
classification (Table 1), will influence whether the approach may best complement primary diagnos-
tics, be possibly suited for screening, or even be used for molecular profiling and prognostication.
When further validated, blood-based IMFs could aid residing medical challenges: More specifically,
it may complement radiological and clinical chemistry examinations prior to invasive tissue biopsies.
Given less than 60 pl of sample are required, sample preparation time and effort are negligible, and
measurement time is within minutes, the approach may be well suited for high-throughput screening
or provide additional information for clinical decision process. Thus, minimally invasive IMF cancer
detection could integratively help raise the rate of pre-metastatic cancer detection in clinical testing.
However, further detailed research (e.g. as performed for an FTIR-based blood serum test for brain
tumour; Gray et al., 2018) is needed to identify an appropriate clinical setting in which the proposed
test can be used with the greatest benefit (in terms of cost-effectiveness and clinical utility).

Moreover, given the recent evidence of high within-person stability of IMFs over time (Huber
et al., 2021), serial longitudinal liquid biopsies and infrared fingerprinting of respective samples could
eliminate between-person variability by self-referencing and thereby facilitate even more efficient
and possibly earlier cancer detection. Once (i) a precise clinical setting is defined and (ii) large-scale,
stratified clinical studies controlled for comorbidities can be realized, a systematic, direct comparison
to established diagnostics will become feasible and the full potential of infrared fingerprinting can be
quantitatively assessed.

For further improvements in the accuracy of the envisioned medical assay, the IR fingerprinting
methodology needs to be improved in parallel. Molecular specificity is inherently limited in IR spec-
troscopy due to the spectral overlap of absorption bands of individual molecules. This might be
tackled by chemical pre-fractionation (Hughes et al., 2014; Petrich et al., 2009; Voronina et al.,
2021) or by combining IR spectroscopy to methods like liquid chromatography. However, such a pre-
fractioning, but also IR fingerprinting itself, would benefit even more from increased spectroscopic
sensitivity. Sensitivity of the current commercially available FTIR spectrometer is however limited to
detection of highly abundant molecules. Recent developments in infrared spectroscopy demonstrate
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the possibility to increase the detectable molecular dynamic range to five orders of magnitude (Pupeza
et al., 2020) and therefore have the potential to improve the efficiency of infrared fingerprinting.

In summary, infrared fingerprinting reveals the potential for effective detection and distinction of
various common cancer types already at its current stage and implementation. Future developments,
in terms of instrumentation as well as methodology, have the potential to further improve the detec-
tion efficiency. This study presents a general high-throughput and cost-effective framework, and along
this, highlights the possibility for extending infrared fingerprinting to other disease entities.

Methods
Study design

The objective of this study was to evaluate whether infrared molecular fingerprinting of human blood
serum and plasma from patients, reference individuals, and healthy persons has any capacity to detect
cancer, specifically targeting detection of four common cancer entities (lung, breast, bladder, and
prostate cancer). A statistical power calculation for the sample size was performed prior to the study
and is included in the study protocol. Based on preliminary results, it was determined that with a
sample size of 200 cases and 200 controls, the detection power in terms of AUC can be estimated
within a marginal error of 0.054. Therefore, the aim was to include more than 200 cases for each
cancer type. However, upon matching (see also below), it was not always possible to include 200
individuals per group for all analyses of this study. In the analyses where the sample size of 200 indi-
viduals per group could not be reached, the uncertainty obtained increased accordingly (as seen in
the obtained errors and error bars). The full sample size calculation is available on request from the
corresponding authors.

The multi-institutional study on lung, breast, bladder, and prostate cancer also includes subjects
with corresponding benign pathologies in the same organs as well as non-symptomatic subjects.
Participants provided written informed consent for the study under research study protocol #17-141
and broad consent under research study protocol #17-182, both of which were approved by the
Ethics Committee of the Ludwig-Maximillian-University (LMU) of Munich. Our study complies with
all relevant ethical regulations and was conducted according to Good Clinical Practice (ICH-GCP)
and the principles of the Declaration of Helsinki. The clinical trial is registered (ID DRKS00013217)
at the German Clinical Trails Register (DRKS). The following clinical centres were involved in subject
recruitment and sample collections of the prospective clinical study: Department of Internal Medi-
cine V for Pneumology, Urology Clinic, Breast Center, Department of Obstetrics and Gynecology,
and Comprehensive Cancer Centre Munich (CCLMU), all affiliated with the LMU. The Asklepios Lung
Clinic (Gauting), affiliated to the Comprehensive Pneumology Centre (CPC) Munich, and the German
Centre for Lung Research, DZL, were further study sites in the Munich region, Germany. In total, blood
samples from 1927 individuals were collected and measured (see below). The full breakdown of all
participants is listed in Figure 1—source data 1.

From the existing dataset, the recorded IMFs were selected for further analysis according to the
following criteria:

e Only data from cancer patients with clinically confirmed carcinoma of lung, prostate, bladder, or
breast prior to any cancer-related therapy were considered.

o Healthy references were non-symptomatic individuals not suffering from any cancer-related
disease nor being under any medical treatment.

e Symptomatic references included patients with COPD or pulmonary hamartoma for lung cancer,
and BPH patients for prostate cancer.

From this pre-selected dataset, a further subset was created for each binary classification examined
(e.g. lung cancer vs. non-symptomatic references). This selection was done using statistical matching
(see below) in such a way that it provides a balanced distribution of gender, age, and BMI. This was to
ensure that there is no bias towards any of these factors within the analysis of machine learning. The
selection step reduced the number of analysed samples to 1639. It is important to note that given
that we have performed evaluations addressing more than one main question, depending on some
types of questions, some control samples are appropriately used as matched references for multiple
questions.
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A full breakdown of all included participants (sample pool) along with the breakdown for each of
the investigated binary classification is provided as source data files.

Statistical matching

Achieving covariate balance between cases and references is an important procedure in observa-
tional studies for neutralizing the effect of confounding factors and limiting the bias in the results. In
this work, we deploy optimal pair matching using the Mahalanobis distance within propensity score
callipers (Rosenbaum, 2010). The implementation was done in R (v. 3.5.1). In evaluations where pair
matching was not sufficient, optimal matching with multiple references was performed instead.

Sample collection and storage

Blood samples were collected, processed, and stored according to the same standard operating
procedures at each clinical site. Blood draws were all performed using Safety-Multifly needles of at
least 21 G (Sarstedt) and collected with 4.9 ml or 7.5 ml serum and plasma Monovettes (Sarstedt). For
the blood clotting process to take place, the tubes were stored upright for at least 20 min and then
centrifuged at 2000 g for 10 min at 20 °C. The supernatant was carefully aliquoted into 0.5 ml fractions
and frozen at =80 °C within 5 hr after collection. Samples were transported to the analysis site on dry
ice and again stored at —80 °C until sample preparation.

Sample preparation and FTIR measurements

In advance of the FTIR measurements, one 0.5 ml aliquot per serum or plasma sample was thawed
in a water bath at 4 °C and again centrifuged for 10 min at 2000 g. The supernatant was distributed
into the measurement tubes (50 pl per tube) and refrozen at -80 °C. All the FTIR measurements were
performed upon two freeze-thaw cycles.

The samples were mostly measured in the order in which they arrived at the measurement site. As
sample collection and delivery is to some extent a stochastic process (both cases and references were
continuously collected over the entire period), no additional randomization of the measurement order
was performed.

The samples were aliquoted and measured in blinded fashion, that is, the person performing the
measurements did not know about any clinical information about the samples. The spectroscopic
measurements were performed in liquid phase with an automated FTIR device (MIRA-Analyzer, micro-
biolytics GmbH) with a flow-through transmission cuvette (CaF, with ~8 um path length). The spectra
were acquired with a resolution of 4 cm™ in a spectral range between 950 cm™ and 3050 cm™". A water
reference spectrum was recorded after each sample measurement to reconstruct the IR absorption
spectra. Each measurement sequence usually contained up to 40 samples, resulting in measurement
times of up to 3 hr. After each measurement batch, the instrument was carefully cleaned and re-qual-
ified according to the manufacturer’s recommendations.

To track experimental errors over extended time periods (Sangster et al., 2006), a measurement of
quality control serum (pooled human serum, BioWest, Nuaillé, France) was performed after every five
samples. The spectra of the QC samples were also used to evaluate the measurement error. We
found in a previous study that the measurement error is small when compared to the between-person
biological variability of human serum IMFs (Huber et al., 2021). A relevant analysis comparing the
variability between biological samples and QCs is presented in Figure 2—figure supplement 1b-b".
In addition, the results obtained on a subset from plasma and serum samples from the same individ-
uals were similar, indicating that no technical variance or device variation affected the measurement
results. Thus, individual samples were not measured as replicates.

Outlier detection

If an air bubble was present during the measurement, this was immediately noticeable by saturation
of the detector. In such cases, the measurement was considered faulty and another aliquot of the
sample was measured. After the entire dataset was collected, we performed an additional outlier
removal. For this, we used the method of Local Outlier Factor (LOF), as implemented in Scikit-Learn
(v. 0.23.2) (Pedregosa et al., 2011). LOF is based on k-nearest neighbours and is appropriate for
(moderately) high-dimensional data. LOF succeeds in removing samples with spectral anomalies such
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as abnormally low absorbance or contamination signatures. Using this procedure, a total of 28 spectra
were removed from the dataset.

Pre-processing of infrared absorption spectra

Negative absorption, which occurs if the liquid sample contains less water than the reference (pure
water), was corrected for by a previously described approach (Yang et al., 2015). It is known from
measurements of dried serum or plasma that there is no significant absorption in the wavenumber
region 2000-2300 cm™, resulting in a flat absorption baseline. We used this fact as a criterion for
adding to each spectrum a previously measured water absorption spectrum (as provided in Figure
2—source data 2) to account for the missing water in the sample measurement and minimize the
average slope in this region in order to obtain a flat baseline. All spectra were truncated to 1000-3000
cm™ and the ‘silent region,’ between 1750 cm™ and 2800 cm™', was removed. Finally, all spectra were
normalized using Euclidean (L,) norm. The calculation of the second derivative of the normalized
spectra was included in some cases as an additional (optional) pre-processing step.

Machine learning and classification

To derive classification models, we used Scikit-Learn (Pedregosa et al., 2011; v. 0.23.2), an open-
source machine learning framework in Python (v.3.7.6). We trained various binary classification as well
as multiclass classification models using linear SVM. Performance evaluation was carried out using
repeated stratified k-fold cross-validation and its visualization using the notion of the ROC curve
for binary problems and the confusion matrix for multiclass classification. The results of the cross-
validation are reported in terms of descriptive statistics, that is, the mean value of the resulting AUC
distribution and its standard deviation. The calculation of optimal pair of sensitivity and specificity is
done by minimizing the distance of the ROC curve to the upper-left corner.

Statistical analysis

For statistically comparing two groups of spectra (i.e. cases, references), we followed three approaches.
First, we calculated the 'differential fingerprint,’ defined as the sample mean of the cases minus the
sample mean of the reference group. We plot this quantity contrasted against the standard deviation of
the reference group for obtaining a visual understanding of which wavenumbers are potentially useful
for distinguishing/classifying the two populations. Such a graph serves as a visual representation of
what is known as the ‘effect size,” which can be obtained by standardizing the differential fingerprint
and, as shown in Figure 5—figure supplement 1, has an evident relation to the AUC per wavenumber.
Secondly, we performed t-test (testing the hypothesis that two populations have equal means) for
extracting two-tailed p-values per wavenumber. As a last step, we make use of Mann-Whitney U test
(also known as Wilcoxon rank-sum test) for extracting the U statistic and calculating the AUC per wave-
number by the relation AUC = U/(n1*n2), where n1 and n2 are the sizes of the two groups.
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regulations under the General Data Protection Regulation (EU) 2016/679. The raw data includes clin-
ical data from patients, including textual clinical notes and contain information that could poten-
tially compromise subjects' privacy or consent, and therefore cannot be shared. However, the trained
machine learning models for the binary classification of bladder, breast, prostate, and lung cancer
are provided within Figure 2—source data 4, along with description and code for importing them in
a python script. The custom code used for the production of the results presented in this manuscript
is stored in a persistent repository at the Leibniz Supercomputing Center of the Bavarian Academy
of Sciences and Humanities (LRZ), located in Garching, Germany. The entire code can only be shared
upon reasonable request, as its correct use depends heavily on the settings of the experimental setup
and the measuring device and should therefore be clarified with the authors.
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