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Background. The relationship between uncoupling protein (UCP) 1-3 polymorphisms and susceptibility to type 2 diabetes mellitus
(T2DM) has been extensively studied, while conclusions remain contradictory. Thus, we performed this meta-analysis to elucidate
whether the UCP1-3826A/G, UCP2-866G/A, Ala55Val, and UCP3-55C/T polymorphisms are associated with T2DM. Methods.
Eligible studies were searched from PubMed, Cochrane Library, and Web of Science database before 12 July 2020. Pooled odds
ratios (ORs) with corresponding 95% confidence intervals (CIs) were calculated to evaluate the strength of the association.
Heterogeneity analysis, subgroup analysis, sensitivity analysis, and publication bias were also performed. Results. A total of 38
case-control studies were included in this meta-analysis. The overall results revealed significant association between T2DM and
the UCP2 Ala55Val polymorphism (recessive model: OR = 1:25, 95% CI 1.12-1.40, P < 0:01; homozygous model: OR = 1:33,
95% CI 1.03-1.72, P = 0:029, respectively). In subgroup analysis stratified by ethnicity, T2DM risk was increased with the
UCP2 Ala55Val polymorphism (allele model: OR = 1:17, 95% CI 1.02-1.34, P = 0:023; recessive model: OR = 1:28, 95% CI
1.13-1.45, P < 0:01; homozygous model: OR = 1:39, 95% CI 1.05-1.86, P = 0:023, respectively), while decreased with the UCP2-
866G/A polymorphism in Asians (dominant model: OR = 0:86, 95% CI 0.74-1.00, P = 0:045). Conclusions. Our results
demonstrate that the UCP2-866G/A polymorphism is protective against T2DM, while the UCP2 Ala55Val polymorphism is
susceptible to T2DM in Asians.

1. Introduction

Diabetes is a serious public health problem characterized by
chronic hyperglycemia. The International Diabetes Federa-
tion (IDF) estimates that there were approximately 463 mil-
lion adults (aged 20-79 years) diagnosed with diabetes in
2019, and this number is expected to reach 700 million by
2045 across the world [1]. Among them, type 2 diabetes mel-
litus (T2DM) is the most prevalent which accounts for 90%-
95%. Till now, the detailed etiology of T2DM have not been

fully clarified, and genetic predisposition is believed to exert
great effects together with environmental influences [2].

Uncoupling proteins (UCPs) are a family of mitochon-
drial anion transporters located in the mitochondrial inner
membrane which plays crucial roles in regulating the flux
of protons through the ATP synthase [3]. There are five
members described in the mammal UCP family, including
UCP1 to UCP5. UCP1 is specifically expressed in the brown
adipose tissue (BAT); UCP2 is more broadly expressed,
including pancreatic β cells and cells of the immune system,
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skeletal muscle, spleen, liver, lung, and macrophages; UCP3
is primarily expressed in skeletal muscle, but it is also found
in BAT and heart tissue; UCP4 and UCP5 are recently dis-
covered mainly in the central nervous system [4, 5]. Previous
studies have linked UCPs to energy expenditure both in
animal models and in obese population, especially UCP1,
UCP2, and UCP3 [6–9]. Moreover, the UCPs were also
demonstrated to participate in reactive oxygen species pro-
duction, oxidant stress, apoptosis, inflammation, and insulin
resistance [10–14]. For those reasons, UCP1, UCP2, and
UCP3 may be involved in the development of obesity,
T2DM, and diabetic complications [15, 16].

Human UCP1 gene is located on chromosome 4q28-q31
and 8.9 kb in length, while both UCP2 and UCP3 genes map
to chromosome 11q13 and spans 8.2 and 8.7 kb, respectively
[17]. Over the past few decades, numerous studies have
investigated the association between single-nucleotide poly-
morphisms (SNPs) of the UCP1-3 genes and T2DM suscep-
tibility, and the most focused on the -3826A/G (rs1800592)
polymorphism in the promoter region of the UCP1 gene,
the -866G/A (rs659366) polymorphism in the promoter
region and a missense variant in exon 4 (Ala55Val, C/T,
rs660339) of the UCP2 gene, and the -55C/T (rs1800849)
polymorphism in the promoter region of the UCP3 gene
[18–21]. However, the results remain under debate. Conse-
quently, this meta-analysis was carried out based on the lat-
est publications in attempt to elucidate whether there is an
association between the UCP polymorphisms and T2DM
susceptibility.

2. Methods

This meta-analysis was performed in accordance to the Pre-
ferred Reporting Items for Systematic reviews and Meta-
Analysis (PRISMA) guidelines (File S1).

2.1. Literature Search. We systematically searched electronic
databases of PubMed, Cochrane Library, and Web of Sci-
ence for all relevant articles published before 12 July 2020.
The search terms were applied as follows: (“diabetes” or
“T2D” or “T2DM”) and (“uncoupling protein” or “UCP”)
and (“polymorphism” or “mutation” or “variant”). To
obtain more qualified studies, the references cited in the
original research and review articles were also manually
searched. The papers were restricted to humans and written
in English.

2.2. Literature Inclusion. Studies were considered eligible
when meeting the following inclusion criteria: (1) case-
control study design; (2) evaluating the association between
the UCP1-3826A/G, UCP2-866G/A and Ala55Val, and
UCP3-55C/T polymorphisms and T2DM susceptibility; and
(3) providing sufficient genotype data to calculate odds ratios
(ORs) and 95% confidence intervals (CIs). The exclusion cri-
teria were (1) editorials, case reports, letters, comments,
reviews, or meta-analyses and (2) studies without detailed
genotyping data. Furthermore, if there were duplicate publi-
cations based on the same data, only the latest or most com-
plete study was included in our meta-analysis.

2.3. Data Extraction. Two reviewers (Huang R and Cai TT)
independently extracted the following data from the enrolled
studies: first author, publication year, ethnicity, genotyping
method, total number of cases and controls, genotype and
allele distributions of cases and controls, and controls with
Hardy-Weinberg equilibrium (HWE) or not. All possible
efforts were made to contact the corresponding authors if
essential data were needed. Any discrepancy in data extrac-
tion was resolved by a third reviewer (Zhou YT).

2.4. Quality Assessment. Two investigators (Wang YM and
Wang HY) separately performed the quality assessment of
each included study using the Newcastle-Ottawa quality
assessment scale (NOS). The NOS comprises the following
three aspects: selection of study subjects (4 points), compa-
rability of study subjects (2 points), and exposure or out-
comes (3 points) [22]. The total score ranges from 0 to 9,
and those with score ≥ 6 were considered as high-quality
studies.

2.5. Statistical Analysis. HWE of the genotype distribution in
the control subjects was assessed by χ2 test. Pooled ORs with
corresponding 95% CIs were used to measure the strength of
the association between UCP1-3826A/G, UCP2-866G/A
and Ala55Val, and UCP3-55C/T polymorphisms and
T2DM susceptibility under the following models: allele
model, dominant model, recessive model, homozygous
model, and heterozygous model. Subgroup analysis was per-
formed according to the ethnicity of included populations.
The heterogeneity across studies was estimated via Q test
and I2 statistics. I2 > 50% or PQ ≤ 0:1 was considered to indi-
cate significant heterogeneity. If significant heterogeneity
existed, random effects model (REM) was used; otherwise,
fixed effects model (FEM) was applied. Galbraith plot was
conducted to explore the outlier and main contributor to
heterogeneity. To assess the stability of the results, sensitivity
analysis was carried out by omitting each study in sequence.
Additionally, potential publication bias was evaluated with
Begg’s funnel plot and Egger’s test. All statistical analyses
were performed using STATA Version 11.0 (College Station,
TX, USA), and a two-sided P value < 0.05 was considered
statistically significant.

3. Results

3.1. Characteristics of Included Studies. As described in the
flow chart, a total of 583 studies were retrieved through
searching the electronic database (Figure 1). After excluding
duplicated publications, 415 records were initially identified.
Then, 240 articles were removed including editorials, case
reports, letters, comments, reviews, and meta-analyses, and
175 articles were assessed in full. Finally, 38 relevant studies
with sufficient data were included in our meta-analysis [17,
19, 20, 23–57]. Among the eligible studies, 9 analyzed the
UCP1-3826A/G polymorphism, 23 analyzed the UCP2-
866G/A polymorphism, 9 analyzed the UCP2 Ala55Val poly-
morphism, and 11 analyzed the UCP3-55C/T polymorphism.
Table 1 detailly shows the main characteristics of the studies.
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3.2. Synthesis Analysis. The results of meta-analysis and het-
erogeneity test for the association of UCP1-3826A/G, UCP2-
866G/A and Ala55Val, and UCP3-55C/T polymorphisms
with T2DM susceptibility under five inheritance models
are summarized in details in Table 2. Figure 2 illustrates
the pooled ORs (95% CI) of UCP1-3826A/G, UCP2-
866G/A and Ala55Val, and UCP3-55C/T polymorphisms
with T2DM risk stratified by ethnicity under an allele contrast
inheritance model. Our results revealed significant association
between T2DMandUCP2 Ala55Val polymorphism (recessive
model: OR = 1:25, 95% CI 1.12-1.40, P < 0:01; homozygous
model: OR = 1:33, 95% CI 1.03-1.72, P = 0:029, respectively),
but no associations between T2DM and UCP1-3826A/G,
UCP2-866G/A or UCP3-55C/T polymorphisms in the overall
population. Further in the subgroup analyses stratified by
ethnicity, T2DM risk was increased with UCP2 Ala55Val
polymorphism (allele model: OR = 1:17, 95% CI 1.02-1.34, P
= 0:023; recessive model: OR = 1:28, 95% CI 1.13-1.45, P <
0:01; homozygous model: OR = 1:39, 95% CI 1.05-1.86, P =
0:023, respectively), while decreased with UCP2-866G/A
polymorphism in Asians (dominant model: OR = 0:86, 95%
CI 0.74-1.00, P = 0:045) (Table 2).

3.3. Heterogeneity Analysis. As shown in Table 2, significant
heterogeneity was found among studies in almost all genetic
models of the overall population except the heterozygous

model of the UCP2-866G/A polymorphism, the recessive
model of the UCP2 Ala55Val polymorphism, and the dom-
inant and heterozygous models of the UCP3 -55C/T poly-
morphism, but no heterogeneity was found in all genetic
models for the UCP1-55C/T polymorphism. After stratifica-
tion by ethnicity, the heterogeneity was only eliminated
between the studies of the UCP3-55C/T polymorphism in
populations of European descent in the recessive and homo-
zygous genetic models, but not in Asian descent. The hetero-
geneity was also existed in studies of the UCP2-866G/A and
Ala55Val polymorphisms both in Asian descent and Euro-
pean descent. Therefore, Galbraith plot analysis was per-
formed to detect the outlier and main contributor to
heterogeneity, and the results indicated that Bulotta et al.
2005 and Hou et al. 2020, Vimaleswaran et al. 2011, and
Wang LL et al. 2012 were the outliers and main contributor
to heterogeneity of the UCP2-866G/A, Ala55Val, and UCP-
55C/T polymorphisms, respectively (Figure S1-S3).

3.4. Sensitivity Analysis. To evaluate the influence of a single
study on the pooled results, sensitivity analysis was per-
formed by sequentially omitting one study at a time in the
overall population. The results showed that the pooled ORs
lay within the overall range of 95% CIs after omitting any
single study in all compared inheritance models, except for
excluding the study of the Bulotta et al. 2005 in the
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Figure 1: Flow chart of literature search.
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Figure 2: Continued.
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Figure 2: Meta-analysis for the association between the UCP polymorphisms and T2DM susceptibility stratified by ethnicity (allele model).
(a) UCP1-3826A/G polymorphism; (b) UCP2-866G/A polymorphism; (c) UCP2 Ala55Val polymorphism; (d) UCP3-55C/T polymorphism.
The area of the squares reflects the study-specific weight, and the diamond illustrates the summary random effects OR (95% CI).
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dominant model of the UCP2-866G/A polymorphism, the
Wang et al. 2004 in the allele model, and the Vimaleswaran
et al. 2011 and the Shen et al. 2014 in the homozygous model
of the UCP2 Ala55Val polymorphism (OR = 0:88, 95% CI
0.78-0.99, P = 0:039; OR = 1:15, 95% CI 1.02-1.29, P =
0:024; OR = 1:21, 95% CI 0.99-1.47, P = 0:064; OR = 1:25,
95% CI 0.96-1.64, P = 0:102, respectively) (Figure 3).

3.5. Publication Bias. Begg’s funnel plot and Egger’s test
were conducted to assess the publication bias of the litera-
ture. As expected, the funnel plots were visually symmetri-
cal, and all P values obtained from Egger’s test were >0.05,
which interpreted that there is no publication bias for any
of the UCP polymorphisms analyzed (for example, in the
allele model, Figure 4).

4. Discussion

T2DM is one of the most common noncommunicable
diseases which is thought to be the result of interactions
between complex gene-gene and gene-environment. A num-
ber of studies have examined the associations of the UCP1-

3826A/G, the UCP2-866G/A, Ala55Val, and UCP3-55C/T
polymorphisms with T2DM, but the results are still incon-
sistent. As a single study might lack sufficient power, espe-
cially when the sample size is not adequate, we designed
this meta-analysis of 38 published studies from different
populations to obtain a more precise conclusion. Our results
showed that only the UCP2 Ala55Val polymorphism is asso-
ciated with T2DM in the overall population. In a stratified
analysis according to ethnicity, we found that the UCP2
Ala55Val polymorphism is significantly associated with
increased risk of T2DM, while the UCP2-866G/A polymor-
phism is associated with decreased risk of T2DM in Asian
population. However, the correlation of UCP1-3826A/G
and UCP3-55C/T polymorphisms with T2DM lacked corre-
sponding evidence in either subjects of Asian or of Cauca-
sian descent.

The -3826A/G polymorphism in the promoter region of
the UCP1 gene was found to be linked to reduced mRNA
expression, which indicated that the polymorphism may be
of functional importance [58]. Thus, numerous studies have
been carried out to evaluate the association between this
polymorphism and obesity or obesity-related disorders.
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Figure 3: Sensitivity analysis for the association between the UCP polymorphisms and T2DM susceptibility. (a) Dominant model of the
UCP2-866G/A polymorphism; (b) allele model of the UCP2 Ala55Val polymorphism; (c) homozygous model of the UCP2 Ala55Val
polymorphism.
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Results concluded from previous meta-analyses showed that
the UCP1-3826A/G polymorphism is not associated with
any change in BMI or obesity regardless of the inheritance
model or stratification analysis by ethnicity [59, 60]. In our
study, we confirmed no relationship between the UCP1-
3826A/G polymorphism and susceptibility to T2DM either
in Asian population or in Caucasian population, which was
also supported by a previous meta-analysis by de Souza
et al. 2013 [19].

The -866G/A polymorphism in the core promoter of the
UCP2 gene seems to be connected with putative binding
sites for specific transcription factors [61]. Previous study
revealed that the A allele of the UCP2-866G/A polymor-
phism contributes to insulin resistance and obesity when
compared with G allele [34]. Thus, it is reasonable to draw
the conclusion that the UCP2 rs659366 is significantly asso-
ciated with increased risk of T2DM by Xu et al. 2021, espe-
cially in Asian population [21]. Nevertheless, there were no
association found in the meta-analyses performed by Xu
et al. 2011, Qin et al. 2013, and de Souza et al. 2013
[18–20]. Contradictory to all aforementioned meta-analyses,
an important finding is shown in our meta-analysis that the
UCP2-866G/A polymorphism is associated with decreased

risk of T2DM in the dominant model in Asian population.
One possible explanation for this discrepancy is that there
exist conflicting data in human tissues which reported both
increased and decreased UCP2 mRNA levels being associ-
ated with the -866A allele [55, 62]. For that reason, the asso-
ciation of the UCP2-866A allele with decreased risk of
T2DM in Asians seems to be biologically receivable since
an increased UCP2 mRNA expression in adipocytes would
be relevant to increased energy expenditure.

The UCP2 Ala55Val variant is located in exon 4 of the
UCP2 gene where the base change can lead to a conservative
amino acid change from alanine (Ala) to valine (Val) [63].
Although this alteration is not predicted to cause a func-
tional change in the corresponding protein, our results are
consistent with two previous meta-analyses which find sig-
nificant association between the UCP2 Ala55Val polymor-
phism and increased risk of T2DM, mainly in Asians [18,
19]. Nevertheless, there were no evidence of this association
found in neither the Chinese population nor the whole sub-
jects by Qin et al. 2013 and Xu et al. 2021 [20, 21]. The eth-
nic discrepancy in susceptibility to T2DM may be partially
attributed to different distribution of genotype frequencies
and lifestyle between Asian and Caucasian populations. For
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Figure 4: Funnel plot for the association between the UCP polymorphisms and T2DM susceptibility (allele model). (a) UCP1-3826A/G
polymorphism (P = 0:822); (b) UCP2-866G/A polymorphism (P = 0:534); (c) UCP2 Ala55Val polymorphism (P = 0:267); (d) UCP3-
55C/T polymorphism (P = 0:757).
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example, different nutrient intakes were found to influence
the roles of genetic polymorphisms in obesity and obesity-
related diseases [64, 65]. Thus, it is reasonable that there
exists ethnicity difference in the association of UCP2 Ala55-
Val polymorphism with T2DM susceptibility owing to dif-
ferent diet patterns.

The UCP3 -55C/T promoter variant is of interest
because of its position at 4 bp downstream of a peroxisome
proliferator-activated receptor (PPAR) responsive region,
which could modify PPAR-dependent responsiveness [66].
Thus, many studies have linked this polymorphism to the
regulation of lipid metabolism and insulin sensitivity [67,
68]. Previous meta-analyses also showed that the UCP3-
55C/T polymorphism is related to prominent increase in
BMI, as well as risk for T2DM in Asians [18, 19, 59]. In con-
tract, our results failed to find any association of UCP3-
55C/T polymorphism with T2DM. We could not fully
exclude the possibility that the latest publications included
in our meta-analysis might vary the final results.

Although some previous meta-analyses reported the role
of UCP polymorphisms in the risk for T2DM, our meta-
analysis included the most recent publications and con-
ducted a series of analyses, including subgroup analysis, het-
erogeneity analysis, sensitivity analysis, and publication bias,
to achieve more accurate results. Certainly, some limitations
should be acknowledged in the present study for better inter-
preting the results [69]. Firstly, there was substantial hetero-
geneity among included studies, despite the use of random
effects model, which may affect the precision of the results.
Secondly, sensitivity analysis of this meta-analysis indicated
that the overall results were somewhat unstable. Thirdly,
the small number and sample size of studies may confound
the pooled results to a certain degree, especially for Cauca-
sian origin included in the UCP2 Ala55Val polymorphism.
Fourthly, due to lack of original information for each
included subjects, the overall results of our study were based
on individual unadjusted OR. Additionally, we only consid-
ered the role of individual polymorphism and did not take
into account their interaction with other polymorphisms
and environmental factors.

In conclusion, our results demonstrated that the -866G/A
polymorphism is protective against T2DM, while the Ala55-
Val polymorphism of UCP2 gene is susceptible to T2DM in
Asians. Nevertheless, given the presence of between-study het-
erogeneity and confounding factors in this meta-analysis, fur-
ther well-designed and large-scale studies, particularly, studies
that take the effects of gene-gene and gene-environment
interactions into consideration, should be conducted to ver-
ify the current findings.
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