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Protein arginine methylation is a posttranslational modification catalyzed by protein arginine methyltransferases (PRMTs), which
play critical roles in many biological processes. To date, nine PRMT family members, namely, PRMT1, 2, 3, 4, 5, 6, 7, 8, and 9,
have been identified in mammals. Among them, PRMT7 is a type III PRMT that can only catalyze the formation of
monomethylarginine and plays pivotal roles in several kinds of stem cells. It has been reported that PRMT7 is closely
associated with embryonic stem cells, induced pluripotent stem cells, muscle stem cells, and human cancer stem cells. PRMT7
deficiency or mutation led to severe developmental delay in mice and humans, which is possibly due to its crucial functions in
stem cells. Here, we surveyed and summarized the studies on PRMT7 in stem cells and development in mice and humans and
herein provide a discussion of the underlying molecular mechanisms. Furthermore, we also discuss the roles of PRMT7 in
cancer, adipogenesis, male reproduction, cellular stress, and cellular senescence, as well as the future perspectives of PRMT7-
related studies. Overall, PRMT7 mediates the proliferation and differentiation of stem cells. Deficiency or mutation of PRMT7
causes developmental delay, including defects in skeletal muscle, bone, adipose tissues, neuron, and male reproduction. A
better understanding of the roles of PRMT7 in stem cells and development as well as the underlying mechanisms will provide
information for the development of strategies for in-depth research of PRMT7 and stem cells as well as their applications in
life sciences and medicine.

1. Introduction

Arginine methylation is a common posttranslational modifi-
cation of proteins, playing an essential role in several biolog-
ical processes, such as mRNA splicing, DNA repair,
transcription regulation, and signal transduction [1–4]. In
mammals, arginine methylation is catalyzed by protein argi-
nine methyltransferases (PRMTs) through transferring
methyl groups from S-adenosylmethionine to the specific
arginine residues of protein substrates [5]. Currently, nine
PRMTs have been characterized and classified into type I,
type II, and type III PRMTs according to the type of cata-
lyzed arginine methylation reaction. Among these three
types of PRMTs, type I PRMTs which contain PRMT1,
PRMT2, PRMT3, PRMT4/CARM1 (coactivator associated

arginine methyltransferase 1), PRMT6, and PRMT8 catalyze
the formation of monomethylarginine and asymmetric
dimethylarginine. Type II PRMTs which contain PRMT5
and PRMT9 catalyze the formation of monomethylarginine
and symmetric dimethylarginine, whereas type III PRMT7
can only catalyze the formation of monomethylarginine
[6–8].

Most PRMTs tend to methylate glycine- and arginine-rich
motifs in proteins [9]. For example, PRMT1, PRMT3, and
PRMT6 target glycine- and arginine-rich motifs, which are
related to the regulation of nucleic acid and protein interactions
[9–13]. PRMT4 (also known as CARM1) methylates proline-,
glycine-, and methionine-rich motifs located on splicing and
transcription elongation factors, which can affect alternative
splicing [14]. PRMT5 can methylate glycine- and arginine-
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rich motifs as well as proline-, glycine-, and methionine-rich
motifs [14, 15]. However, PRMT7 can specifically methylate a
motif in lysine- and arginine-rich regions, which contains a pair
of arginine residues separated by one residue [16, 17]. To date,
the known substrates methylated by PRMT7 include the core
histones (H2A, H2B, H3, and H4), the Wnt signaling molecule
Dishevelled3, and the transcription factor C/EBP-β, implying
that PRMT7 could be involved in a wide range of cellular pro-
cesses both in normal and disease states [8, 18–20]. In this
review, we mainly focus on the roles of PRMT7 in stem cells
and in murine and human development. By summarizing the
functions of PRMT7 in mouse embryonic stem cells (ESCs),
induced pluripotent stem cells (iPSCs), muscle stem cells
(MuSCs), and cancer stem cells, we found that PRMT7was cru-
cial for the pluripotency, proliferation, and differentiation of
stem cells. By summarizing the phenotypes of PRMT7 defi-
ciency or mutation in mice and humans, we concluded that
PRMT7 was important for the development of skeletal muscle,
neurons, bone, adipose tissues, and male reproduction. This
review is aimed at providing information for the development
of strategies for the in-depth research of PRMT7 and stem cells
as well as their applications in life sciences and medicine.

2. The Roles of PRMT7 in Stem Cells

2.1. The Role of PRMT7 in ESCs. Mouse ESCs are the main
type of pluripotent cells that have attracted considerable
research interest since they were defined [21–23]. However,
the mechanisms underlying their functions are still being
explored. In 2008, given the pluripotent characteristics of
mouse ESCs and embryonic germ cells, Buhr et al. per-
formed nuclear proteome analysis to identify the nuclear
proteins potentially associated with pluripotency. Finally,
they discovered a new protein, PRMT7, which behaved as
a candidate protein related to pluripotency [24].

The further functional study revealed that PRMT7
depletion in mouse ESCs using shRNA led to spontaneous
differentiation and G1 arrest of the cell cycle, suggesting
the crucial role of PRMT7 in stemness maintenance [25].
The mechanistic analysis in this study discovered that
PRMT7 played an inhibitory role in the expression of miR-
24-2 gene-encoding miR-24-3p and miR-24-2-5p. Overex-
pression of miR-24-3p/miR-24-2-5p can induce ESC differ-
entiation similar with PRMT7 depletion. Moreover,
inhibition of miR-24-3p/miR-24-2-5p can reverse ESC dif-
ferentiation induced by PRMT7 depletion. In addition, as
the key pluripotency factors, Oct4, Nanog, Klf4, and c-Myc
were also detected [26–29]. It turned out that the expression
of Oct4, Nanog, Klf4, and c-Myc was repressed after PRMT7
depletion or miR-24-3p/miR-24-2-5p overexpression. Over-
all, these results demonstrate that PRMT7 is crucial for the
maintenance of ESC stemness by repressing miR-24-3p
and miR-24-2-5p as well as pluripotency factors Oct4,
Nanog, Klf4, and c-Myc.

Later, to gain deeper insight into the molecular mecha-
nism underlying how PRMT7 regulated the pluripotency of
mouse ESCs, additional miRNAs were identified to be
involved in the maintenance of mouse ESC stemness. As a
result, miR-221 gene-encoding miR-221-3p and miR-221-5p

were discovered as negative regulators for the maintenance
of mouse ESC stemness through their direct repression by
PRMT7 [30]. The study demonstrated that miR-221-3p and
miR-221-5p not only downregulated the expression of Oct4,
Nanog, and Sox2 but also induced spontaneous differentiation
of mouse ESCs, which is similar to the results from PRMT7
depletion experiments. Further, inhibition of miR-221-3p and
miR-221-5p can block PRMT7 depletion-induced differentia-
tion of mouse ESCs. Therefore, these results demonstrate that
besides miR-24-3p and miR-24-2-5p, PRMT7 also mediates
the repression of miR-221-3p andmiR-221-5p which can target
and downregulate Oct4, Nanog, and Sox2, thus playing crucial
roles in maintaining the stemness of mouse ESCs.

Notably, both mouse mature oocytes and ESCs can repro-
gram somatic cells to a pluripotent state through somatic cell
nuclear transfer and cell fusion, respectively [31–35]. There-
fore, to survey reprogramming factors, a proteome analysis
of mouse mature oocytes and ESCs was performed. PRMT7
was identified as a candidate reprogramming factor common
to mouse mature oocytes and ESCs [36]. To better determine
the role of PRMT7 in inducing pluripotency, each one of the
four general reprogramming factors, namely, Oct4, Sox2,
Klf4, and c-Myc, used to generate mouse iPSCs was replaced
by PRMT7. Results showed that PRMT7 can replace Sox2 to
establish iPSCs in combination with Oct4, Klf4, and c-Myc
[37, 38]. Taken together, these findings suggest that PRMT7
is a pivotal regulator of the pluripotency of both mouse ESCs
and iPSCs.

2.2. The Role of PRMT7 in MuSCs. MuSCs are responsible
for muscle growth and repair by sustained self-renewal and dif-
ferentiation [39, 40]. vanLieshout et al. discovered that PRMT1,
PRMT4, PRMT5, and PRMT7 were the most abundantly
expressed PRMTs in human muscle, implying the potential
role of these four PRMTs in muscle development [41].

Thereafter, PRMT5 was first studied in skeletal MuSCs.
The results demonstrated that PRMT5 could control the
proliferation of adult mouse MuSCs by directly silencing
the cell cycle inhibitor p21 [42]. Similarly, Blanc et al. found
that PRMT7-deficient MuSCs also underwent cell cycle
arrest with increased p21 levels [43]. Further analysis
revealed that PRMT7 was preferentially expressed and colo-
calized with Pax7, a marker of quiescent skeletal muscle
stem cells [44, 45], in the nuclei of MuSCs. In the process
of differentiation, when the majority of wild-type MuSCs
underwent differentiation, PRMT7-/- MuSCs displayed
defects in differentiation. RNA sequencing analysis revealed
that PRMT7 was a cell cycle regulator. Subsequently, the
immunoblotting assay confirmed the elevated levels of the
cell cycle inhibitor p21 in PRMT7-/- MuSCs. As a known
repressor of p21, the expression of DNMT3b usually is
inversely correlated with that of p21 [46]. So, the expression
of DNMT3b in PRMT7-deficient MuSCs was assessed,
which showed that PRMT7 deficiency reduced the expres-
sion of DNMT3b in MuSCs. In addition, given that elevated
expression of p21 is a cellular senescence marker [47, 48],
further experiments revealed that PRMT7-deficient MuSCs
or myoblast cell line existed senescence. Restoring DNMT3b
expression can rescue the senescence and decline p21
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expression induced by PRMT7 deficiency. These discoveries
demonstrate that PRMT7 plays a vital role in skeletal muscle
development by regulating the proliferation and differentia-
tion of MuSCs through the DNMT3b/p21 pathway.

2.3. PRMT7 in Human Cancer and Cancer Stem Cells.
Through a meta-analysis of gene expression in more than
120 breast tumors, PRMT7 was identified as a potential
metastasis-promoting gene in breast cancer [49]. In cancer,
epithelial-to-mesenchymal transition (EMT) could cause
metastasis, and loss of E-cadherin expression is a hallmark
of EMT [50, 51]. PRMT7 was reported to be highly
expressed in breast carcinoma cells in which it inhibited E-
cadherin expression, consequently mediating breast cancer
metastasis. Silencing PRMT7 can restore E-cadherin expres-
sion [52]. Accordingly, PRMT7 was also overexpressed in
breast cancer tissues and invasive breast cancer cells.
Reduced expression of PRMT7 inhibited breast cancer cell
invasion both in vitro and in vivo. Further mechanistic study
revealed that PRMT7 promoted breast cancer cell invasion
by regulating MMP9 (matrix metalloproteinase 9) which is
a famous mediator of breast cancer metastasis [53]. More-
over, as a methyltransferase, PRMT7 mediated E-cadherin
expression through PRMT7 automethylation, which conse-
quently triggered EMT [54]. In addition to direct inhibition
and automethylation, a recent study discovered that PRMT7
promoted the metastasis of human breast cancer by methyl-
ating the arginine of SHANK2 (SH3 and multiple ankyrin
repeat domains 2), consequently activating endosomal FAK
(focal adhesion kinase) signaling [55], which led to cancer
cell growth to a malignant phenotype [56]. These findings
demonstrate that PRMT7 plays a pivotal role in breast can-
cer metastasis through downregulating E-cadherin, upregu-
lating MMP9, and activating FAK. Targeting PRMT7
expression or enzyme activity could be a therapeutic strategy
for human breast cancer.

Similar function of PRMT7 has also been reported in
human non-small-cell lung cancer (NSCLC). An online data-
base analysis indicated that lung cancer tissues exhibited higher
PRMT7 expression than healthy tissues [57]. The functional
study demonstrated that overexpression of PRMT7 promoted
NSCLC cell invasion and colony formations. The coimmuno-
precipitation assay against PRMT7 combined with mass spec-
trometry analysis with two types of NSCLC cell lines, namely,
A549 and SPC-A1, discovered 19 shared target proteins.
Among these in-common targets, HASP5 (heat shock protein
5) and EEF2 (eukaryotic translation elongation factor 2) were
validated interacting with PRMT7. Both HASP5 knockdown
and EEF2 knockdown can significantly restore PRMT7
overexpression-induced NSCLC invasion, indicating that
PRMT7 promoted metastasis in NSCLC likely through inter-
acting with HSPA5 and EEF2, which provides information on
the mechanism of lung cancer metastasis and a candidate target
gene in lung cancer. In addition to breast cancer and lung can-
cer, it was recently found that PRMT7 expression was increased
in clear cell renal cell carcinoma tissues as well. There was a
close correlation between increased PRMT7 expression and
poor prognosis of clear cell renal cell carcinoma [58]. Further
assays discovered that PRMT7 promoted the proliferation of

renal cell carcinoma both in vitro and in vivo. Mechanistically,
PRMT7 upregulated c-Myc expression, which was blocked by
knocking down β-catenin. PRMT7 kept β-catenin stabilization
by methylating β-catenin and thus inhibiting its ubiquitination
as well as degradation. Overall, PRMT7 also serves as an onco-
gene in renal cell carcinoma via the β-catenin/c-Myc pathway.

As abovementioned, PRMT7 maintained mouse ESC
stemness by repressing miR-24-2 gene-encoding miR-24-
3p and miR-24-2-5p [25]. We noticed that miR-24-2 was
also associated with human tumorigenesis, but it had both
tumor suppressive and oncogenic effects on different cancer
types. For example, it promoted the development of gastric
cancer and esophageal squamous cell carcinoma [59, 60]
but decreased the tumorigenicity of MCF-7 breast cancer
cells and served as a negative biomarker of colorectal cancer
[61, 62]. Liver cancer as one of the most common cancers
can cause a high mortality rate, which is mainly attributed
to liver cancer stem cells (hLCSCs). The hLCSCs exhibit
the properties of stem cells, namely, self-renewal and differ-
entiation, which have been considered a therapeutic target of
liver cancer [63]. Therefore, Wang and colleagues explored
the roles and relationship between miR-24-2 and PRMT7
in hLCSCs [64]. Similar to the findings in mouse ESCs,
miR-24-2 also targeted the 3′ untranslated region of PRMT7
in hLCSCs, which inhibited the expression of PRMT7.
Moreover, miR-24-2 promoted the proliferation ability and
tumorigenic ability of hLCSCs in vitro and in vivo, respec-
tively, possibly through negatively regulating PRMT7. These
results suggested that Prmt7 might be negatively correlated
with the proliferation of hLCSCs, implying the distinctive
role of Prmt7 regulated by miR-24-2 in liver cancer.

3. The Roles of PRMT7 in Development

3.1. Phenotypes of PRMT7 Deficiency in Mice and Humans.
An optimal way to better understand the roles of a gene at
an individual level is to study the effects of a gene’s loss-of-
function. In 2015, Ying et al. generated PRMT7-/- mice with
a C57/bl6-129sv background. However, most PRMT7-/-

mice died within 5~10 days after birth, indicating the essen-
tial role of PRMT7 in normal development [65]. Moreover,
when PRMT7 was deleted in C57BL6/J mice, these mice
were subviable as only 45% of the expected number of
PRMT7-/- pups were obtained at postnatal day 14. At post-
natal day 10, the PRMT7-/- pups displayed reduced body size
and weight, as well as skeletal defects. The adult PRMT7-/-

mice showed limb bone anomalies, reduced length, and
increased fat mass [66]. However, Blanc and colleagues
revealed that PRMT7-/- mice were viable, but smaller at birth
than wild-type mice. Although the weight difference was
sustained only up to 3 months of age, necropsy of 8-
month-old PRMT7-/- mice exhibited less skeletal muscle
mass and more epididymal fat. Muscles derived from
PRMT7-/- mice displayed decreased oxidative metabolism
[67]. In addition, Lee and colleagues reported that PRMT7-
/- mice showed hyperactivity as well as social interaction
defects [68]. These findings demonstrate that PRMT7-/-

mice have defects in bone and skeletal muscle mass, delayed
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or impaired neuronal development, increased adipogenesis,
and possibly also reduced male fertility.

Regarding the phenotypes in PRMT7-mutated humans,
Akawi and colleagues found recessive causation of PRMT7 in
4125 families following cosegregation studies and performed
amore in-depth clinical assessment. After identifying 6 affected
females from 3 families with PRMT7 mutation, they observed
that the associated clinical phenotype was similar to the pheno-
type of pseudohypoparathyroidism, namely, Albright heredi-
tary osteodystrophy. The individuals exhibited obesity, mild
intellectual disability, symmetrically shortened digits, metatar-
sals, and posterior metacarpals [66]. Later, a male child was
confirmed as PRMT7 null in function, and the child exhibited
severe intellectual disability, seizures, short stature, microceph-
aly, facial dysmorphism, brachydactyly, and cryptorchidism
[69]. In the same year, Agolini and colleagues reported 3 addi-
tional patients with PRMT7 mutation. The phenotype they
exhibited was defined as a novel intellectual disability syn-
drome, namely, SBIDDS (short stature, brachydactyly, intellec-
tual developmental disability, and seizures) [70]. Whole exome
sequencing analysis identified a homozygous private nonsense
change in exon 4 and a sibling-shared homozygous missense
variant in exon 13 of PRMT7. Thereafter, another patient with
SBIDDS was reported additionally displaying psychomotor
delay and hearing loss, and two PRMT7 mutations were iden-
tified through the patient’s whole exome sequencing [71]. In
addition, Birnbaum et al. investigated PRMT7-related syn-
drome at prenatal and postnatal stages in two male siblings
who were homozygous for a mutation in PRMT7 [72]. Both
of them displayed intrauterine growth restriction due to the
defects in long bone. The first child was terminated, and
autopsy findings showed eye tumor, whereas the second child
exhibited postnatal growth restriction, skeletal involvement,
hypotonia, sensorineural hearing loss, strabismus, genitouri-
nary, and global developmental delay, which provided addi-
tional pathological and clinical data and expanded the
phenotypes of PRMT7 mutations [72]. These findings indicate
that PRMT7 mutations could lead to severe developmental
defects in skeletal muscle, neurons, bones, and possibly male
reproduction, similar to the phenotypes of PRMT7-/- mice.

3.2. PRMT7 in Skeletal Muscle Development. We have intro-
duced the role of PRMT7 in MuSCs and the skeletal muscle-
related phenotypes of PRMT7 mutations in mice and
humans. Here, we further summarize the studies on the role
of PRMT7 in skeletal muscle development. Through qRT-
PCR analysis of adult mouse tissues, including the liver,
small intestine, stomach, lung, kidney, spleen, pancreas,
heart, skeletal muscle, and white and brown adipose tissues,
it is shown that PRMT7 was most abundant in the skeletal
muscle. Furthermore, with the qRT-PCR assay and immu-
nofluorescence analysis, it is found that PRMT7 deficiency
caused a significantly reduced expression of oxidative fiber
markers MyhI and MyhIIa, as well as a substantially
increased expression of glycolytic fiber markers MyhIIx
and MyhIIb, compared with the wild type [67]. Moreover,
PRMT7 expression was lower in obese mice compared with
normal mice. Mice with PRMT7 deficiency exhibited less
skeletal muscle mass, and PRMT7-/- muscle displayed

decreased oxidative metabolism and reduced expression of
oxidative metabolism-related genes, such as PGC-1α. Mech-
anistic studies using PRMT7-/- myoblasts revealed that
PRMT7 regulated oxidative metabolism in muscles by acti-
vating the p38MAPK/ATF2/PGC-1a pathway. In addition,
PRMT7 was also involved in myoblast differentiation since
depletion of PRMT7 in myoblasts impaired cell cycle with-
drawal and subsequent myogenic differentiation [73]. The
underlying mechanism involved PRMT7-mediated methyla-
tion of p38MAPK on arginine 70 to activate p38MAPK,
which further enhanced MyoD activity to mediate myoblast
differentiation [73, 74]. Furthermore, PRMT7 was found to
serve as downstream of apigenin (a natural flavone abundant
in many plant-derived foods, such as parsley and celery),
thus enhancing skeletal muscle hypertrophy and myoblast
differentiation by regulating the PGC-1α/GPR56 pathway
and the p38MAPK-myoD pathway, respectively [75, 76].
Taking these together, PRMT7 participates in skeletal mus-
cle development by involving in skeletal muscle oxidative
metabolism, myoblast differentiation, and hypertrophy
through p38MAPK/ATF2/PGC-1a, p38MAPK/myoD, and
PGC-1α/GPR56 pathways, respectively.

3.3. PRMT7 in Neuronal Development. Notably, patients
with PRMT7 mutations displayed neuron-deficient pheno-
types, such as cognitive deficits, brain abnormalities, and sei-
zures, suggesting PRMT7 may play crucial roles in neural
development [70]. Dhar and colleagues once used pluripo-
tent human embryonal carcinoma cell line NTERA-2 clone
D1 cells to investigate the role of MLL4 (mixed-lineage leu-
kemia 4) in neuronal differentiation. They found that
PRMT7, but not PRMT5, antagonized MLL4-mediated neu-
ronal differentiation by repressing MLL4 target genes [77].
Genome-wide association studies and PrediXcan (a gene-
based association method) for schizophrenia and bipolar
disorder identified that PRMT7 was significantly correlated
with schizophrenia. Further analysis showed that PRMT7
was highly expressed in the CA1 field of the hippocampus,
and PRMT7-/- mice displayed defects in social behaviors
[78]. Recent studies further revealed that PRMT7-/- CA1
neurons exhibited HCN (hyperpolarization-activated,
cyclic-nucleotide-gated) channel current dysfunction, which
might be attributed to the decreased HCN protein levels
mediated by SHANK3 downregulation [68, 79]. These find-
ings provide insights into the role and the underlying mech-
anisms of PRMT7 functioning in neuronal development.

4. The Roles of PRMT7 in Adipogenesis

Obesity was observed in many patients with PRMT7 muta-
tions [70]. PRMT7 was found expressed in brown and white
adipose tissues of mouse, and PRMT7-/- mice at middle age
developed obesity with excessive body fat accumulation [67].
Hu and colleagues used C3H10T1/2 mesenchymal cells to
investigate the role of PRMT7 in adipogenic differentiation.
They found that PRMT7 expression was stable during the
adipogenic differentiation process. Neither PRMT7 knock-
down nor PRMT7 overexpression affected lipid accumula-
tion or adipogenic gene expression [80]. However, in a
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recent study, PRMT7-deleted 3T3-L1 preadipocytes or
PRMT7-knocked out mouse embryonic fibroblasts displayed
increased adipogenesis. In contrast, when PRMT7 was over-
expressed, adipogenesis was attenuated. Further analysis dis-
covered that PRMT7 suppressed adipogenesis by interacting
with and methylating C/EBP-β [20, 81], which indicates a
suppressive role of PRMT7 in adipogenesis.

5. The Roles of PRMT7 in B Cell Development

PRMT7 was also highly expressed in adult lymphoid tissues,
including bone marrow and spleen, suggesting its possible
roles in immunity [65]. B cells, which are derived from
hematopoietic progenitor cells in bone marrow, are critical
components of immunity by producing antibodies against
pathogens in the human body. Deficient B cell development
can cause reduced antibody production, allergy, and malig-
nancy [82]. Therefore, Ying et al. generated B cell-specific
PRMT7 conditional knockout mice (PRMT7-CKO mice)
for identifying the role of PRMT7 in B cell development
[65]. These PRMT7-CKO mice exhibited significant spleno-
megaly, and their splenic cells showed decreased mature
marginal zone B cells and increased follicular B cells, which
indicated that PRMT7 deficiency impaired late B cell differ-
entiation and promoted germinal center hyperplasia [82,
83]. In addition, the expression of germinal center gene
Bcl6, a master regulator of germinal center B cell program
[84, 85], was repressed in PRMT7-CKO mice. The inhibition
of Bcl6 expression was attributed to PRMT7 directly binding
to its promoter [65]. These findings demonstrate that
PRMT7 is important for the germinal center formation dur-
ing B cell development in immunity through repressing Bcl6
expression.

6. The Roles of PRMT7 in Male Reproduction

Based on the presence of more epididymal fat in PRMT7-/-

mice and cryptorchidism in male patients with PRMT7
mutations [67, 70], it is expected that PRMT7 may have a
function in male reproduction. Jelinic et al. discovered that

PRMT7 was expressed in germ cells of newborn and adult
mouse testes [18]. Moreover, PRMT7 interacted with the
testis-specific factor CTCFL (CCCTC-binding factor (zinc
finger protein)-like), and both were expressed during embry-
onic male germ cell development. Further analysis revealed
that CTCFL functioned as an accessory protein for stimulat-
ing PRMT7 activity [18, 86]. A loss-of-function of PRMT7
study demonstrated that PRMT7 was determined as a criti-
cal factor for the development of mouse male germ cells dur-
ing embryonic stages [87]. The size and weight of testes, the
diameter of seminiferous tubules, and the number of germ
cells were reduced in PRMT7 knockout male mice compared
with control mice. Mechanistic analyses revealed that
PRMT7 impeded male germ cell proliferation, which was
possibly attributed to the TGF-β signaling pathway. In addi-
tion, our recent work also discovered that PRMT7 regulated
the proliferation of male mouse germ cells (unpublished
data). These discoveries imply that PRMT7 has important
roles in male reproduction.

7. The Roles of PRMT7 in Cellular Stress
and Senescence

Recently, to identify the interactome and potential substrates
of PRMT7, Haghandish et al. performed quantitative mass
spectrometry experiments and identified eIF2α as a novel
substrate of PRMT7. They further discovered that PRMT7
regulated eIF2α-dependent stress granule formation in
response to various cellular stresses through methylation
and subsequent phosphorylation on Ser51 of eIF2α [88].
Moreover, when PRMT7 was inhibited or knocked out, the
levels of arginine monomethylated HSP70 proteins were sig-
nificantly decreased. Further, PRMT7 can give rise to the
methylation of HSP70 on the location of R649 [89]. Given
the discoveries that eIF2α as a nonhistone substrate of
PRMT7 plays a functional role in cellular stress response
and HSP70 family members are associated with stress
response [90], it is likely that PRMT7 serves as a crucial
mediator in cellular stress response pathways.

Type III
PRMT7

ProteinProtein
MMA

Stemness maintenance

Embryonic stem cells Skeletal muscle
Neuron
Bone
Adipose tissues
Male reproduction

Induced pluripotent
stem cells

Muscle stem cells
Liver cancer stem cells

Breast cancer
Lung cancer
Kidney cancer

Cancer metastasis Development

Figure 1: Biological functions of PRMT7 in mice and humans. PRMT7, a type III protein arginine methyltransferase, regulates the
proliferation and differentiation of stem cells and promotes cancer metastasis. Deficiency of PRMT7 causes developmental defects in
many systems. PRMT7: protein arginine methyltransferase 7; MMA: monomethyl arginine.
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Furthermore, PRMT7 was also found to be associated
with cellular senescence. Mouse embryonic fibroblasts with
PRMT7 knockout underwent premature cellular senescence
which was accompanied by increased expression of p16 and
p21, two known cell cycle inhibitors [91, 92]. Further results
revealed that PRMT7 positively interacted with GLI2 (gli-
oma-associated oncogene 2) and methylated GLI2 to
enhance GLI2-mediated sonic hedgehog signaling activity,
which reportedly is a signaling associated with cellular
senescence [93, 94]. Overall, these data demonstrate that
PRMT7 functions to prevent cellular senescence, suggesting
the potential role of PRMT7 in antiaging.

8. Conclusions

PRMT7 has been the subject of extensive researches over the
past two decades. Genetic deficiency of PRMT7 causes a
range of abnormalities in mice and humans. PRMT7-/- mice
showed reduced body size, shortened metatarsal bones, and
declined survival rate shortly after birth, while surviving
adult mice showed increased fat mass. The phenotypes of
PRMT7 mutations in humans are mainly represented as
SBIDDS syndrome. The common or similar phenotypes of
PRMT7-/- mice and humans with PRMT7 mutations dem-
onstrated the crucial roles of PRMT7 in the development
of skeletal muscle, neurons, bone, adipose tissues, and male
reproduction.

Here, we reviewed the recent research findings regarding
the biological functions of PRMT7 (Figure 1). In particular,
we discussed in detail the roles of PRMT7 in stem cells, includ-
ing mouse ESCs, iPSCs, and MuSCs, the development of skel-
etal muscle and neurons, and the process of adipogenesis.
Future work should also be aimed at identifying the specific
substrates and functions of PRMT7, as well as the underlying
molecular mechanisms. However, a few challenges prevent the
identification of specific substrates of PRMT7. First, the sub-
strates of PRMT7 and other PRMTs may overlap, and the
interaction between PRMTs is complex, challenging system-
atic studies on PRMT7 substrates. Second, current studies
drew inconsistent conclusions regarding the formation of
monomethylarginine or symmetric dimethylarginine medi-
ated by PRMT7, which may be due to contamination by other
PRMTs, especially PRMT5. In addition, there is a lack of spe-
cific chemical probes and small molecule inhibitors for
PRMT7, which has hindered its potential application in dis-
ease therapy. Last but not least, clarifying the roles of PRMT7
in male reproduction and the underlying mechanisms, which
are the aims of our research group, will further expand our
understanding of the biological roles of PRMT7 in human life
and disease.
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iPSCs: Induced pluripotent stem cells
MLL4: Mixed-lineage leukemia 4
MMP9: Matrix metalloproteinase 9
MuSCs: Muscle stem cells
NSCLC: Non-small-cell lung cancer
PRMT: Protein arginine methyltransferase
PRMT7-CKO: PRMT7 conditional knockout
SBIDDS: Short stature, brachydactyly, intellectual

developmental disability, and seizures
SHANK2/3: SH3 and multiple ankyrin repeat domains
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