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+e electrocardiogram (ECG) is one of the most widely used diagnostic instruments in medicine and healthcare. Deep learning
methods have shown promise in healthcare prediction challenges involving ECG data. +is paper aims to apply deep learning
techniques on the publicly available dataset to classify arrhythmia. We have used two kinds of the dataset in our research paper. One
dataset is the MIT-BIH arrhythmia database, with a sampling frequency of 125Hz with 1,09,446 ECG beats. +e classes included in
this first dataset are N, S, V, F, andQ.+e second database is PTBDiagnostic ECGDatabase.+e second database has two classes.+e
techniques used in these two datasets are the CNN model, CNN+LSTM, and CNN+LSTM+Attention Model. 80% of the data is
used for the training, and the remaining 20% is used for testing. +e result achieved by using these three techniques shows the
accuracy of 99.12% for the CNN model, 99.3% for CNN+LSTM, and 99.29% for CNN+LSTM+Attention Model.

1. Introduction

Cardiovascular diseases (CVDs) are the major public health
problemworldwide. Every year almost 17.9million people waste
their lives because of these deadly diseases. Coronary heart
disease, cerebrovascular illness, rheumatic heart disease, and
other diseases are among the heart and blood vessel disorders
known as CVDs. Heart attacks and strokes are responsible for
more than four out of every fiveCVD fatalities, with one-third of
these deaths occurring before 70. Willem Einthoven
(1860–1927), former professor of mercury electrometer ECG at
Leiden University in the Netherlands, has developed mathe-
matical precision. Einthoven published his first paper in 1901 for
the galvanometer, which was monitored in 1903 in detail by an
ECG new metal survey. In 2002, Willem utilized the ECG for
clinical purposes with the help of a string galvanometer [1].

ECG points P-Q-R-S and T letters to different deflections
[2] in Figure 1. Wave and action are summarized in Table 1.

+e electrocardiogram (ECG/EKG) is a noninvasive
diagnostic technique that records the heart’s physiological
activity throughout time. Many cardiovascular disorders,
such as premature contractions of the atria (PAC) or
ventricles (PVC), atrial fibrillation (AF), myocardial in-
farction (MI), and congestive heart failure, can be diag-
nosed using ECG data (CHF). +e fast development of
portable ECG monitors in the medical profession, such as
the Holter monitor [3], and wearable gadgets in different
healthcare domains, such as the apple watch, has occurred
in recent years. Consequently, the analyzed ECG data has
risen at a rate that human cardiologists cannot keep up
with. So, analyzing the ECG data automatically and
correctly becomes an exciting subject. ECG data may also
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be used for various applications, such as biometric human
identification and sleep staging.

Automatic ECG analysis always depends on golden di-
agnostic principles. +e top of Figure 2 presented two-stage
methods that define human experts on unprocessed ECG data
to use features based on the engineer, which are discussed as
“expert features,” and at that point organize choice rules;
otherwise different machine learning methods are used to
make the final result. As a replacement, feature extraction is
made ultimately and automatically using deep learning
models based on robust data learning flexible and skills
processing structural design. Various studies make sure to
experimentally prove that deep learning features are most
helpful to expert features used for ECG data [4]. Automatic
exposure to ECG-based arrhythmia is very convenient since it
eliminates physicians’ need to personally interpret the signs
and allows people to track their cardiac symptoms using
handheld devices. +e ECG shows the electrical behavior of
the heart over time from electrodes mounted on the scalp,
which is the most widely used solution for arrhythmia di-
agnosis. +e ECG leads, which record the heart’s electrical
potential from various angles and locations, can be used to
diagnose disease by searching for irregular waveforms or
rhythms. Since cardiovascular diseases have a high death rate,
early identification and conclusive distinction of arrhythmias
are crucial to medical care [5].

Heartbeats can be usually speedy, or else slow. Heartbeat
and extra morphological features (together with spatio-
temporal relations between altered genetic factors) can be
considered to identify arrhythmia. Some false findings
monitored cure can exist. An impression of the altered
arrhythmias is happening in this segment. It has to be noted

that info is provided, taking into account the average healthy
adult. Diagnosis factors differ by gender, race, and age. An
example of arrhythmias is given in ECG arrhythmias and
their characteristics and results [6, 7]. +e traditional ap-
proach to diagnosing CVD relies on a patient’s medical
history as well as clinical trials. Healthcare providers in-
creasingly demanding appropriate medical examinations
can be linked to the use of computer-aided diagnosis systems
(CADS); [8] DNNs detect arrhythmias in captured ECG
signals [9]. +e ECG using direct visual inspection is used to
look for epileptic form of abnormalities. Most EEG software
has a kind of automated imagery detection. During the
tremor, however, the epileptogenic neural network has an
extremely high electrical activity. +is can lead to seizures
and fainting complications [10].

Every abnormality from the usual heart rate, including
heart rate disorders and regularity or conduction of the
cardiac electrical impulse, is called arrhythmias (60–100
beats per minute). +e detection of anomalies in heart-based
biosignals has attracted considerable interest [7]. +e elec-
trocardiogram (ECG) is a nonstationary physiological
characteristic that shows the electrical pulse of the heart.
When it comes to diagnosing arrhythmia in the recorded
ECG signal, contemporary CADS devices use DNNs to
decrease the price of continual cardiac supervision [11]. A
single-lead ECG signal classificationmethod for arrhythmias
is suggested. To achieve this, the system combines three
different types of information: RR intervals, signal mor-
phology, and higher-level statistical data. Although the lo-
cation of the R-wave was artificially distorted by adding
jitter, it nevertheless outperformed other approaches in the
field [12].
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Figure 1: Heart cycle in an ECG.

Table 1: Wave and action [2].

Wave Action
P Depolarization of the atria
Q Activation of the anteroseptal region of the ventricular myocardium
R Depolarization of the ventricular myocardium
S Activation of the posterior basal portion of the ventricles
T Rapid ventricular repolarization
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+e primary purpose of this study is to contribute to the
training stability with the help of a modified deep learning
method. A preprocessing approach that significantly en-
hances the deep learning models’ accuracy is suggested for
ECG classification. Deep learning methods are used to
analyze ECG data. For the analysis of a heartbeat dataset
including 1,09,446 beats in five types. +e classes included in
this first dataset are N, S, V, F, and Q.+e second database is
PTB Diagnostic ECGDatabase.+e second database has two
classes. +e techniques used in these two datasets are the
CNN model, CNN+LSTM, and CNN+LSTM+Attention
Model.+is paper is outlined as follows. Section 2 introduces
the related work. Section 3 describes the material and
method of ECG observing systems. It describes contrasts,
analyzes each cluster of studies, highlights the significant
characteristics, and discusses specific research challenges.
Section 4 describes the result and summarizes it. Section 5
contains the discussion. Section 6 gives the conclusion of the
article.

2. Related Works

Murat et al. [5] presented a review for knowledge, and more
study on deep learning models became a common way for
ECG data to be classified. +ey function ECG data from 5
groups of 100,022 beats as of the MIT-BIH rhythmic da-
tabase to test the literature’s most used profound learning
strategies. Hong et al. [4], the writer of a survey paper,
explains a systematic analysis of ECG data deep learning
methods on or after the modeling perspectives. +e writer
applied ECG deep learning models published by Google
Scholar, PubMed, and Digital Bibliography & Library
Project between 1 Jan 2010 and 29 Feb 2020. Ebrahimi et al.
[9] explored many DL methods, including CNN, DBN,
recurrent neural network, short-term memory (LSTM), and
gated recurrent machine. +e majority of papers reviewed
used at least one form of DL technique to extract and classify
the features. Acharya et al. [10] found general and predictive
classes with 13 deep layers of a fully convolutional neural
network (CNN). +is approach can be time consuming,
limited by a practical artifact, and responsible for flexible
results at the professional level of students. Like the ANN,
the final CNN model performance judgment is dependent
on the network structure weights and preferences of the
previous layers. +e pooling process decreases the size of the

output neurons of the coevolutionary layer to decrease the
calculation amplitude and avoid overfitting. +e suggested
method’s accuracy, specificity, and sensitivity were 88.67%,
90.00%, and 95.00%, respectively.

Acharya et al. [10] focus on the diverse ways to diagnose
myocardial infarction (heart attack) and distinguish ar-
rhythmias (heartbeat variations), hypertrophy (increased
heart muscle thickness), and heart enlargement. It is con-
cluded that fuzzy-based technology is successful in the
analysis of computerized ECG but needs more research. +e
precision of the definition is 86.67%, while the specificity is
93.75%. +e built model is well tested with various per-
formance metrics but can be further modified for practical
applications. Limaye and Deshmukh [13] discussed that the
ECG signal concept consists of very low-frequency signals to
about 0.5–100Hz. Cardiac monitors are the instruments that
enable the ECG recording to be filtered. +e Low Pass Filter
(LPF) is applied to eliminate the unwanted high-frequency
noise signal. Mbachu et al. [14] introduced LPF, HPF, and
BSF architecture with the window Kaiser, where these three
filters are related serially, processing the signal within the
range of 0 to 100Hz and attenuating a signal of 13 dB for
each filter in order of 200 and with interference signals. Dias
et al. [12] introduced a digital notch filter design using the
Hamming Window, with a 50Hz interference effect,
resulting in 13.4 dB attenuation.

Litjens et al. [15] studied more than 80 articles covering
modals of intravascular visual cohesiveness tomography and
echocardiography from cardiac magnetic resonance, com-
puted tomography, and single-photon computed tomo-
grams. It explains the basic principles that underlie the most
efficient deeper learning algorithms. Kaplan Berkaya et al.
[16] presented a survey paper on ECG signal and studied
1538 records, including heart rate measurements, cardio-
vascular function, cardiac disorders diagnosis, emotion
detection, and biometrical identification. +ey also sum-
marized the most advanced research on the preprocessing
phase in ECG signals analysis. +e study of their results
under different preprocessing procedures is of great sig-
nificance. Haroon [17] represented the meaning of deep
learning approaches, such as convolution neural network
(CNN) based algorithms, which may prevent manual ECG
signal functionality. +e Python PTB andMIT-BIN Data Set
ECG database (wfdb) library were used for study, and
various features and data variations were made. During the
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Figure 2: Evaluations between deep learning procedures and old procedures.
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classification of these time series signals, different methods
were developed for applying machine learning algorithms.
For deep-seated convolution, transfer training, and com-
putation in the Google Colab setting, multilayer CNN,
ResNet-50, and VGG-16 were used. +e result is
CNN� 83.1%, ResNet-50� 83.5%, and overall
accuracy� 99%.

Type [18] studied common characteristics of medical
and engineering cases related to ECG diagnosis. It includes
the recent breakthrough deep learning data classification,
deep neural network systems for wearable ECG monitors,
and automated cloud health platform detection. +e main
components of system hardware are a monitor system and
an android terminal. Serhani et al. [19] discussed a basic
model for ECG monitoring systems that should be set up
and problems identified. +ey also highlighted the value of
intelligent surveillance systems that exploit emerging
technology to provide e client, cost-aware, and fully inte-
grated monitoring systems, including in-depth learning,
artificial intelligence (AI), big data, and the IoT. Naik et al.
[20] defined the governance ECG impulses should be reg-
istered and tracked to detect rhythmic cardiac issues. A
nonlinear compression structure with a coevolutionary
automatic encoder (CAE) is applied to reduce the rhythmic
beats signal scale. +e accuracy is overall 99.0%. Jiang et al.
[21] solved the difficult disequilibrium in the ECG classi-
fication of electric cardiograms by a new MMNNS. +e
contrasts with other state-of-the-art approaches on three
datasets use standard parameters to reveal the dominance of
the new system. +e overall accuracy was 96.6 percent, and
the MAUC score was 0.978. Han and Shi [22] introduced a
novel method of detecting and locating the MI that incor-
porates a multilead residual neural network structure (ML-
ResNet) with 3 residual blocks and attributes fusion across
12-lead ECG records. Experimental results based on the PTB
database indicate that our model produces superior 95.49%
precision results.

Hao et al. [23] proposed a multibranch MI fusion
framework for automated MI screening of 12-lead ECG
images. +e Zhejiang Second People’s Hospital of China
dataset presented 95712-lead ECGs, consisting of 483 MI
images and 474 non-MI images. +e result accuracy is
94.73%, sensitivity 96.41%, specificity 95.94%, and F1-score
93.79%. Kuznetsov and Moskalenko [24] developed a vi-
brating car encoder to generate an ECG signal for a heart
cycle. +e new features derived lead to the quality en-
hancement of cardiovascular diagnosis automatically.
Shaker et al. [25] discussed two types of problems utilizing
GAN, which have two neural networks such as generator
and discriminator, one competing against the other. By
increasing the initial imbalanced dataset using the proposed
techniques, the efficiency of the ECG classification can be
increased more efficiently than using the same techniques
just trained in the original dataset. +e overall accuracy is
98.0%, precision 90.0%, specificity 97.4%, and sensitivity
97.7%. In the study of Huang et al. [26], the time domains of
ECG were defined by a short-time Fourier transformation,
which included five forms of heartbeat normal beat (NOR),
left bundle branch block beat (LBB), premature ventricular

contraction beat (RBB), and atrial premature contraction
beat. +e average accuracy is 90.93%.

Huang et al. [27] presented a precise classification system
based on the intelligent ECG classification with the aid of fast
residual convolutionary neural networks (FCResNet) pro-
posed to promote smart classification of arrhythmia with
high precision, averaged 98.79% precision when set to 2. 20
batch size parameters and low-frequency subspaces were
chosen inMOWPTas the classifier.+e systemwas tested on
a patient’s ECG. Naik [20] utilized a multirate cosine filter
banking architecture to assess the ECG signal coefficients in
different subbands. +e findings suggest that 99.40%,
98.77%, and 100% were successful in detecting an FN-de-
pendent total volume of cosine based on factors of AF.
Avanzato and Beritelli [28] had given a solution to the
advancement of automatically diagnosed heart attack sys-
tems. +e proposed neural architecture is built on the recent
success of the CNN network (CNN) and other networks. It
could be used in a new way of detecting heart attacks, with
98.33% mean accuracy, 98.33% sensitivity, 98.35% speci-
ficity, 1.65 percent false-positive ratio, 1.66% false-negative
ratio, and 98.33% F1-score.

3. Material and Method

To assess deep learning techniques frequently utilized in the
literature, we analyzed ECG data from five separate classes
containing 109,446 beats collected from the MIT-BIH ar-
rhythmia database and the PTB Diagnostic ECG Database.
+e results were evaluated using various applications,
ranging from the most basic to the most advanced.

3.1. ECG Dataset. +is dataset is divided into two sets of
heartbeat signals obtained from the MIT-BIH Arrhythmia
Dataset and the PTB Diagnostic ECG Database, two well-
known datasets for heartbeat classification. To assess deep
learning models, we used a dataset with a sampling fre-
quency of 125Hz with a total of 109446 ECG beats. +e
major classes of N, S, V, F, and Q are included in the MIT-
BIH arrhythmia database, and the PTB Diagnostic ECG
Database has two classes. Both sets include a sufficient
amount of data to train a deep neural network. +is dataset
has been used to investigate heartbeat categorization using
deep neural network architectures and test specific transfer
learning capabilities. For the typical cases afflicted by various
arrhythmias and myocardial infarction, the signals corre-
spond to electrocardiogram (ECG) forms of heartbeats.

+ese signals are segmented and preprocessed, with each
segment representing a heartbeat.

(i) Regular, right, or left bundle branch block, nodal
escape, and atrial escape are all in the “N” category

(ii) Atrial premature, aberrant atrial premature, nodal
premature, and supraventricular premature fall
under the “S” category

(iii) Ventricular escape and premature ventricular
contraction are seen in the “V” category

4 Computational Intelligence and Neuroscience



(iv) Fusion of ventricular and normal is labeled as an “F”
class

(v) Paced and fusion of paced and normal unclassifiable
are labeled as a “Q” class

+e basic deep learning models for heartbeat detection
and more sophisticated deep learning models for cardiac
identification are based on networks.+e investigations were
conducted using deep learning techniques.

+ey are specified for heartbeat analysis, and some of
these approaches were applied to cardiac datasets, and the
findings were then assessed.

3.2. Implementation. In the implementation of this work, we
utilized NumPy Community [29] and McKinney and Team
[30] with Imambi et al. [31] and Seaborn [32] for python
backend deep learning library to implement deep learning
techniques. Google colaboratory [33] was used to train the
model. Raw ECG signals were scaled in the 0–1 range before
being standardized. +e test data findings were evaluated
using the accuracy, recall, precision, and F-Score perfor-
mance measures.

3.3. Methodology. A thorough study has been carried out in
this section for classes and the number of beats in Table 2.

We used a total of 10 .csv files and 3. pth files in which
total data contains 10505 rows and 188 columns

Figure 3 shows the normal percentage is 82.77, the fusion of
paced and average percentage is 7.35, premature ventricular
contraction percentage is 6.61, atrial premature percentage is
2.54, and fusion of ventricular and average percentage is 0.75
data, using Generative Adversarial Network

We can see that the generator creates primarily domi-
nant signal types because this is a standard procedure for
training a GAN model. We had a total of 803 signals in the
“fusion of ventricular and normal” class, the majority of
which are pretty similar, and this is what the GAN model
learned to create.

After using GAN, Figure 4 shows the adjustment and
change that occurred in the forms of beats. Figure 5 shows
the difference between the results achieved before and after
using GAN aptly.

Figure 5 shows the normal percentage is 79.9, the fusion
of paced and average percentage is 7.09, premature ven-
tricular contraction percentage is 6.38, atrial premature
percentage is 4.57, and fusion of ventricular and average
percentage is 2.06 data, the result of GAN (Generative
Adversarial Network).

We used a GAN repository with code to generate new
artificial data for classes with little data, and now the dataset
looks like this.

+e waveforms of ECG signals from all five collections
contrast the dataset used in [34] as in Figure 6.+ese alterations
are performed to each signal in the dataset. Each of these al-
terations is stored and added to the actual dataset, resulting in a
total of 2,79,149 samples out of 16,372,411 unique values in the
whole dataset. +ese signal modifications are lossless [35] and
do not affect the signal’s nature, standard, or file size. Each layer

in deep learning studies a specific function that our deep
learning model can extract.

3.4. Proposed Model. In ECG classification, we will employ
the attention method to “clarify” key characteristics in
Figure 7, such as recurrent or convolutional layers. +e
attention mechanism is best taught using the seq2seq model
as an example; therefore reading this interactive would be a
fantastic idea.

Following are the decoder steps used in Figure 8:

(i) Get attention information from all encoder states s1,
s2, ... sk, as well as a decoder state ht.

(ii) Calculate attention levels.
(iii) Sk attention calculates the “relevance” of each en-

coder state for this decoder state ht. It uses an at-
tention function that takes one decoder state and
one encoder state and returns the scalar value score
(ht, sk).

(iv) A probability distribution softmax applied to at-
tention ratings computes attention weights.

(v) Compute the weighted sum of encoder states with
attention weights as an attention output.

+e following are the most common methods for cal-
culating attention scores in Figure 9:

(i) +e easiest way is to use a dot-product
(ii) Practical approaches to attention-based neural

machine translation employed the bilinear function
(“Luong attention”)

(iii) +e approach presented in the original study was
the multilayer perceptron (also known as “Bahda-
nau attention”)

We used two functions, ReLU and Swish, in Figure 10.
Rectified linear unit (ReLU) is a transfer or activation
function. It helps the neural network decide whether or not
to output yes or no by mapping output to values such as 10
and 0 or −10.0 and 10.0, depending on the model function.
Swish is a nonmonotonic, smooth function that regularly
equals or exceeds ReLU on deep networks in several
complex areas such as image classification and machine
translation. It is unbounded above and below, and it is the
nonmonotonic characteristic that makes the distinction. In
a self-gating situation, just a single scalar input is required,
but numerous two-scalar inputs are required in a multi-
gating scenario. It was motivated by the LSTM’s usage of
the sigmoid function.

Table 2: Beat types and classes.

Classes Beat type Number of beats
N Normal 90589
S Fusion of paced and normal 8039
V Premature ventricular contraction 7236
F Atrial premature 2779
Q Fusion of ventricular and normal 803
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4. Results

Experiments were carried out using our improved dataset
and the original dataset used in the proposed model. +e
three sets of findings generated are an initial model with the
original dataset, an initial model with an augmented dataset,
a newly recommended model with the original dataset, and a
new proposed model with an improved dataset.

Figure 11 shows loss function during model training and
metrics during model training (CNN model). Graphs depict
CNN network performance on the heartbeat dataset during
the training phase: (a) loss values (training and validation)
and (b) graphs of accuracy (training and validation).

Figure 12 shows loss function during model training and
metrics during model training (CNN+LSTM model). Graphs
depict CNN and LSTM network performance on the heartbeat
dataset during the training phase: (a) loss values (training and
validation) and (b) graphs of accuracy (training and validation).

Figure 13 shows loss function during model training
and metrics during model training
(CNN+ LSTM+Attention Model). Graphs depict
CNN+ LSTM+Attention Model performance on the
heartbeat dataset during the training phase: (a) loss values
(training and validation) and (b) graphs of accuracy
(training and validation).
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Figure 14 shows CNN model classification with 99.12%
average accuracy (precision, recall, and F1-score value are
equal).

Figure 15 shows CNN+LSTM model classification with
99.3% average accuracy (precision, recall, and F1-score value
are equal).

Figure 16 shows CNN+LSTM+Attention Model clas-
sification with 99.29% average accuracy (precision, recall,
and F1-score value are equal).

Figure 17 shows the report ensemble classification report
accuracy (precision, recall, and F1-score).

5. Discussion

+is part discusses the classification of cardiac/heartbeat that
seems to be best known in the forms of conditions. Another

common area of application is the heartbeat style identifi-
cation to separate different ECG beats from each other. +e
more recent areas of use of ECG research are biometric
detection and emotional recognition. +e initiative for the
early detection of diseases is a famous study and classifi-
cation. +e issues of biometric authentication and the ap-
plication of emotional recognition can be resolved by
various techniques, unlike heartbeat type detection.

We looked at literature publications that used deep learning
on arrhythmia ECG data in this investigation.+e following are
some key observations made as a result of these investigations.

+e imbalance of the ECG dataset is a significant issue
because certain classes have a lot of data relative to others,
which might lead to false information about model per-
formance. Some researchers have devoted their attention to
this issue and suggested remedies.
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Figure 5: Label, number of data, and data percentage after GAN.
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CNN modeling has been the subject of a lot of recent
studies in this field. Both representation and sequence
characteristics of ECG data increase classification

performance in our experiments. As a result, effective hybrid
models can extract more distinguishing characteristics from
ECG data.
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Another intriguing use in this subject is using separate
models for shallow categorization while using deep models
as feature extractors. +e benefits of shallow categorization
may be taken advantage of with this method.

When performed on databases with vast volumes of
high-quality data, deep learning models perform well. As a
result, a study on newly created big ECG datasets might lead
to more effective models.

Using the deep learning method, some recent ECG
classification experiments are presented. When this study is
compared, it becomes clear that CNN models outperform
alternative approaches. Aside from the challenges in de-
signing and adjusting CNN models, the high computational
cost of neural networks is the most significant drawback.
Another disadvantage is that they require a large dataset for
successful training. +e main benefit of ECG databases is

ht
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T

× ×tanh W1
ht
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Dot-product Bilinear Multi-Layer Perceptron
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Figure 9: Calculation of attention scores.
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CNN+LSTM Model
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Figure 12: CNN and LSTM model.
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Figure 13: CNN+LSTM+Attention Model.
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Figure 15: CNN+LSTM model classification report.
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Figure 16: CNN+LSTM+Attention Model classification report.
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that there are many databases and a large number of signal
situations. Accuracy, precision, recall (or sensitivity),
F-measure, and correlation coefficient success indicators for
ECG analysis and classification can be mentioned which are
defined as follows: accuracy�TP + TN/TP + TN + FP + FN,
precision�TP/TP + FP, recall�TP/TP + FN, and F-mea-
sure F1 � (recall− 1 + precision− 1/2)− 1 � 2∗ (precission∗
recall/precision + recall).

6. Conclusion

In this article, we examined and assessed the deep learning
techniques used to classify a heartbeat. We improved the model
accuracy by scrutinizing the datasets. Because the proposed
model includes ten residual blocks, there is a possibility of
overfitting the data. Naturally, the enlarged dataset makes it
harder to classify data during the testing phase because of the
human factor. However, the suggested model still has a high
level of accuracy. +is demonstrates its ability to produce very
accurate predictions with a 99.12 percent accuracy rate for the
CNN model, 99.3 percent accuracy for the CNN+LSTM
model, and 99.29 percent accuracy for
CNN+LSTM+Attention Model. In the future, this study
should be conducted in binding domains like cloud and mobile
systems. It is also vital to develop wearable technologies with
integrated low-power consumption wearable technologies.
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