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Abstract

Over the past several decades, research on autophagy, a highly conserved lysosomal degradation 

pathway, has been advanced by studies in different model organisms, especially in the field of its 

molecular mechanism and regulation. The malfunction of autophagy is linked to various diseases, 

among which cancer and neurodegenerative diseases are the major focus. In this review, we cover 

some other important diseases, including cardiovascular diseases, infectious and inflammatory 

diseases, and metabolic disorders, as well as rare diseases, with a hope of providing a more 

complete understanding of the spectrum of autophagy’s role in human health.
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Overview of Autophagy

For the past several decades, our understanding about the basic mechanism of autophagy, 

a pathway targeting cytoplasmic materials for lysosomal degradation and recycling, has 

expanded tremendously (Klionsky et al., 2021; Noda and Inagaki, 2015; Yang and 

Klionsky, 2010). Under normal nutrient conditions, autophagy occurs continuously at a 

low, basal level to inhibit the accumulation of damaged cytoplasmic components, but this 

process can be massively upregulated when cells face stress conditions such as nutrient 

deprivation (Mizushima, 2007; Wen and Klionsky, 2016). Three types of autophagy, 

including macroautophagy, microautophagy and chaperone-mediated autophagy (CMA), 

have been characterized based on different types of cargo and various modes of cargo 

delivery to lysosomes (Parzych and Klionsky, 2014). Microautophagy involves invagination 

or protrusion of endosomes or lysosomes, in which portions of cytoplasm in close proximity 

to the endosome and lysosome are sequestered and degraded, and the detailed mechanism is 

still under investigation (Schuck, 2020). CMA relies on chaperones to recognize individual 
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KFERQ motif-containing cargo proteins, and then translocates the unfolded proteins across 

the lysosomal membrane (Kaushik and Cuervo, 2012).

Macroautophagy (hereafter autophagy) is the major regulated form of autophagy in 

response to intracellular or extracellular stimulus or stress. The basic mechanism of 

autophagy has been well-characterized, including sequestration of cytoplasmic cargo into 

double-membrane phagophores that mature into autophagosomes, followed by delivery to 

lysosomes, subsequent degradation of the cargo and final efflux of the breakdown products 

back into the cytosol (Feng et al., 2014; Galluzzi et al., 2017). As stated in many previous 

publications, one of the key features in autophagy is the formation of the double-membrane 

autophagosome, which can fuse with an endosome or directly with a lysosome for 

subsequent degradation of the cargo (Mizushima and Komatsu, 2011; Yang and Klionsky, 

2009). Autophagy can be either non-selective to degrade random parts of the cytoplasm, 

or selective to degrade specific cargos such as mitochondria (mitophagy), peroxisomes 

(pexophagy), endoplasmic reticulum (reticulophagy), lipid droplets (lipophagy), glycogen 

(glyophagy), and intracellular microbes (xenophagy) (Gatica et al., 2018). More than 40 

evolutionarily conserved autophagy-related (ATG) genes have been identified in fungi, 

and approximately 20 of these are regarded as core genes—that is, those required for 

autophagosome formation—in this lysosomal degradation pathway (Dikic and Elazar, 

2018; Levine and Kroemer, 2019). However, the core ATG proteins are not sufficient for 

degradative autophagy, and some key factors have been identified in recent years, such as the 

HOPS complex, the RAB GTPase RAB7, and SNARE proteins (Wen and Klionsky, 2020).

Autophagy plays a fundamental role in many aspects of cell physiology, including protein 

quality control, prevention of genomic damage, and adaptions to intracellular or extracellular 

stimuli, as well as maintaining homeostasis (Wirawan et al., 2012; Yin et al., 2016). Given 

the importance of autophagy in these different aspects of cellular function, the magnitude of 

autophagy must be tightly regulated to ensure appropriate levels. During the past decades, 

our understanding of autophagy has also expanded from characterizing the basic mechanism 

to a knowledge of the complicated regulation of this process. Regulation covers various 

aspects, including the physiological or pathological stresses that influence autophagy, and 

the way that core autophagy proteins are regulated, as well as the interconnection between 

autophagy and other cellular stress response pathways (He and Klionsky, 2009; Ravikumar 

et al., 2010). Posttranslational modifications of ATG proteins, such as phosphorylation, 

ubiquitination, glycosylation and acetylation, as well as transcriptional and epigenetic 

control mechanisms also contribute to autophagic regulation (Xie et al., 2015). For example, 

MTOR (mechanistic target of rapamycin kinase) is a primary inhibitor of autophagy, 

whereas AMP-activated protein kinase (AMPK) is a major energy sensor and a positive 

regulator of autophagy (Corona Velazquez and Jackson, 2018).

Using mice as the model system, researchers have found that failure of autophagy 

can promote cellular degeneration, age-related changes, tumor formation and pernicious 

infection (Kuma et al., 2017). During the past several years, further human genetic studies 

have shown the involvement of autophagy, or autophagic dysfunction, in many diseases 

(Jiang and Mizushima, 2014; Levine and Kroemer, 2019). In this review, we briefly discuss 

the relation between cancer and neurodegenerative diseases, which have been the major 
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focus of many published reviews (Frake et al., 2015; Levine and Kroemer, 2008; Mizushima 

et al., 2008; White, 2015; Yang and Klionsky, 2020). More importantly, our review 

summarizes some cutting-edge research on the relation between autophagy (including non-

selective and selective autophagy as well as CMA) and many other diseases, with a hope of 

providing an appreciation of a wider landscape of autophagy-related diseases as well as an 

addition to the understanding of autophagy in human health.

Autophagy and Cardiovascular Diseases

As a pivotal housekeeping mechanism to maintain energy balance and cell metabolism, 

autophagy has been hypothesized and subsequently confirmed to play a critical role 

in the pathogenesis of cardiovascular diseases, including heart failure, hypertrophic 

cardiomyopathy, dilated cardiomyopathy, cardiac aging, and diabetic cardiomyopathy (Wu 

et al., 2021). In this section, we briefly review the genetic association of human ATG genes 

and cardiovascular diseases. We then summarize animal studies seeking to define the distinct 

roles of autophagy in disease models and highlight the involvement of mitophagy and CMA 

in cardiovascular diseases.

1. Mutations of ATG genes in Cardiovascular Diseases

Early in 2000, a study published in Nature showed for the first time that human 

cardiomyopathy is primarily caused by mutations of the lysosome membrane protein 

LAMP2 that is closely correlated with autophagy (Nishino et al., 2000). In addition, the 

accumulation of autophagosomes has been observed in LAMP2-deficient mice (Tanaka et 

al., 2000). In recent years, the mutated protein products of a subset of core ATG genes 

have been identified to have a close link with cardiovascular diseases. For example, in 

2018, it was reported that many variants in the ATG7 gene promoter in acute myocardial 

infarction alter the transcriptional level of ATG7 and consequently lead to dysfunctional 

autophagy (Zhang et al., 2018a). In 2019, another study investigating the roles of 21 ATG 
genes in cardiovascular diseases elegantly elucidated that single-nucleotide polymorphisms 

in ATG4C, ATG4D, ATG7, MAP1LC3A and ATG3 are associated with the pathologies 

and related traits of cardiovascular diseases (Portilla-Fernandez et al., 2019). In addition, 

differential DNA methylation analysis showed that CpGs located in ULK1, ATG4B and 

ATG4D are correlated with several cardiometabolic traits (Portilla-Fernandez et al., 2019). 

Altogether, globally identified genetic alterations in the genes closely correlated with 

autophagy implicate this process as a promising target for the therapeutic intervention in 

cardiovascular diseases.

2. Distinct Roles of Autophagy in Animal Cardiovascular Disease Models

Given the fact that autophagy promotes adaptation to stress and supports cellular viability, 

it is plausible to regard autophagy as a process that confers cardio-protection. In this regard, 

the first set of papers linking autophagy to cardiac diseases was published in the 1970s 

(Sybers et al., 1976; Wildenthal and Mueller, 1974). However, with the recent intense 

interest in examining the exact roles of autophagy in cardiovascular diseases, the process has 

been revealed as having distinct roles (i.e., protective versus detrimental) in the heart under 

different cardiac conditions.
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On the one hand, there is a series of important studies using animal models revealing that 

inactivation of autophagy in the heart is associated with cardiac pathologies, including 

genetic cardiomyopathy, chronic cardiac remodeling and heart failure (Valentim et al., 

2006). For example, in a mouse model, temporal deficiency of cardiac-specific ATG5 results 

in the development of cardiac dysfunction and left ventricular dilatation after pressure 

overload (Nakai et al., 2007). Crossing BECN1 (beclin 1, autophagy related)-deficient mice 

with mice having DES (desmin)-related cardiomyopathy results in dramatically hastened 

heart failure progression, accelerated ventricular dysfunction, and early mortality (Tannous 

et al., 2008). Consistent with these findings, a BECN1 overexpression mouse model 

conversely showed that increased autophagy improves cardiac function (Sun et al., 2018; 

Zhu et al., 2007). In addition, autophagy is activated to promote myocardial survival 

during ischemia through an AMPK-dependent mechanism (Matsui et al., 2007). All these 

observations suggest a protective role of elevated autophagy in cardiac diseases.

On the other hand, there are also some contrary studies showing that reduced autophagy 

may protect the heart from injuries. It is noteworthy that a study generating heterozygous 

disruption of Becn1 in mice showed that compared with wild-type mice, BECN1-

deficient mice that display diminished cardiomyocyte autophagy have blunted pathological 

remodeling and reduced cardiac damage upon reperfusion (Matsui et al., 2007). In these 

studies, mice that overexpress BECN1 display accentuated pathological remodeling (Sun 

et al., 2018; Zhu et al., 2007). Diabetes is often accompanied by cardiac dysfunction, and 

frequently causes diabetic cardiomyopathy and heart failure. Another study focusing on the 

pathogenesis of diabetic cardiomyopathy showed that autophagy activity is diminished in the 

type 1 diabetic heart, but further depletion of BECN1 and ATG16L1 in mice substantially 

attenuates diabetes-induced cardiac damage (Xu et al., 2013a).

To date, the mechanism of how the beneficial or detrimental nature of autophagy in the 

context of cardiovascular diseases is determined remains an enigma. It has been suggested 

that distinguishing the roles of autophagy during ischemia and reperfusion is important. 

Initially, autophagy may serve to maintain energy production during acute ischemia, but 

subsequently switches to removing dysfunctional organelles during chronic ischemia or 

reperfusion. To provide a thorough understanding of the roles of autophagy under various 

cardiac conditions, we summarize animal studies seeking to define the distinct roles of 

autophagy in disease models (Table 1).

3. Mitophagy and CMA in Cardiovascular Diseases

In a recent publication we discussed the fundamental concepts of CMA and mitophagy, and 

their roles in neurodegenerative diseases (Yang and Klionsky, 2020). Interestingly, it has 

been largely accepted that the pathogenesis of cardiovascular diseases is also closely linked 

to CMA and mitophagy.

As discussed in the last section, mutations in LAMP2, encoding the protein family to which 

the CMA receptor LAMP2A belongs, have been identified as being associated with human 

cardiomyopathy (e.g., Danon disease) (Nishino et al., 2000). A study in 2017 showed that 

the levels of CMA markers, including LAMP2A and HSPA8/HSC70 decline in cardiac 

muscle during aging (Zhou et al., 2017). These studies suggest the importance of unraveling 
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the contribution of CMA in cardiac pathogenesis, and the role of CMA in cardiomyocytes is 

becoming a research hotspot (Kaludercic et al., 2020).

The role of mitophagy in cardiovascular diseases has been demonstrated in several 

mouse models. It is well known that loss-of-function mutations in Prkn/Parkin result 

in neurodegenerative diseases such as Parkinson disease. prkn−/− mice also have more 

severe cardiac injury and reduced survival following myocardial infarction compared with 

wild-type mice (Kubli et al., 2013). Furthermore, overexpression of PRKN in cardiac 

myocytes attenuates hypoxia-mediated cell death (Kubli et al., 2013). Haploinsufficiency 

of DNM1L/Drp1 abolishes mitophagy and exacerbates heart failure induced by transverse 

aortic constriction in mice (Shirakabe et al., 2016). In a diabetic mouse model, inhibition 

of ATG16L1 restores mitophagy in an ATG16L1-independent manner through PINK1 and 

PRKN upregulation, suggesting that mitophagy may function as an adaptive mechanism to 

attenuate diabetic cardiac injury (Xu et al., 2013b).

4. Autophagy as a Target for Therapeutic Intervention in Cardiovascular Diseases

In the previous sections, we have discussed the fact that autophagy can play distinct roles 

at different stages and in different conditions concerning cardiovascular diseases. From 

this perspective, many drugs that are related to or have an impact on autophagy are 

used in the treatment of cardiovascular diseases. For example, trehalose, which exhibits 

an ability to protect cells from multiple stresses via autophagy activation, efficiently 

improves cardiac remodeling following myocardial infarction (Sciarretta et al., 2018). In 

addition, mitophagy modulation is another promising therapy, which is confirmed in several 

mouse models. Aspirin heightens cardioprotective mitophagy through inhibition of EP300 

acetyltransferase in mice and worms (Pietrocola et al., 2018). Injection of Tat-Beclin1 also 

partially rescues mitophagy dysfunction and heart failure induced by overload in cardiac 

hypertrophy transverse aortic constriction mice (Shirakabe et al., 2016). Collectively, these 

studies rationally suggest that autophagy/mitophagy activation is a promising strategy for 

treating cardiovascular diseases under certain circumstances.

Autophagy in Infectious and Inflammatory Disorders

In recent years, accumulating evidence has suggested that both the pathogen degradation 

and housekeeping function of autophagy are essential for the outcome of infection and 

immunological balance. Autophagy, with its ability to clear inflammasomes and cytokines, 

plays an important role in regulating inflammation. Through genetic association studies, it 

has been found that defective autophagy confers susceptibility to a number of autoimmune 

and inflammatory disorders, particularly inflammatory bowel disease (IBD) and infectious 

diseases. In this section, we address the progress in understanding the dual roles of 

autophagy in infectious diseases, and particularly we focus on coronavirus disease 2019 

(COVID-19), to provide novel insights in the defense against pathogen infection. We also 

highlight the prominent roles of autophagy-related proteins in inflammatory bowel diseases. 

By emphasizing these two diseases, we try to demonstrate how two dual decisive functions 

of autophagy (i.e., maintaining cellular homeostasis and activating defense mechanisms), 

work in concert in inflammatory disorders. Due to space constraints, we mention other 
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inflammatory disorders (except IBD and infectious diseases) and the associated core ATG 
genes with genetic mutations in Table 2.

1. Autophagy and Infectious Diseases

Autophagy has a crucial role in the defense against microorganisms that are responsible 

for many infectious diseases that pose severe threats to human lives. Similar to its role in 

cancers, autophagy also acts as a double-edged sword in pathogen infection. In the following 

section, we briefly introduce the mechanism of how autophagy both controls and promotes 

pathogen infections. We overview studies investigating the roles of autophagy in various 

infectious diseases (Table 3), using COVID-19 as an example to describe in detail the 

contribution of ATG genes in the pathogenesis and treatment of life-threatening infectious 

diseases.

1.1 Dual Roles of Autophagy in Microbial Infections—After pathogenic infection, 

autophagy is activated by the innate immune system to clear out the invading pathogens. 

Specifically, xenophagy, a type of selective autophagy that recognizes and delivers 

intracellular microorganism to lysosomes for degradation, is frequently involved in the 

process. There are many ways for microbes to induce xenophagy, including cell-to-cell 

signaling, immune surveillance, cellular stress induction, microbiol protein stimuli, etc. 

(Steele et al., 2015). For example, pattern recognition receptors such as Toll-like receptors 

recognize pathogen-associated molecular patterns and then induce xenophagy by the 

modulation of BECN1/Beclin1 activity through alteration of the BECN1-BCL2 interaction 

(Delgado et al., 2008; Shi and Kehrl, 2008). Similar to other types of selective autophagy 

(e.g., mitophagy), xenophagy targets its intracellular cargos (i.e., pathogens) towards 

lysosomes for autophagic degradation via ubiquitination (Yin et al., 2020).

Importantly, instead of being eliminated by autophagy, some pathogens have evolved 

the ability to exploit autophagy-generated structures, metabolites, and energy as their 

own resources for replication. For example, the optimal intracellular bacterial growth of 

Francisella tularensis takes advantage of ATG5-independent autophagy in order to harvest 

nutrients for bacterial replication (Nishida et al., 2009; Steele et al., 2013). In addition, 

Brucella abortus and Mycobacterium marinum exploit ATG5-independent autophagy to 

facilitate cell-to-cell spread (Collins et al., 2009; Starr et al., 2012). It is not fully understood 

how pathogens preferentially induce ATG5-independent autophagy and avoid xenophagy 

during infections. Taking advantage of host autophagy is also common in viral infection. 

Lipophagy, another selective type of autophagy that targets intracellular lipid droplets (i.e., 

triglycerides, cholesterol), is subverted during viral infection for two primary reasons: lipid 

droplets can provide a platform for virion assembly, and upregulated lipophagy is able 

to provide the high level of ATP needed for viral replication (Choi et al., 2018). ATG 

machinery can be hijacked by several picornaviruses, including coxsackievirus, poliovirus, 

and rhinovirus, to support efficient viral replication (Klein and Jackson, 2011). A limited 

number of animal studies have investigated the dominant mechanism for how the ATG 

machinery is exploited by highly pathogenic viruses and bacteria to support their invasion. 

Currently, the most convincing evidence that autophagy is critical to support viral replication 

is a study published in 2012, which showed that in pancreatic acinar cells of ATG5-deficient 
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mice, coxsackievirus B3 (CVB3) fails to optimally infect pancreatic cells and therefore 

cannot induce pancreatic pathology (Alirezaei et al., 2012).

1.2 Autophagy and SARS-CoV-2 in COVID-19—The COVID-19 pandemic has had 

a dramatic impact on healthcare and socioeconomic systems all over the world. Autophagy, 

due to its roles in the defense against viruses and bacteria, has attracted the attention of 

scientists interested in developing treatments for this disease and became an emerging target 

for COVID-19 therapeutics.

COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 

which is a type of positive-sense single-stranded RNA virus and belongs to the 

coronavirus (CoV) family (Mijaljica and Klionsky, 2020). Though substantial effort has 

been made recently to unravel the complex relationship between autophagy and COVID-19 

pathogenesis, a complete understanding of autophagy and SARS-CoV-2 remains elusive 

because of a lack of practical animal studies in the limited time since the disease outbreak. 

Therefore, we summarize studies on autophagy and SARS-CoV-2-related pathogens, such 

as coronavirus mouse hepatitis virus (MHV) from the CoV family. We highlight how 

investigations at the cellular level are delineating the pathogenesis of CoV, hopefully to 

provide insights and perspectives on implications of autophagy in COVID-19 pathogenesis 

and treatments.

The controversy of whether the CoVs preferentially trigger autophagy for self-usage has 

been a topic of debate for nearly two decades. Early in 2004, viral replication of MHV 

was found to be affected in atg5−/− embryonic stem cell lines (Prentice et al., 2004). 

Intriguingly, a subsequent study in 2007 described an opposite finding in either atg5−/− 

bone marrow-derived macrophages (BMDMs) or primary low-passage atg5−/− mouse 

embryonic fibroblasts, suggesting that ATG5 is not required for CoV replication (Zhao 

et al., 2007). Moreover, a nonlipidated form of LC3/Atg8 (a key autophagy marker) is 

extensively detected on the CoV-induced double-membrane vesicles, which are the targeted 

sites for CoV replication and transcription (Reggiori et al., 2010). It is noteworthy that 

LC3 lipidation is not observed, and ATG7 is not required to form these LC3-positive 

double-membrane vesicles, suggesting an unknown role of LC3, probably independent of 

autophagy. To date, our understanding of whether autophagy is at least partially involved in 

CoV replication is far from complete. The exact mechanism behind the interplay between 

autophagic machinery and CoV replication could be highly informative from the perspective 

of COVID-19 treatment.

In addition to the utilization of autophagy for replication, researchers are also interested 

in determining if CoVs block autophagy in the late stage of viral infection to eliminate 

the cellular surveillance function of autophagy to fight against invading pathogens. A very 

recent study showed that SARS-CoV-2 blocks autophagy by inhibiting autophagosome/

amphisome-lysosome fusion via the STX17-SNAP29-VAMP8 SNARE complex (Miao et 

al., 2021), suggesting a potential therapeutic target for COVID-19 treatment.

Since the outbreak of COVID-19, several studies have been conducted to elucidate the 

possibility of targeting autophagy in terms of therapeutic aspects. In vitro studies show 
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that SARS-CoV-2 inactivates MTOR complex 1 (MTORC1) but also AMPK, resulting in 

diminished autophagy activity. Exogenous administration of drugs including spermidine, 

MK-2206, and niclosamide to pharmacologically modulate autophagy results in the 

inhibition of SARS-CoV-2 propagation by >85% (Gassen et al., 2020). In addition, PIK3C3/

VPS34 inhibitors, which block autophagy, potently inhibit SARS-CoV-2 replication (Silvas 

et al., 2020).

As well-known lysosomal inhibitors, chloroquine (CQ) and its derivatives such as 

hyxdroxychloroquine had gained high expectations from a pharmacological perspective to 

block autophagy safely and effectively in the treatment of COVID-19. A study in early 

2020 showed that CQ has a strong ability to block the viral infection of SARS-COV-2 in 

Vero E6 cells in vivo (Wang et al., 2020). Later in June 2020, a meta-analysis based on 

unpublished and published reports available on the internet at that time illustrated that CQ 

derivatives are effective to improve clinical and virological outcomes as well as to reduce 

mortality in patients with COVID-19 (Million et al., 2020). However, there are also some 

clinical studies showing that post-exposure prophylaxis treatment with hyxdroxychloroquine 

does not present obvious differences compared with the placebo (Boulware et al., 2020; 

Delorme-Axford and Klionsky, 2020; Group, 2020). The controversy in the potential of CQ 

and its derivatives to treat COVID-19 is largely dependent on realistic limitations such as 

the heterogeneous sample population, different dosing, early stoppage of trials and lack of 

considering confounders (Elavarasi et al., 2020). Therefore, systematic clinical trial analysis 

is required to further illustrate the efficacy of CQ and its derivatives in COVID-19 treatment.

2. Autophagy and IBD

IBD, including ulcerative colitis and Crohn disease, describes the disorders of chronic and 

relapsing inflammation of the digestive system, due to an imbalance in the co-existence of 

host and gut microbiota. The pathophysiology of both diseases is associated with changes 

of the intestinal microbiota, which may orchestrate chronic inflammation in genetically 

susceptible hosts. In fact, the two diseases share some common genetic mutations in 

autophagy pathways.

A non-biased genome-wide study in 2007 identified a strong susceptibility variant for Crohn 

disease in ATG16L1 (T300A) (Hampe et al., 2007). Since then, a substantial number of 

subsequent studies focusing on the role of autophagy in mediating host-microbe interactions 

in the gut has emerged, mostly focusing on the contribution of the aforementioned ATG16L1 

loss-of-function mutant. For example, numerous studies showed that mice and human cells 

expressing the ATG16L1T300A variant are defective in xenophagy, antigen presentation, 

and inflammatory cytokine production; and furthermore the impaired autophagy is due to 

CASP3 (caspase 3)-mediated cleavage and degradation of the ATG16L1 variant (Cadwell 

et al., 2010; Gao et al., 2017; Lassen et al., 2014; Saitoh et al., 2008). It has also 

been demonstrated that multiple roles of ATG16L1 are involved in the pathogenesis of 

Crohn disease. For example, ATG16L1 is essential for SQSTM1/p62 ubiquitination via 

neddylation of CUL3, as well as suppressing IL1B/IL-1β signaling (J. Lee et al., 2012). 

The recruitment of ATG16L1 to the plasma membrane via NOD1 and NOD2 is required 

to sequester invading pathogens within autophagosomes (Lee et al., 2012; Travassos et al., 

Wen et al. Page 8

Mol Aspects Med. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2010). Collectively, these observations reveal the critical roles of autophagy in cellular stress 

regulation and microbial pathogen sensing in intestinal inflammation-associated diseases. 

Macrophages expressing the murine ATG16L1T316A mutant, which is equivalent to the 

human ATG16L1T300A mutant, display few defects in LC3-associated phagocytosis (LAP) 

(Martinez et al., 2015), suggesting that the genetic association between the ATG16L1T300A 

variant and Crohn disease affect xenophagy rather than LAP.

After the discovery of the ATG16L1T300A mutant, many other ATG machinery components 

were subsequently linked to Crohn disease. A tagging single-nucleotide polymorphism in 

ULK1 was reported to demonstrate a genetic association with Crohn disease (Henckaerts et 

al., 2011); however, the exact role of ULK1 in Crohn disease is not clear at present. Another 

study focused on granulomas, an aggregation of macrophages that is suggested to correlate 

with impaired processing of bacterial components in Crohn disease patients, found that 

variants in ATG4A, ATG2A, ATG4D and FNBP1L are associated with granuloma formation 

(Brinar et al., 2012). A genome-wide association study to identify IBD susceptibility genes 

revealed that some risk variants associated with IBD are in the DNA regulatory elements 

of ATG9A (Meddens et al., 2016; van Beek et al., 2018). It is widely appreciated that 

OPTN (optineurin) is a receptor for some types of selective autophagy, such as mitophagy. 

In addition to being a selective receptor, OPTN is required for facilitating the recruitment of 

the ATG12–ATG5-ATG16L1 complex to the forming phagophore for membrane expansion 

(Bansal et al., 2018). In one study, a subgroup of Crohn disease patients, which comprised 

10% of the study cohort, expressed reduced OPTN in macrophages (Smith et al., 2015). 

Another example showing the essential role of selective autophagy in intestinal homeostasis 

is the discovery of associations between CALCOCO2/NDP52 mutations and Crohn disease 

(Till et al., 2013).

Clearly, many ATG proteins appear to play a nonnegligible role in the development of 

Crohn disease. However, given the fact that some ATG proteins appear to have autophagy-

independent functions, it requires further in-depth study as to whether the ATG variants 

leads to defective xenophagy, or other pathways, such as LAP (Galluzzi and Green, 2019).

Autophagy and Metabolic Disorders

The most important and evolutionarily conserved role of autophagy is to maintain metabolic 

homeostasis, primarily by regenerating and releasing amino acids, lipids, and other 

metabolic precursors (Galluzzi et al., 2014). Conversely, the metabolic status can control 

the nature and extent of autophagic induction. Potentially, autophagy could be a critical 

part in the MTORC1- or AMPK-hub against various metabolic diseases, such as obesity, 

diabetes, and non-alcoholic fatty liver disease (NAFLD). The complex interplay between 

genetic and environmental factors is responsible for these metabolic disorders, among which 

excess caloric intake and unbalanced energy expenditure are the major contributors that 

have been well-documented to inhibit autophagy activities (Zhang et al., 2018b). However, 

both increased and decreased levels of autophagy have been observed in these disorders, 

while most mouse genetic studies have shown that the block of autophagy could facilitate 

the transition from obesity to diabetes, as well as enhancing the risk of atherosclerosis and 

NAFLD (Levine and Kroemer, 2019; Ueno and Komatsu, 2017). Therefore, the precise 
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mechanism of autophagy in these metabolic disorders is complicated, and we need further 

investigation on the controversial research results to fill in the knowledge gap. In this 

section, we highlight some findings of autophagy related to metabolic disorders, with both 

genetic variance studies from human patients and mouse studies.

The prevalence of obesity has been increasing during the past decade worldwide, which 

poses a severe threat to human health, and the altered expression of autophagy has been 

reported in obesity (Pi-Sunyer, 2009). One hallmark of obesity is the accumulation of 

dysfunctional adipose tissues, and early reports have observed upregulated autophagy 

activity in adipose tissues from obese patients (Jansen et al., 2012; Kovsan et al., 2011). 

Over 30 genes related to autophagic response were found to be upregulated in adipocytes 

when challenged with TNF/TNFα (tumor necrosis factor) (Ju et al., 2019). Additionally, 

mouse models offer us more insights into the role of autophagy in obesity. Dating back 

to 2008, two different groups of researchers knocked out Atg7 in beta cells in mice, 

which results in degeneration of islets, impaired glucose tolerance, and decreased serum 

insulin level (Ebato et al., 2008; Jung et al., 2008). Some evidence from 2009 showed 

that mice feeding on a high-fat diet (HFD) have suppressed hepatic autophagy activities 

(Liu et al., 2009). Using the HFD model of obesity, researchers have further shown that 

autophagy can be induced by acute exercise or by replenishing ADIPOQ/adiponectin, a 

type of adipocytokine in skeletal muscles (He et al., 2012; Liu et al., 2015). With both 

genetic and dietary mouse models, a 2010 study reported a downregulation of autophagy 

resulting from the low ATG7 expression level in the liver. The further suppression of ATG7 

can result in defective insulin signaling and elevated ER stress (Yang et al., 2010). In 

contrast, adipose-specific deletion of Atg7 might lead to differentiation of adipose tissue and 

increased insulin sensitivity (Zhang et al., 2009). Interestingly, mice with a knockout of Atg4 
experience an excessive increase in body weight in response to different obesity-associated 

metabolic challenges (Fernandez et al., 2017). Upon HFD, mice with a knockout of Atg12 
in POMC (proopiomelanocortin)-alpha-expressing neurons also exhibit accelerated weight 

gain, adiposity, and glucose intolerance (Malhotra et al., 2015).

As stated above, obesity could increase the risk of developing diabetes, one of the most 

common chronic metabolic diseases. An emerging body of evidence supports a role of 

autophagy in the pathophysiology of type I and type II diabetes mellitus (T2D). The 

suppression of autophagy in β-cells could promote hyperglycemia and lead to progression 

from obesity to diabetes (Quan et al., 2012). Heterozygous Atg7+/− mice can develop 

diabetes when crossed with ob/ob mice, showing aggravated insulin resistance and increased 

lipid content that is a result of autophagy insufficiency (Lim et al., 2014). The researchers 

have also observed impaired autophagic flux in islets of mice with obesity-induced diabetes, 

and intermittent fasting can help restore autophagy and improve glucose tolerance (Liu et 

al., 2017). A groundbreaking study from 2014 has shown that CLEC16A can control β-cell 

function and prevent type 1 diabetes mellitus by controlling autophagy, and further studies 

have shown more diabetes susceptibility factors including PDX1, RNF41/NRDP1 and USP8 

are involved in the process (Pearson et al., 2018; Soleimanpour et al., 2015; Soleimanpour et 

al., 2014). Autophagy can defend pancreatic β-cells against toxicity induced by accumulated 

IAPP (islet amyloid polypeptide), which is responsible for T2D (Rivera et al., 2014). This 

result was further demonstrated by recent research, showing that autophagy can facilitate 
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the clearance of amyloidogenic oligomer (Kim et al., 2021). In T2D patients’ adipose tissue 

samples, the abnormal autophagy activity is observed in accordance with accumulation of 

autophagosomes and increased levels of LC3 and ATG5 gene expression (Kosacka et al., 

2015). The relation between mitophagy and T2D has also revealed that the increased level of 

reactive oxygen species in T2DM patients’ adipocytes can lead to excessive mitophagy (He 

et al., 2021).

Studies have also provided insights into the role of autophagy in NAFLD, which is a liver 

disease that is gradually becoming a global health problem. The human gene IRGM is 

required for assembly and activation of the autophagy machinery, whose genetic variants 

are associated with the increased risk of NAFLD (Lin et al., 2016). Moreover, patients with 

NAFLD exhibit elevated hepatic levels of RUBCN/rubicon which is an inhibitor of class III 

phosphatidylinositol 3-kinase activity. The hepatocyte-specific knockout of Rubcn protects 

mice against HFD-induced impaired autophagy and steatosis (Tanaka et al., 2016). The 

correlation between autophagy and atherosclerosis has also been observed. With the specific 

deletion of Atg5 in macrophages, mice are more prone to developing atherosclerotic plaques 

(Liao et al., 2012a; Razani et al., 2012). Similarly, macrophage-specific Atg7 knockout 

could lead mice to be more prone to the onset and development of atherosclerotic plaques 

with the infiltration of lipid-engorged spumous cells (Soussi et al., 2016).

Autophagy and Rare Diseases

The importance of autophagy in human health has been further underscored by its emerging 

role in rare diseases. A rare disease is defined differently depending on geographical region; 

for example, this is a condition that affects fewer than 200,000 or 2,000 people in the United 

States and the European Union, respectively (Rubinstein et al., 2020). While individual 

diseases are rare, the total population that is suffering from rare diseases is large. There is 

an estimation of over 7,000 rare diseases existing, and exact causes of many of them are still 

unknown. Fortunately, accumulating studies have revealed the relation between autophagy 

and rare disease, and some are listed in Table 2. Here we discuss exciting achievements in 

this area, which can help open new directions for future treatment.

1. Autophagy and Neuro-Related Rare Diseases

The role of autophagy in neurodegenerative diseases, including Alzheimer, Huntington, and 

Parkinson diseases, has been studied extensively for the past several years, and the progress 

has been well-documented in many reviews (Fujikake et al., 2018; Menzies et al., 2015; 

Nixon, 2013). Not surprisingly, autophagy plays a role in many rare diseases that are related 

to neurodevelopment and neurodegeneration.

Vici syndrome is a severe neurodevelopmental disorder that is inherited in an autosomal 

recessive manner (Byrne et al., 2016). Groundbreaking research in 2013 has revealed that 

recessive mutations in EPG5 can cause Vici syndrome and defects in autophagy (Cullup 

et al., 2013). It was further shown that defective autophagy is a result of autophagosome-

lysosome failure because EPG5 encodes a RAB7 effector (Hori et al., 2017). Interestingly, 

the importance of RAB7 has further been underscored by another rare inherited peripheral 

neuropathy, Charcot-Marie-Tooth type 2B disease (Colecchia et al., 2018). This autosomal 
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dominant disease is caused by five different mutations in the RAB7 gene, and autophagy is 

blocked in patient skin fibroblasts carrying the RAB7 mutation (Colecchia et al., 2018).

As a severe form of progressive myoclonus epilepsy inherited in an autosomal-recessive 

manner, Lafora disease is largely caused by mutations in two genes: EPM2A (EPM2A 

glucan phosphatase, Laforin), and NHLRC1/EPM2B/Malin (NHL repeat containing E3 

ubiquitin protein ligase) (Duran et al., 2014). The impairment of autophagy was found in 

both EPM2A- and NHLRC1/EPM2B-deficient mice, and in fibroblasts derived from Lafora 

disease patients (Aguado et al., 2010; Puri et al., 2012).

Hereditary spastic paraplegia is a heterogeneous group of genetic neurodegenerative 

disorders, and three forms (SPG11, SGP15 and SPG49) have been reported to have severely 

reduced autophagy activity (Oz-Levi et al., 2012; Salinas et al., 2008; Vantaggiato et al., 

2013; Varga et al., 2015). Spinocerebellar ataxia is a rare and specific type of ataxia that is 

inherited in an autosomal dominant manner: SNX14 mutation-related spinocerebellar ataxia 

shows impaired lysosome-autophagosome function, whereas the pharmacological induction 

of autophagy can help degrade mutant ATXN3 (ataxin 3) levels and reduce toxicity in 

mice with spinocerebellar ataxia type 3 (Akizu et al., 2015; Menzies et al., 2010). Besides, 

the dysregulation of autophagy was reported in cell culture and a mouse model of spinal 

muscular atrophy, an early-onset, autosomal recessive neuromuscular disease (Custer and 

Androphy, 2014; Lefebvre et al., 1995). The loss of functional survival of motor neuron 

protein due to the SMN1 gene mutation is the major cause of the disease (Burghes and 

Beattie, 2009). A further study shows that SMN1 can interact with SQSTM1; reducing 

SQSTM1 levels or inhibition of autophagy can markedly increase the SMN1 level, thus 

expanding lifespan in the SMN mouse model (Rodriguez-Muela et al., 2018).

Autophagy also plays a role in some X-linked rare neuro-specific diseases. Defective 

autophagy is associated with the MECP2 (methyl-CpG binding protein 2) gene, in which 

sporadic mutation can lead to Rett syndrome, an X-linked dominant neuro-developmental 

disorder (Sbardella et al., 2017). This progressive condition primarily affects girls. The 

altered splicing of ATP6AP2 results in the deficiency of the corresponding protein, 

causing X-linked parkinsonism with spasticity/XPDS and impaired autophagy and lysosome 

clearance (Korvatska et al., 2013). Neurodegeneration with iron accumulation-5/NBIA5, 

also referred to as static encephalopathy of childhood with neurodegeneration in adulthood/

SENDA, is another X-linked dominant neurodegenerative disorder (Jiang and Mizushima, 

2014). Mutation in the autophagy gene WDR45/WIPI4 is the cause of static encephalopathy 

of childhood with neurodegeneration in adulthood and can lead to lower autophagic activity 

and aberrant early autophagic structures (Haack et al., 2012; Saitsu et al., 2013).

Although amyotrophic lateral sclerosis (ALS) is the most common type of motor neuron 

disease, it is still regarded as a rare progressive neurodegenerative disorder that may lead 

to irreversible muscular paralysis (Brown and Al-Chalabi, 2017). Autophagy can play a 

distinct role during the development of ALS: autophagic function is involved in maintaining 

neuromuscular innervation at the early stage of the disease, whereas it will promote disease 

progression in a non-cell-autonomous manner once the disease has initiated in motor 

neurons (Rudnick et al., 2017). Approximately 90 to 95 percent of ALS cases are sporadic, 
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whereas the remaining familial ALS cases are inherited in an autosomal-dominant pattern. 

The most common genetic cause of ALS has been identified as a hexanucleotide repeat 

expansion in C9orf72, which leads to reduced gene expression. The C9orf72 protein can 

regulate autophagy by interacting with SMCR8, WDR41, RAB1A and the ULK1 complex 

(Renton et al., 2011; Sullivan et al., 2016; Webster et al., 2016). In addition, many other 

factors involved mostly in selective autophagy, including SQSTM1, OPTN, TBK1 (TANK 

binding kinase 1) and UBQLN2 (ubiquilin 2), are associated with ALS (Cirulli et al., 2015; 

Nguyen et al., 2019). It is important to point out that these studies on ALS also show 

a similar result to frontotemporal dementia (FTD), which is exemplified by shrinking of 

the frontal and temporal anterior lobes of the brain (Pang and Hu, 2020). For example, 

C9orf72-FTD is inherited in an autosomal dominant manner, and SQSTM1 and TBK1 are 

also implicated in this disease. Furthermore, a loss-of-function mutation in GRN (granulin) 

leads to FTD, and deficits in xenophagy have been found in mice lacking GRN (Chang et 

al., 2017).

2. Autophagy and Cancer-Related Rare Diseases

As noted above, autophagy may act as a double-edged sword in the context of cancer. 

As a previous review summarized, the role of autophagy in tumorigenesis is complex, 

depending on the context (Wen and Klionsky, 2020). During the tumor-forming stage, 

autophagy may function to prevent tumorigenesis, acting to maintain cellular and genomic 

integrity. However, once the tumor is formed, autophagy may lead to the opposite outcome, 

facilitating tumor progression and proliferation (Rybstein et al., 2018; White, 2012). With 

extensive ongoing research, autophagy is also becoming a hot therapeutic target for tumor 

treatment development. The topic of autophagy and its role in the most common types of 

cancer has been covered extensively (Amaravadi et al., 2019; Folkerts et al., 2019; Levy et 

al., 2017; Xia et al., 2021). Accordingly, here we focus on some examples of less prevalent 

forms of this disease.

Comparatively, some types of cancers occur at a much lower rate among the population, 

and the role of autophagy in these cases is also controversial. Mesothelioma is a rare cancer 

developing in the thin layer of tissue that surrounds the lungs, chest wall, or abdomen 

(Ohnishi et al., 2020). A study has shown that inhibiting the early step of autophagy with 

a ULK1/2 inhibitor can enhance chemosensitivity in mesothelioma (Follo et al., 2018). 

However, the same group later reported that autophagy can help release immunogenic 

signals to facilitate immunogenic cell death following chemotherapy in this tumor (Follo 

et al., 2019). In addition, a recent study showed that asbestos might induce the release of 

HMGB1 (high mobility group box 1) to initiate autophagy, and the inhibition of autophagy 

can increase cell death in mesothelioma (Xue et al., 2020). Another rare cancer example 

is seen with gallbladder cancer, which has an extremely poor prognosis. Recent trials have 

shown that inhibiting autophagy can help with treatment for gallbladder cancer, whereas 

activation of autophagy will induce chemoresistance (Cai et al., 2019; Cai et al., 2020).

The role of autophagy is crucial in some rare diseases that are highly related to 

tumorigenesis. For example, tuberous sclerosis, a rare, multi-system genetic disease, can 

cause benign tumors to grow in the brain and other vital organs (De Waele et al., 2015). The 
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disease is caused by mutations in TSC1 or TSC2 that are well-studied tumor suppressors 

that can negatively regulate MTORC1 (Huang and Manning, 2008). The tumorigenesis in 

tuberous sclerosis has also been demonstrated to rely on autophagy (Huang and Manning, 

2008; Parkhitko et al., 2011). Primarily affecting males, Wiskott-Aldrich syndrome (WAS) 

is a disease in which the patient displays immunological deficiency and reduced ability 

to form blood clots. Children with WAS have a high probability to develop cancers such 

as lymphoma (Lee et al., 2017b). Deficiency of the WAS protein causes insufficient 

autophagosome formation and further results in deficient xenophagy (Lee et al., 2017b).

3. Autophagy and Other Rare Diseases

Another important group of rare diseases is the lysosomal storage diseases (LSDs), which 

are a group of inherited metabolic disorders characterized by enzyme deficiencies; the role 

of autophagy has also been recognized in many of them (Lieberman et al., 2012). One of 

the most extensively studied LSDs is Niemann-Pick type C disease, which is characterized 

by accumulation of lipids in various tissues (Meske et al., 2014). The disease is caused 

by mutations in the NPC1 or NPC2 gene, which are inherited in an autosomal recessive 

manner. The NPC1 protein is a late-endosomal protein, whereas NPC2 is a ubiquitous 

soluble glycoprotein (Li et al., 2016; Vanier and Millat, 2004). The accumulation of 

autophagosomes and lysosomes have been observed in this disease, and the resulting defects 

of autophagy are regarded as a major cause of the disease phenotype (Liao et al., 2007; 

Maetzel et al., 2014; Meske et al., 2014). A failure in the STX17 (syntaxin 17)-VAMP8 

SNARE machinery, and reduced levels of VEGF (vascular endothelial growth factor) are 

responsible for the impaired autophagy activity (Lee et al., 2014; Sarkar et al., 2013).

The loss of GBA/glucocerebrosidase activity in Gaucher disease leads to accumulation of 

glucocerebroside and widespread pathology (Hruska et al., 2008; Mistry et al., 2017). A 

mutation in GBA1 may be the cause of the block in autophagy; concomitant downregulation 

of TFEB and the associated impairment in autophagosome maturation is seen in neurons 

differentiated from patient-specific induced pluripotent stem cells (Awad et al., 2015). The 

disease mouse model shows accumulation of secondary autophagy substrates including 

SQSTM1, dysfunctional mitochondria and ubiquitinated protein aggregates, accompanied by 

impaired autophagic influx (Farfel-Becker et al., 2014; Osellame et al., 2013; Sun et al., 

2010; Xu et al., 2014).

Danon disease is a rare X-linked dominant disorder characterized by weakening of the 

heart muscle (cardiomyopathy) and of the muscles used for movement (skeletal muscle 

myopathy), and we have discussed its relationship with LAMP2 in a previous section. The 

accumulation of SQSTM1 and LC3-II-positive autophagic vesicles are found from patients’ 

muscle biopsies (Nascimbeni et al., 2017). Moreover, impaired mitophagy was identified 

by using both patient cells and Lamp2-deficient mice (Hashem et al., 2017). The name 

of the disease X-linked myopathy with excessive autophagy/XMEA already reveals its 

relationship with autophagy. This recessive inherited disease is caused by a mutation in 

the VMA21 gene, which encodes a protein modulating the assembly of the vacuolar-type 

proton-translocating ATPase that is required for lysosomal acidification (Dowling et al., 

2015). The mutation leads to decreased activity of lysosomal hydrolases, suggesting a 
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block of autophagic flux (Ramachandran et al., 2013). Along these lines, the lysosomal 

dysfunction in cystinosis, marked by an inability to transport cystine out of lysosomes that 

requires proper lysosomal acidification, can lead to defective mitophagy (Festa et al., 2018).

Other rare diseases that influence different parts of human bodies are also associated 

with autophagy. Snyder-Robinson syndrome, inherited in an X-linked recessive manner, 

is characterized by many abnormalities during development (Schwartz et al., 1993). The 

loss-of-function mutation in SMS (spermine synthase) is the major cause of the disease, and 

the deficiency of SMS can impair autophagy activity (Li et al., 2017). Primary microcephaly 

is a disorder of brain development in which the head circumference and brain volume 

are reduced (Jayaraman et al., 2018). Linkage analysis and whole-exome sequencing have 

revealed that a dominant mutation in WDFY3/ALFY, which encodes a scaffold protein in 

autophagy, causes this disease (Kadir et al., 2016).

Zellweger syndrome spectrum (ZSS), inherited in an autosomal recessive pattern, is highly 

related to peroxisome biogenesis disorders. More than ten human PEX proteins have been 

identified as acting in different stages of peroxisome biogenesis (Fujiki et al., 2014). 

Mutation of PEX13 was found in ZSS, and a specific mutation might lead to defective 

regulation of mitophagy, therefore causing ZSS (Lee et al., 2017a; Liu et al., 1999).

Finally, Fanconi anemia is a serious blood disorder marked by inherited bone marrow 

failure syndromes, and affected individuals display an increased risk of developing cancers 

(Sumpter et al., 2016). This disease is usually inherited in an autosomal recessive manner, 

but X-linked inheritance has also been reported (Meetei et al., 2004). Interestingly, many 

Fanconi anemia pathway genes are required for virophagy and mitophagy and can also 

modulate inflammatory pathways (Sumpter et al., 2016).

Conclusion and Future Directions

The relation between autophagy and human health has been a major focus during 

the past several years, and we are excited to witness many groundbreaking studies 

linking dysfunctional autophagy with different human diseases. In this review, we have 

summarized the exciting research findings concerning various pathophysiologies including 

cardiovascular diseases, infectious and inflammatory diseases, metabolic diseases, and rare 

diseases. With the appearance of COVID-19, the importance and potential of autophagy 

is further underscored. More studies about the role of autophagy in rare diseases can 

also promote the development of orphan drugs, which is a good addition to the health 

improvement of underserved patients. Besides, the emerging role of selective autophagy and 

CMA in human diseases is worth noting, because the specificity of these diseases can help 

better shape drug design and treatment development.

Although many preclinical and clinical trials for diseases such as cancer show that 

autophagy can be a promising therapeutic target, we should be aware that the complexity of 

autophagy might create substantial problems with regard to disease treatment. For example, 

the role of autophagy is tissue-specific in metabolic disorders, suggesting that the global 

pharmacological modulation of autophagy may lead to worsened conditions. Considering 

Wen et al. Page 15

Mol Aspects Med. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the double-edged sword role of autophagy in many diseases, whether it is ultimately better 

to induce or to inhibit autophagy is still a prominent question. In addition, the measurement 

of autophagy activity is not consistent in many studies, leaving some results controversial 

and unreliable. It is critical to have more solid answers to these questions to move forward. 

We still have a long way to go in treating diseases by specifically targeting autophagy, but 

we are optimistic that an increasing numbers of studies are establishing the bridge between 

autophagy and human health.
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ALS amyotrophic lateral sclerosis

AMPK AMP-activated protein kinase

ATG autophagy-related

CMA chaperone-mediated autophagy

CoV coronavirus

COVID-19 coronavirus disease 2019

CQ chloroquine

FTD frontotemporal dementia

HFD high-fat diet

IBD inflammatory bowel disease

LAP LC3-associated phagocytosis

LSD lysosomal storage disease

MHV mouse hepatitis virus

MTOR mechanistic target of rapamycin kinase

NAFLD non-alcoholic fatty liver disease

SARS-CoV-2 severe acute respiratory syndrome coronavirus 2

T2D type II diabetes mellitus

WAS Wiskott-Aldrich syndrome

ZSS Zellweger syndrome spectrum
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Table 1.

Mouse models implicating autophagy involvement in cardiovascular diseases

Disease model Genetic Intervention in mice Results Ref

Aging Atg5 transgene (Tg) overexpression Reduced age-related cardiac fibrosis, increased 
lifespan extension

(Pyo et al., 2013)

BECN1F121A knockin Reduced age-associated cardiac alterations, 
increased lifespan

(Fernández et al., 2018)

Prkn Tg overexpression Reduced age-associated cardiac abnormalities (Hoshino et al., 2013)

Atherosclerosis atg5 −/− Accelerated atherosclerosis (Liao et al., 2012b)

Cardiomyopathy Atg5 +/− Exacerbated cardiac hypertrophy (Zhao et al., 2014)

Atg7 Tg overexpression Reduced cardiac hypertrophy, limited intracellular 
protein aggregation, and increased mouse survival

(Bhuiyan et al., 2013)

Becn1 +/− Accelerated heart failure (Tannous et al., 2008)

Becnl Tg overexpression Exacerbated pathogenic remodeling (Zhu et al., 2007)

Myocardial infarction Becn1 +/− Reduced cardiac damage at reperfusion (Matsui et al., 2007)

prkn
−/−

prkn
−/−

Exacerbated cardiac injury and reduced survival
Increased infarct size, hypertrophy

(Kubli et al., 2013)

atg5 −/− Increased sensitivity, exacerbated hypertrophy (Nakai et al., 2007)

I/R injury Becn1 +/− Cardioprotective during reperfusion (Matsui et al., 2007)

Pressure overload atg5 −/− Increased sensitivity, exacerbated hypertrophy (Nakai et al., 2007)

Becn1+/−

Becn1 Tg overexpression
Reduced pathological cardiac remodeling
Exacerbated pathological cardiac remodeling

(Zhu et al., 2007)

Sepsis Becn1 +/− Cardioprotective during reperfusion (Sun et al., 2018)
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Table 2.

Inflammatory diseases associated with abnormal core ATG machinery (except IBD) and correlated genes

Inflammatory diseases Genes Ref

Behçet disease ATG5 (Zheng et al., 2015)

Celiac disease ATG7, BECN1 (Comincini et al., 2017)

Chronic obstructive pulmonary disease PRKN, PINK1 (Ito et al., 2015)

Cystic fibrosis BECN1 (Luciani et al., 2010)

Pulmonary hypertension LC3B (Lee et al., 2011)

Rheumatoid arthritis ATG5, ATG7, BECN1 (Lin et al., 2013; LU et al., 2011)

Systemic lupus erythematosus ATG5, ATG7, MAP1LC3B, PRDM1 (Qi et al., 2018; Zhou et al., 2011)

Systemic sclerosis ATG5 (Mayes et al., 2014)

Vogt-Koyanagi-Harada syndrome ATG10 (Zheng et al., 2015)
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Table 3.

Pathogens and ATG machinery targets in infectious diseases

Infectious diseases Target Models Ref

Bacterial infection

Gastroenteritis (Salmonella enterica 
serovar Typhimurium infection)

ULK1, ATG16L1 Mouse model and cell 
culture

(Liu et al., 2019; Tan et al., 2018; Xu et 
al., 2019)

Tuberculosis (Mycobacterium 
tuberculosis infection)

ATG5, SQSTM1, 
CALCOCO2

Mouse model and cell 
culture

(Castillo et al., 2012)

Group A Streptococcus ATG5 Cell culture (Nakagawa et al., 2004)

Legionella pneumophila LC3 Cell culture (Choy et al., 2012)

Listeria monocytogenes SQSTM1, LC3 Mouse model and cell 
culture

(Yoshikawa et al., 2009)

Shigella flexneri ATG5 Mouse model and cell 
culture

(Ogawa et al., 2005)

Fungal infection

Cryptococcus neoformans and Candida 
albicans

ATG5 Mouse model (Nicola et al., 2012)

Viral infection

Coxsackievirus B3 ATG5, SQSTM1 Mouse model and cell 
culture

(Alirezaei et al., 2012) (Shi et al., 2013)

Hepatitis C virus (HCV) BECN1, ATG7 Cell culture (Shrivastava et al., 2011)

Herpes simplex virus type 1 (HSV-1) BECN1 Mouse model and cell 
culture

(Leib et al., 2009)

Human immunodeficiency virus (HIV) BECN1 Cell culture (Kyei et al., 2009)

Influenza ATG5 Mouse model and cell 
culture

(Schlie et al., 2015)

Murine γ-herpesvirus 68 (MHV-68) BECN1 Mouse model and cell 
culture

(Xiaofei et al., 2009)

Poliovirus LC3 Cell culture (Taylor and Kirkegaard, 2007)
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