Skip to main content
. 2021 Oct 13;12:706017. doi: 10.3389/fpsyt.2021.706017

Table 1.

Thalamocortical connectivity after administration of psychedelics.

References N Age Sex Psychedelic Seed iFC ROI(s) P -value
Carhart-Harris et al. (79) 15 32 ± 8.9 2 F Psilocybin Bilateral thalamus DMN 0.1
Bilateral thalamus TPN 0.03
Tagliazucchi et al. (80) 15 32 ± 8.9 Psilocybin Bilateral thalamus ROIs covering sensorimotor, auditory, and visual cortices <0.05, FDR
15 (of 20) 30.9 ± 7.8 4 F LSD Bilateral thalamus ROIs covering sensorimotor, auditory, and visual cortices <0.05, FDR
Muller et al. (27) 20 32.4 ± 10.9 10 F LSD Left thalamus 104 out of 130 ROIs covering the whole brain <0.05, FDR
Right thalamus 104 out of 130 ROIs covering the whole brain <0.05, FDR
Bilateral thalamus Voxels covering sensorimotor and visual cortices <0.05, FDR
Preller et al. (28)* 24 25 ± 3.60 5 F LSD Bilateral thalamus Grayordinates covering sensorimotor areas <0.05, FWE
Bershad et al. (81) 20 25 ± 4 10 F LSD microdose Bilateral thalamus Cerebral cortex
Bilateral thalamus Cerebellum <0.05, FDR

Studies investigating effects of psychedelics on thalamocortical functional connectivity with seed-based correlation analysis, using the thalamus as seed. Of note, for psilocybin, Tagliazucchi et al. (80) reanalyzed the subjects from Carhart-Harris et al. (79). Hyperconnectivity is depicted by arrows pointing upwards (↑).

*

Depicts studies controlling for global signal regression in their analysis. N, number of participants; ROIs, regions of interest; F, female; FDR, false discovery rate; FWE, family-wise error; DMN, default mode network; TPN, task-positive network.