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Abstract 

Post-cardiac arrest brain injury (PCABI) is caused by initial ischaemia and subsequent reperfusion of the brain follow-
ing resuscitation. In those who are admitted to intensive care unit after cardiac arrest, PCABI manifests as coma, and 
is the main cause of mortality and long-term disability. This review describes the mechanisms of PCABI, its treatment 
options, its outcomes, and the suggested strategies for outcome prediction.
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Introduction
Post-cardiac arrest brain injury (PCABI) is the main 
cause of death in patients resuscitated from cardiac 
arrest, and the main cause of long-term disability in those 
who survive the acute phase [1, 2]. In this review we will 
describe the pathophysiology of PCABI, its management 
in the critical care setting, and how PCABI severity can 
be assessed to predict its prognosis.

Pathophysiology
PCABI pathophysiology is encompassed by primary 
(ischaemic) and secondary (reperfusion) injury which 
occur sequentially during cardiac arrest, resuscitation, 
and the acute post-resuscitation phase [3].

Primary injury
Cardiac arrest results in cessation of both cardiac output 
and oxygen delivery to all vital organs. This no-flow phase 
starts upon the onset of cardiac arrest and lasts until par-
tial reperfusion is established by cardiopulmonary resus-
citation (CPR).

Despite accounting for only 2% of body weight, the 
brain receives 15–20% of total cardiac output to main-
tain tissue homeostasis [4]. Brain tissue viability strongly 
depends on consistent supply of oxygen and energy sub-
strates, namely glucose, and cessation of cerebral blood 
flow (CBF) results in an immediate interruption of brain 
activity. Human studies demonstrate that consciousness 
is lost between 4 and 10  s of absent CBF [5], while the 
electroencephalogram (EEG) becomes isoelectric after 
10–30 s of asystole [6].

Due to their lack of inherent energy stores, neurons are 
particularly vulnerable to ischaemia and cellular damage 
starts immediately upon absence of CBF. At the cellular 
level, ischaemia results in cessation of aerobic metabo-
lism with consequent depletion of high-energy substrate 
adenosine triphosphate (ATP) [3] (Fig.  1). ATP deple-
tion results in dysfunctional energy-dependent Na+/
K+ ion exchange pump action, which leads to massive 
influx of sodium and water and intracellular cytotoxic 
oedema. Potassium efflux and membrane depolarisation 
also ensue shortly thereafter, leading to the opening of 
voltage-sensitive Ca++ channels and intracellular Ca++ 
influx. Experimental evidence shows that signs of brain 
oedema on MRI develop already during cardiac arrest 
and resuscitation [7].
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Secondary injury
Upon initiation of cardiopulmonary resuscitation 
(CPR), CBF is partially restored (low-flow), but it 
remains suboptimal to sustain neuronal integrity as 
CPR generates approximately 25% of normal CBF, sub-
stantially below the 40–50% of normal CBF needed 
to maintain cellular integrity and avoid additional 
ischemic injury [4]. With return of spontaneous circu-
lation (ROSC), CBF is restored, but reperfusion of the 
ischemic cerebrovascular bed triggers a series of mech-
anisms leading to secondary brain injury.

The intracellular Ca++ increase caused by the primary 
injury leads to release of glutamate, an excitatory neuro-
transmitter that binds to the cell membrane causing further 
intracellular Ca++ influx and cytoplasmic accumulation 
from the endoplasmic reticulum (Fig. 1). Subsequent acti-
vation of Ca++-dependent lytic enzymes (proteases, phos-
pholipases) exacerbate neuronal damage. Ca++ dependent 
mitochondrial dysfunction also ensues, leading to cell 
energy failure, release of pro-apoptotic proteins and reactive 
oxygen species, with resulting further neuronal damage.

A further component of reperfusion injury is acti-
vation of the innate immune system and subsequent 
tissue inflammation (Fig.  2). This is initiated both by 
resident macrophages, known as microglia [8], and by 

circulating leukocytes which adhere to the endothe-
lial cells of the cerebral microvasculature and migrate 
into the neuronal tissue. Additional release of cytokines 
from activated leukocytes further amplifies the inflam-
matory response. Leukocyte migration is facilitated by 
an increased permeability of the blood–brain barrier, 
which also leads to vasogenic oedema.

Cerebral perfusion changes in PCABI
No‑reflow
In the experimental setting, reperfusion of the brain after 
transient global ischaemia is incomplete and inhomoge-
neous. This phenomenon is called no-reflow and histo-
logically appears as multifocal perfusion defects of the 
brain tissue [9]. The number and extent of these perfu-
sion defects increase with the duration of ischaemia [10], 
while their distribution coincide with anatomical loca-
tions where PCABI is most commonly detected (stria-
tum, hippocampus, amygdala, and thalamus [11]).

Delayed hypoperfusion
In animal models, return of spontaneous circulation 
(ROSC) is followed by a transient (15–30 min) increase 
in global CBF (global hyperaemia), after which delayed 
hypoperfusion occurs. In patients with PCABI, CBF 

Fig. 1  Role of calcium in reperfusion injury. The neurotransmitter glutamate is released by cells following ischaemic injury and binds to two main 
receptors on the cell membrane: the mGlu receptor (left), which via an intracellular mediator called IP3 releases calcium stores from the endoplas-
mic reticulum, and the N-methyl-d-aspartic acid (NMDA; top), which opens a channel on the cell membrane letting calcium in. The resulting excess 
in intracellular calcium levels activates calcium-dependent lytic enzymes, such as caspase, proteases, and phospholipases, which cause damage to 
the cell structure; in addition, calcium enters the mitochondria and disrupts the electron transport chain. The result is production of reactive oxygen 
species (ROS) from oxygen, which further aggravate intracellular damage, and energy failure, inducing a vicious cycle leading to cell injury and 
death
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may decrease by more than 50% during this phase [4]. 
The role of delayed hypoperfusion as a cause of PCABI 
is unclear. Studies in comatose resuscitated patients have 
shown that both the cerebral metabolic rate of oxygen 
[12], and the cerebral oxygen extraction fraction also 
decreased 24–72  h after cardiac arrest [13], suggesting 
that the coupling between CBF and oxygen demand was 
maintained. Oxygen extraction rates were significantly 
lower in patients who died from PCABI. It is not clear, 
however, if this resulted from reduced oxygen utilisa-
tion due to mitochondrial dysfunction or irreversible 

brain injury, or to a reduced oxygen delivery to the brain. 
Recent clinical studies [14, 15] made using an intra-
parenchymal micro-catheter revealed the presence of 
brain tissue hypoxia, measured as a parenchymal brain 
tissue oxygen tension (PbtO2) below 20 mmHg, in about 
half of comatose patients with PCABI 13–40  h post-
arrest. Patients with brain tissue hypoxia showed active 
release of biomarkers of neuronal injury in the jugular 
venous blood, while those without brain tissue hypoxia 
did not [15].

Fig. 2  The role of the innate immune system’s inflammatory response in ischaemia–reperfusion injury. Upon reperfusion of the cerebrovascular 
bed following tissue ischaemia, the innate immune system incites an inflammatory response characterized by astroglial activation by brain hypoxia/
ischaemia. Principally, resident macrophages, termed microglia, are activated and secrete pro-inflammatory cytokines (interleukin 6, interleukin 
1-beta) and chemokines which attract circulating mononuclear cells from the bloodstream. The endothelium upregulates leukocyte adhesion mol-
ecules which enable tissue infiltration of monocytes from the bloodstream and in turn, the secretion of pro-inflammatory cytokines is exacerbated 
with resulting injury to the cells of the neurovascular unit. Complement cascade activation also ensues which further propagates the inflammatory 
injury and is pro-thrombotic in the cerebral microvasculature
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Changes in cerebral autoregulation
Generally, CBF is considered to be stable over a range 
of mean arterial pressure (MAP), although consider-
able heterogeneity is noted in healthy humans [16]. This 
property is termed cerebral autoregulation. Cerebral 
autoregulation is narrower or right-shifted in approxi-
mately 30–50% of patients after cardiac arrest [17, 18]. 
Consequently, arterial hypotension after cardiac arrest 
may result in cerebral hypoperfusion, worsening PCABI. 
In post-resuscitation care, these changes in cerebral 
autoregulation represent a potential target for optimising 
cerebral perfusion (see below).

Intracranial hypertension
There is accumulating evidence that patients with 
PCABI may develop intracranial hypertension. 
Increased intracranial pressure (ICP) likely results from 
cytotoxic or vasogenic oedema and is associated with 
poor neurological outcome. In one Korean study [19] 
increased intracranial pressure (measured via lumbar 
puncture opening pressure) shortly after admission 
to the intensive care unit (ICU) was a strong predic-
tor of poor neurological outcome at 3  months. In a 
physiologic study [20], ICP was measured using intra-
parenchymal monitoring at a median of 8.5  h after 
ROSC in 10 PCABI patients, of whom six died. All 
patients demonstrated reduced intracranial compli-
ance and two of them developed intracranial hyperten-
sion despite maximal medical management. One recent 
study [21] reported improved neurological outcomes 
using invasive neuromonitoring aimed at obtaining a 
PbtO2 > 20  mmHg and an ICP < 25  mmHg versus con-
ventional management in a small matched cohort study 
of PCABI patients. However, considerable future work 
is required to clarify the indications, utility and efficacy 
of invasive neuromonitoring post cardiac arrest beyond 
research use.

Treatment of PCABI
At present, there is no direct treatment for PCABI and as 
such, secondary injury to the brain should be minimised 
by maintaining physiologic homeostasis. Derangements 
in temperature, arterial blood pressure, oxygenation, and 
ventilation should be avoided [22].

Optimising cerebral perfusion
The optimal arterial blood pressure target after car-
diac arrest to mitigate PCABI from secondary ischemic 
injury is not known. In 2019, the Neuroprotect trial 
[23] randomised 107 comatose patients resuscitated 
from cardiac arrest to undergo either protocolised 
goal-directed haemodynamic optimisation (mean arte-
rial pressure [MAP] 85–100  mmHg and mixed oxygen 

venous saturation [SVO2] 65–75%), or targeting a MAP 
of 65 mmHg using fluids, inotropes, and vasopressors at 
discretion of the treating physicians. Results showed no 
difference between the two groups in the percentage of 
ischemic brain volume quantified using MRI, nor in the 
rates of good neurological outcome at 6 months.

Instead of standardised blood pressure targets, authors 
have advocated for maintaining MAP within the indi-
vidual patient’s range of intact autoregulation to optimise 
cerebral perfusion. To that aim, two derived parameters 
have been investigated. The first is cerebral oxygenation 
index (COx) which is the correlation coefficient between 
cerebral regional oxygen saturation (rSO2), measured 
using near-infrared spectroscopy (NIRS), and MAP. The 
second is the pressure reactivity index (PRx), which is 
the correlation coefficient between intracranial pressure 
and MAP. An increase in COx or PRx with MAP suggests 
dysfunctional autoregulation, while a near zero or nega-
tive value of COx or PRx suggests that autoregulation is 
intact. Based on that model, the “optimal MAP” is the 
range corresponding to the lowest value of COx or PRx. 
In one study [17] the presence of dysfunctional autoregu-
lation measured by COx was an independent predictor of 
clinical outcome and the percentage of time spent below 
the optimal MAP was correlated with the rates of poor 
neurological outcome. A recent study [24] demonstrated 
that increased PRx was a strong predictor of adverse neu-
rological outcome in PCABI. At present, however, nei-
ther of these indices have been assessed prospectively in 
clinical interventional studies, and there is no consensus 
on what is the optimal technology to individualise blood 
pressure targets in brain injury [25]. The current guide-
lines on post-resuscitation care co-issued by the Euro-
pean Resuscitation Council (ERC) and the European 
Society of Intensive Care Medicine (ESICM) do not sug-
gest any specific blood pressure target but recommend 
avoiding hypotension (MAP < 65  mmHg) and targeting 
MAP to achieve adequate urine output (> 0.5  ml/kg/h) 
and normal or decreasing lactate [22].

Oxygenation
Hyperoxia is potentially harmful because it may increase 
the production of free oxygen radicals and worsen 
PCABI. In the experimental setting [26], ventilation with 
100% O2 after cardiac arrest results in worse neurologi-
cal deficit scores with histological evidence of greater 
PCABI severity. However, results from large clinical 
observational studies have been conflicting [27], with 
studies showing that hyperoxia, defined as an arterial 
partial pressure of oxygen (PaO2) ≥ 300 mmHg, was asso-
ciated with significantly greater hospital mortality than 
normoxia (PaO2 60–300 mmHg) [28], and other studies 
[29] showing no association. In 2018 the COMACARE 
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trial [30] randomised 120 comatose survivors of out-
of-hospital cardiac arrest (OHCA) to normoxia (PaO2 
75–113  mmHg) vs. moderate hyperoxia (PaO2 150–
188  mmHg) for 36  h after ROSC. No difference was 
observed in the primary outcome measure, the blood 
levels of neuron specific enolase (NSE), a biomarker of 
neuronal injury, at 48  h from ROSC. A recent post-hoc 
analysis [31] of 166 patients enrolled in the multicentre 
ICU-ROX trial, which randomised 1000 patients to con-
servative (SpO2 90–97%) vs. liberal (SpO2 90–100%) oxy-
gen therapy, showed that conservative oxygen therapy 
was not associated with a significant decrease of the odds 
of survival with poor neurological outcome at 6 months 
[adjusted odds ratio 0.54 (0.23–1.26)]. The EXACT trial 
(NCT 03138005) is randomising 1416 resuscitated coma-
tose survivors of OHCA to restrictive (90–94%) vs. lib-
eral (98–100%) oxygen therapy. The current ERC-ESICM 
guidelines on Post-Resuscitation Care [22] recommend 
avoiding both hypoxia and hyperoxia, maintaining pulse 
oximetry within a “safe range” of 94–98%.

Ventilation
CBF is partially regulated by the partial pressure of 
carbon dioxide in the arterial blood (PaCO2). Low or 
high PaCO2 (hypocapnia or hypercapnia) decreases 
or increases CBF due to cerebral constriction or vaso-
dilation, respectively [16]. In patients with PCABI, 
hypocapnia from excessive ventilation may reduce CBF, 
potentially worsening ischaemic injury. In patients with 
traumatic brain injury, hypocapnia increases both oxy-
gen extraction fraction and the volume of brain at risk of 
ischaemia [32].

Alternatively, hypercapnia may cause cerebral vasodila-
tion and increase ICP, and there is evidence that ICP may 
be increased in some patients with PCABI due to cer-
ebral oedema as described above [18, 19, 24]. However, 
a moderate increase in CBF from mild hypercapnia may 
potentially improve cerebral perfusion after resuscitation 
and be beneficial.

Mild hypercapnia was evaluated clinically in two small 
clinical trials, both using blood levels of NSE as their 
primary endpoint. The COMACARE trial [33] ran-
domised patients to a low-normal (34–35  mmHg) vs. 
a high-normal (44–45  mmHg) PaCO2 during the first 
36  h after ROSC. NSE did not differ between the two 
groups, however, a high-normal PaCO2 was associated 
with consistently and significantly higher levels of rSO2 
measured with NIRS. This result suggests an increased 
cerebral oxygenation and perfusion from high-normal 
PaCO2. However, it may also be compatible with lower 
oxygen extraction. In addition, caution is needed in inter-
preting the rSO2 signal, which may be contaminated by 
extracerebral circulation and not entirely reflect cerebral 

perfusion [34]. The CCC trial [35] randomised patients to 
normocapnia (PaCO2 35–45 mmHg) or mild hypercapnia 
(PaCO2 50–55 mmHg) for 24 h. Hypercapnia was asso-
ciated with significantly lower increase of NSE over the 
first 72 h. Based on the results of this pilot trial, a larger 
randomised controlled trial, TAME (NCT03114033) is 
currently comparing these two treatment arms in 1700 
comatose resuscitated patients. In absence of robust 
evidence for benefit or harm from mild hypercapnia, 
the ERC-ESICM guidelines [22] recommend titrating 
ventilation in order to maintain normal PaCO2 levels 
(35–45 mmHg).

Targeted temperature management
Targeted temperature management (TTM) refers to any 
strategy that aims to achieve and maintain any speci-
fied body temperature, typically from 33 to 37.5 °C. This 
usually involves core temperature measurement probes 
in the bladder or oesophagus and a feed-back con-
trolled surface cooling device or intravascular catheter. 
In experimental literature, the neuroprotective effects of 
hypothermia are consistent across models [36] and spe-
cies [37], but the significant heterogeneity among studies 
makes it difficult to conclude on the optimal timing, dos-
ing (temperature level) and duration of treatment.

Mild systemic hypothermia to 32–34  °C was rapidly 
introduced into clinical practice in 2003 after the publica-
tion of two clinical trials reporting improved survival and 
neurological outcome in OHCA patients with ventricu-
lar fibrillation (VF) as initial rhythm treated at 32–34 °C 
for 12–24  h. Subsequent dose-finding studies have not 
shown significant benefit from pre-hospital cooling [38, 
39] or longer duration of cooling to 48 vs 24 h [40]. The 
2013 TTM-trial [41] did not show any difference between 
cooling to 33 compared to 36 °C in patients resuscitated 
from OHCA from presumed cardiac cause. In 80% of the 
939 patients included in that trial the initial rhythm was 
shockable (VF or pulseless ventricular tachycardia). The 
HYPERION trial [42] enrolled 581 patients with non-
shockable rhythm (asystole or pulseless electrical activ-
ity) resuscitated from OHCA or in-hospital cardiac arrest 
(IHCA) to TTM at 33 °C vs. 37 °C. The trial showed simi-
lar mortality but significantly higher rates of good neu-
rological outcome (CPC 1–2) among the survivors in the 
hypothermia group (29/284 [10.2%] vs.17/297 [5.7%)]. 
However, that trial had a fragility index of only 1, mean-
ing that if only 1 patient in the 37 °C group had CPC 1–2 
the trial results would not have been significant.

In 2021, the results of the TTM2 trial [43] were pre-
sented. TTM2 randomised 1900 patients with OHCA 
of cardiac or unknown cause from all rhythms to TTM 
at 33  °C vs. TTM to 37.5  °C in case of fever, defined 
as ≥ 37.7  °C. Results showed that TTM at 33  °C had no 
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beneficial effects or signals thereof on mortality, func-
tional outcome, or quality-of-life at 6  months, and it 
was associated with significantly more arrythmias with 
haemodynamic instability. Two subsequent meta-analy-
ses have concluded on a lack of effect of TTM, compared 
to normothermia, on survival or functional outcomes 
[44, 45] and possible harmful effects by moderate (33–
34  °C) or deep ( 31–32  °C) hypothermia [44]. Based on 
that evidence, the International Liaison Committee on 
Resuscitation (ILCOR) has issued updated treatment rec-
ommendations [46] suggesting active prevention of fever 
for ≥ 72  h by targeting a temperature ≤ 37.5  °C, instead 
of the previously recommended target of 32–36  °C 
for ≥ 24  h, for those patients who remain comatose 
after cardiac arrest. International scientific societies will 
implement these recommendations in their updated 
guidelines. Since recommendations to actively prevent 
fever and use cooling devices are weak and based on low-
certainty evidence, randomized trials targeting fever pre-
vention are urgently needed.

Neuroprotective agents
Pharmacologic approaches to mitigating secondary 
injury following ROSC can be compartmentalized into 
interventions aimed at mitigating excitotoxicity, improv-
ing neuronal metabolism, limiting mitochondrial injury 
and neuroinflammation. Recently, interest in xenon 
gas, an inhibitor of the N-methyl-d-aspartate receptor, 
has emerged as a potential therapeutic agent in limit-
ing excitotoxicity during the reperfusion phase. Laitio 
et al. conducted a randomized control trial of 110 OHCA 
patients and demonstrated reduced white matter injury 
on MRI in patients receiving xenon vs. those without 
[47]. However, there was no difference in 6-month clini-
cal outcomes. The XePOHCAS trial (NCT03176186, 
1436 patients), which is randomizing OHCA patients to 
50% Xenon inhalation during TTM vs. without, has com-
pleted enrolment and is awaiting publication. Additional 
therapeutic approaches targeting mitochondrial function 
and metabolism using thiamine, pyruvate and ubiquinol 
are at currently at pre-clinical phases and have yet to be 

Fig. 3  Time course of the outcome during the first 3 weeks after ROSC in 939 comatose patients included in the TTM trial. The stacked area chart 
shows the cumulative percentage of patients who regained consciousness or died. The causes of death are also displayed. Based on original data 
from [61, 145]. MOF multiorgan failure
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studied in phase 3 designs [48]. Finally, immunomodula-
tion approaches aimed at mitigating the neuroinflamma-
tory cascade have garnered attention. The CYRUS trial, 
randomized OHCA patients to receive cyclosporine vs. 
placebo in 794 patients but did not demonstrate differ-
ences in clinical outcomes or organ dysfunction scores 
[49].

Control of seizures
Clinical seizures occur in one third of patients with 
PCABI treated in the ICU and may be of epileptic or 
non-epileptic origin. Myoclonus is the dominating mani-
festation but generalized or focal tonic–clonic seizures 
are also common, often occurring in the same patient. 
EEG is crucial to confirm that a clinical seizure is related 
to cortical epileptic activity, since seizure mimics are 
common in the ICU [50] and since the use of sedatives 
and muscle-relaxants suppress clinical manifestations 
of seizures. EEG is also useful to prognosticate outcome 
(see below) and follow effects of treatment.

Seizures cause metabolic stress and are associated 
with poor neurological outcome after cardiac arrest 
[51], providing a rationale for treatment. However, it 
is unclear whether seizures cause further brain dam-
age, or whether they simply are a marker of severe 
PCABI. To date there is no direct evidence that antie-
pileptic treatment improves the outcome of PCABI. 
The TELSTAR trial (NCT02056236) is randomising 
patients with status epilepticus after cardiac arrest 
to either medical treatment to suppress all electro-
graphic seizure activity, or no treatment and may 
provide useful evidence to answer that question. Cur-
rent guidelines [22] suggest treating postanoxic status 
epilepticus with sodium valproate and levetiracetam 
as first line agents in addition to increased sedation. 
However, prophylactic antiepileptic treatment is not 
recommended. Usual sedative agents used in ICU 
have anti-epileptic effects, and this should be kept 
in mind since seizures often manifest as sedation is 
weaned.

Outcomes of PCABI
Death
While mortality from cardiovascular instability or multior-
gan failure prevails in the first 48–72 h after ROSC, PCABI 
accounts for approximately two thirds of total deaths there-
after (Fig.  3). In 2016, a systematic review [52] including 
23,388 patients from 26 studies showed that, on average, 
5% of patients resuscitated with conventional CPR and 
more than 20% of those resuscitated with extracorporeal 
CPR were diagnosed with brain death, corresponding to 8% 
and 28% of all deaths, respectively. The diagnosis of brain 
death was made at a median of 3 days after ROSC. Massive 
cerebral oedema is common in these patients and delayed 
brain oedema leading to brain death has been described 
even after an initial partial recovery from post-anoxic coma 
[53]. A non-shockable initial rhythm, lower serum levels of 
sodium, and a neurological cause of arrest are associated 
with higher rates of brain death after resuscitation [54].

Brain death accounts for a minority of neurological 
deaths following PCABI, since most of these deaths are 
due to an active withdrawal of life sustaining treatment 
(WLST), because of an expected poor neurological out-
come [55, 56]. For this reason, an accurate neurological 
prognostication is paramount.

Table 1  Cerebral performance categories (CPC)

From [57]

Score Description

1 Conscious: alert, able to work and lead a normal life. May have minor psychological or neurological deficits (mild dysphasia, nonincapacitating 
hemiparesis, or minor cranial nerve abnormalities)

2 Conscious: sufficient cerebral function for independent activities of daily life; able to work in a sheltered environment

3 Conscious: dependent on others for daily support because of impaired brain function (in an institution or at home with exceptional family 
effort). At least limited cognition. Includes a wide range of cerebral abnormalities from ambulatory with severe memory disturbance or 
dementia precluding independent existence to paralytic and able to communicate only with eyes, as in the locked-in syndrome

4 Not conscious: unaware of surroundings, no cognition. No verbal or psychological interactions with environment

5 Certified brain dead or dead by traditional criteria

Table 2  The modified Rankin Scale (mRS)

From [58]

Score Description

0 No symptoms

1 No significant disability. Able to carry out all usual activities, 
despite some symptoms

2 Slight disability. Able to look after own affairs without assis-
tance, but unable to carry out all previous activities

3 Moderate disability. Requires some help, but able to walk 
unassisted

4 Moderately severe disability. Unable to attend to own bodily 
needs without assistance, or unable to walk unassisted

5 Severe disability. Requires constant nursing care and attention, 
bedridden, incontinent

6 Dead
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Measures of functional outcome
In those who survive cardiac arrest, functional outcome 
is measured in two main domains: neurological function 
and health-related quality of life (HRQOL).

Neurological function in PCABI is most commonly 
measured using the Cerebral Performance Categories 
(CPC) (Table  1) [57]. CPC was adapted from the Glas-
gow Outcome Scale, developed for traumatic brain 
injury, and it includes five categories, from 1 (no or mild 
disability) to 5 (death). CPC 1 or CPC 2 (moderate dis-
ability) are universally considered as good neurological 
outcome; this corresponds to patients who are independ-
ent in their activities of daily living. Conversely, CPC 3 
corresponds to patients who are awake but severely disa-
bled and in need of others for daily activities. It is gener-
ally—but not universally—considered as a poor outcome. 
CPC 4 corresponds to persistent vegetative state. Despite 
its widespread use, the CPC has a limited accuracy for 
discriminating between mild and moderate disability. 
Current guidelines [58] recommend using the modified 
Rankin Score (mRS) [59] over CPC. The mRS, originally 
developed for stroke, includes seven scores, from 0 to 6. 
Good outcome includes four categories, from mRS 0 (no 
symptoms) to 3 (moderate disability), which may provide 
a higher granularity than the two good outcome catego-
ries of CPC. Outcome after cardiac arrest is less affected 
by locomotor problems than after stroke. For that rea-
son, in the mRS version recommended for use in PCABI 
(Table 2) the mRS score 4 includes dependency to attend 
to own bodily needs as separate from ability to walk 
unassisted (OR instead of AND).

Neither CPC nor mRS distinguish between the two 
main causes of neurological death (i.e., brain death and 
death from WLST). More importantly, they do not dis-
criminate between neurological vs. non-neurological 
causes of death. Consequently, resuscitated patients 
who die from extracerebral complications (e.g., a second 
arrest) after having recovered consciousness are classified 
as CPC 5 or mRS 6, regardless of their actual neurologi-
cal status at the time of death. In a recent European mul-
ticentre study [60] this “death after awakening” occurred 
in 4.2% of resuscitated patients. To obviate to this issue, 
use of the best—rather than the final—neurological score 
during the observational period can be used.

Awakening from post‑arrest coma
There is no consistent definition of awakening from coma 
due to PCABI. In general, a patient is considered awake 
when he/she is able to follow commands (motor score = 6 
of the Glasgow Coma Scale [GCS]) [61, 62], In one study 
[63], awakening was defined as a Richmond agitation-
sedation scale (RASS) score of at least − 2 (patient awoke 
with eye contact to voice).

Most patients with favourable neurological outcome 
after cardiac arrest begin recovering consciousness a few 
hours after cessation of intravenous sedation. In a ret-
rospective analysis, 138/194 (71%) cardiac arrest survi-
vors regained consciousness within 48  h from cessation 
of sedation [63]. In two other studies [61, 62] this rate 
was 50%. The latest awakener recovered consciousness 
12  days after ROSC in the first study [63], and 22 and 
25 days in the other two studies [61, 62]. Figure 3 shows 
the time course of awakening during the first 3 weeks 
after ROSC in the largest available study [61].

Circulatory shock, renal insufficiency, older age [63], 
and use of long vs. short-acting sedative agents [62, 64] 
were associated with longer times to regaining con-
sciousness. Late awakening (> 4–5 days after ROSC) was 
associated with a higher likelihood of severe neurological 
disability [61, 62] and worse HRQOL [65].

Neurological function
The minimum recommended timing for assessing neu-
rological function in PCABI is at hospital discharge or 
1 month after the arrest [2]. However, neurological out-
come of resuscitated patients may further improve there-
after. In a longitudinal study on a large OHCA registry 
in Vienna, Austria [66] the CPC at hospital discharge 
improved in 80/550 (14.5%) patients who survived 6 
months. Among 58 patients with an initial CPC of 3 at 
discharge, 27 (53.4%) evolved towards a good neurologi-
cal 6 months later. The 2019 Standards for Studies on 
Neurological Prognostication after Cardiac Arrest issued 
by the American Heart Association [2] recommend 
that—in addition to the minimal time point of hospital 
discharge/1 month—neurological function should be 
assessed at both 3 and 6  months, as well as at 1  year if 
resources allow.

Data from large registries and trials on OHCA [41, 67, 
68] show that about 80% of resuscitated patients who are 
alive at hospital discharge have a good neurological out-
come (CPC 1–2). However, this figure may be affected by 
the WLST rates after resuscitation. In jurisdictions where 
WLST is not practised, the rate of good neurological out-
come can be as low as 50%, with 39% of survivors being 
in vegetative state at the time of hospital discharge/1 
month [69, 70].

At 6 months and 1 year after cardiac arrest, the rate of 
cardiac arrest survivors with good neurological outcome 
is around 90% with most patients having CPC 1, while 
only around 1.5% of survivors is in persistent vegetative 
state [41, 66, 68]. While this result is partially attribut-
able to an improvement of CPC 2–3 patients over time 
[66, 70], an important cause is also mortality in patients 
with poor neurological function. In a multicentre study 
on 980 patients discharged alive from hospitals in North 
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America, the adjusted hazard ratio for long-term survival 
in patients with CPC 2, 3, and 4 at hospital discharge 
compared with patients with CPC 1 were 0.61, 0.43, and 
0.1, respectively. Along with the severity of PCABI, other 
factors, such as clinical comorbidities, post-arrest organ 
dysfunction, or downstream care may have played a role.

Cognition and HRQOL (Fig. 4)
Achieving an adequate quality of life is the ultimate goal 
of resuscitation. Self-perceived quality of life is a subjec-
tive outcome measure that is not necessarily correlated 
with the clinician-reported measures of neurological 
function. While patients with CPC 1 generally have the 
same HRQOL than the comparable healthy population 
[71] the HRQOL of patients with CPC 2 can be signifi-
cantly impaired [72]. HRQOL can adequately be assessed 
only when the patient is given the opportunity to inter-
act with their social environment. Therefore, it should be 
measured after hospital discharge and not earlier than 3 
months post-arrest [2]. Based on expert consensus, the 
Health Utilities Index (HUI) version 3, the Short-Form 
36-Item Health Survey (SF-36), and the revised version 
of the EuroQol EQ-5D-5L are currently recommended to 

assess HRQOL after cardiac arrest [58]. The Short-Form 
12-item Health Survey (SF-12) a shortened version of 
SF-36, is also used. Normative population data are avail-
able for all these measures.

In most studies, the mean or median values of the 
HRQOL scores at 6–12  months from ROSC were not 
different from those of the comparable population norm 
[65, 73–75]. However, up to 55% of patients reported a 
decrease in their HRQOL post-arrest [75, 76] most often 
because of limitations in their work or other daily activi-
ties as a result of physical or emotional problems [76]. 
The rates of anxiety and depression are usually similar to 
these of the population norm [65, 77, 78], while fatigue 
is very common. In one study [74] 52% of post-arrest 
patients had a higher fatigue severity score than the com-
parable population norm.

Recent studies [65, 75–77, 79] have consistently 
reported that females have a significantly worse HRQOL 
after cardiac arrest than males. This difference persisted 
even after adjustment for major confounders. In one 
study on 1752 resuscitated OHCAs [79], the adjusted 
odds of females to achieve a normal HRQOL measured 

Fig. 4  Health-related quality of life, cognition, and return to work at 6–12 months after PCABI, with gender differences.



1402

using EQ-5D or SF-12 at 1 year were half of those of male 
patients in the cohort.

The HRQOL reported in most studies may have been 
overestimated because of selection bias. In two of the 
largest studies [75, 79] the rate of non-responders were 
15% and 19%. These patients had worse case features and 
worse functional outcome at discharge [76], which sug-
gest that their HRQOL was also worse.

Cognitive impairments may be subtle and often not 
directly visible [80]. Yet, they can significantly affect the 
patient’s daily activities, participation in society and qual-
ity of life [81, 82]. Cognitive function after cardiac arrest 
is usually assessed using cognitive screening tests such 
as mini mental state examination (MMSE) or Montreal 
Cognitive Assessment (MoCA), or, alternatively by more 
detailed neuropsychological tests. However, they can also 
be reported by the patient’s next of kin [83]. The most 
common cognitive impairments after post-anoxic coma 
are memory deficits, followed by impairment of attention 
and executive functioning [81].

The severity of cognitive impairments measured using 
clinician-reported tests may be underestimated in com-
parison with that reported by the patient’s next-of-kin. In 
a large study conducted on 939 patients enrolled in the 
TTM trial [73], the clinician-reported MMSE score at 6 
months after ROSC was within the reference range. How-
ever, results of the Informant Questionnaire on Cogni-
tive Decline in the Elderly (IQCODE) b showed that 31% 
of patients were reported by their proxies to have had a 
moderate or major decline, 30% had a minor decline, and 
only 39% were reported having no decline. In a recent 
study [78] the proxy-reported IQCODE scored lower 
than normal in 47% of patients at 6 months, while MMSE 
was within normal values. This may be partly due to the 
low sensitivity of MMSE to mild cognitive impairment 
[84].

About 50% of patients assessed for HRQOL at 
6–12  months after ROSC were working at the time of 
cardiac arrest. Among them, the rates of return to work 
ranged between 62 and 75% [73–75, 79, 85]. Females 
are less likely to return to work after arrest [79]. In one 
study derived from the TTM trial [73], less than a half of 
patients who were working at the time of the arrest had 
returned to their previous level of employment 6 months 
later. About one third of these patients had shifted to 
part-time. This rate was 44% in another study [74].

Neuroprognostication after cardiac arrest
About 80% of patients who are resuscitated from cardiac 
arrest are comatose due to PCABI [86] and most of them 
will die or have severe neurological disability. Predicting 
neurological outcome after cardiac arrest is important 
both to provide correct information to patient’s relatives 

and to avoid disproportionate care in patients with severe 
and irreversible PCABI who have no chance to achieve a 
neurologically meaningful survival.

Bias in neuroprognostication
Prognostic tests are widely used in post-resuscitation 
care to assess the severity of PCABI and make decisions 
about WLST. These tests predict poor neurological out-
come when they yield an abnormal (positive) result. Ide-
ally, their false positive rate (FPR) should be zero (high 
accuracy) with narrow confidence intervals (high preci-
sion), so that no patient destined to recover from PCABI 
is mistakenly predicted as having a poor neurological 
outcome. However, the fact itself that these tests are used 
for decisions on WLST creates an important confirma-
tion bias, known as the self-fulfilling prophecy.

Blinding of test results is the most effective way to 
avoid or limit self-fulfilling prophecy. However, complete 
blinding is impossible for tests based on clinical examina-
tion and can be ethically questionable for tests like EEG 
or brain computed tomography (CT), which may reveal 
a potentially treatable complication. Another way to limit 
self-fulfilling prophecy is to investigate prognostication 
in countries or communities where WLST is not per-
formed [87, 88].

Other major sources of confounding for prognostic 
tests include sedation and extra-cerebral causes of death. 
Sedation is widely used to facilitate mechanical ventila-
tion and controlled temperature after cardiac arrest. 
However, it may confound clinical examination. Seda-
tion with long-acting drugs will delay awakening from 
post-anoxic coma [64] and potentially affect EEG-pat-
terns. Propofol can induce a burst-suppression EEG [89], 
which is an important predictor of poor neurological 
outcome after cardiac arrest. This occurs at higher doses 
than those generally used for sedation in the intensive 
care unit. The N20 wave of short-latency somatosensory 
evoked potentials is not abolished by profound sedation, 
but its amplitude may be reduced [90]. Biomarkers and 
imaging are not affected by sedatives, which represent an 
important advantage in early neuroprognostication.

Extra-cerebral causes of death should be considered 
when evaluating the performance of the various predic-
tors of neurological outcome. Circulatory collapse or 
multiorgan failure as a cause of death are particularly 
common during the first 3 days after ROSC [1] (Fig.  3) 
but may occur later in the clinical course after patients 
have regained consciousness from PCABI [60]. When 
discussing around the prognosis and level-of-care in 
these patients, it is important to remember that PCABI 
is not the only cause of death or disability after cardiac 
arrest, and that the overall outcome of cardiac arrest is 
the consequence of several additional factors. Apart 



1403

from extra-cerebral organ failure, these include previ-
ous health status before the arrest, and the precipitating 
cause of arrest.

Major predictors of neurological outcome
Clinical examination
Clinical examination is central to neurological prognos-
tication in PCABI. Even before sedation is finally dis-
continued, performing a clinical examination daily is 
recommended [22] to detect signs of consciousness or to 
identify signs that brain death has occurred (i.e. absence 
of all brain stem reflexes).

The most used clinical prognostic examination signs 
are motor response, ocular reflexes, and myoclonus. 
Presence of an absent, stereotypic (decorticate) flex-
ion or extensor response to pain (GCS-M ≤ 3) at ≥ 72  h 
after ROSC is a relatively nonspecific but very sensi-
tive sign of poor neurological outcome and is currently 
recommended as the entry point for the prognostica-
tion algorithm (see below). Previous guidelines [91] 
recommended a GCS-M ≤ 2 (absent or extensor motor 
response) as the entry point. However, a validation study 
of these guidelines [92] showed that including patients 
with a GCS motor score of 3 in the prognostication algo-
rithm increased sensitivity without increasing the false 
positive rate. Ocular reflexes are generated in the brain 
stem, which is relatively resistant to anoxic injury, so that 
their persistent absence is a more specific sign of severe 
PCABI than an altered motor response, which may be 
generated on different levels from the cortex to the brain 
stem. At ≥ 72  h after ROSC, bilaterally absent pupillary 
or corneal reflexes predict poor neurological outcome 
with an FPR of less than 5% [93]. Unlike the corneal 
reflex, the pupillary reflex to light (PLR) is more accurate 
and it is not affected by muscle relaxants [94]. However, 
rare cases of reversible unreactive mydriasis have been 
reported in COVID-19 patients with acute respiratory 
distress syndrome treated with prolonged infusion of 
rocuronium [95, 96]. The presumed mechanism was an 
increased permeability of the blood–brain barrier, allow-
ing rocuronium to interfere with cholinergic transmis-
sion of the ciliary nerve. Standard (visually assessed) PLR 
is operator-dependent, and its accuracy is reduced when 
the pupil size is less than 2 mm [97]. Conversely, quan-
titative automated pupillometry is accurate even when 
the pupil size is very small, and it is reproducible. Neu-
rological pupil index (NPi), a combined index including 
parameters derived from quantitative pupillometry such 
as size, constriction percentage, and constriction and 
dilation velocity and latency, can accurately predict poor 
neurological outcome as early as 24 h from ROSC and it 
is preferable over standard PLR [22].

Myoclonus consists of sudden, brief, involuntary jerks 
caused by muscular contractions or inhibitions. Appear-
ance of myoclonus is very often, but not consistently, 
associated with poor neurological outcome after car-
diac arrest. Some characteristics of myoclonus, such as 
an early (< 48  h) occurrence, a generalised vs. focal dis-
tribution, a synchronous and stereotyped pattern, and 
prolonged (> 30  min) duration (status myoclonus) are 
associated with worse outcome, while presence of a con-
tinuous and/or reactive EEG background, as opposed to 
burst-suppression, is associated with more favourable 
outcome [98, 99]. A special form of post-anoxic myo-
clonus is the Lance-Adams syndrome (LAS) [100]. This 
is a form of action myoclonus appearing during volun-
tary movements of the limbs. Patients with LAS gener-
ally achieve neurological recovery, even if myoclonus 
may become chronic and cause disability [101]. Although 
LAS appearance is associated with awakening, myoclonic 
movements can be so intense to mask the presence of 
consciousness [102]. In this case, an EEG recording may 
help distinguish LAS from more malignant forms of 
myoclonus [99].

Biomarkers
Several components of neurons and glia-cells can be 
measured in the serum or plasma after cardiac arrest as 
a marker of PCABI. Major advantages of blood biomark-
ers are that they are easy to obtain and offer a quan-
titative and easily interpreted measure of the extent 
of brain injury. Disadvantages are the variability and 
lack of analytical standards complicating comparisons 
between studies using different assays and instruments. 
Focal lesions due to stroke or trauma should always be 
excluded by appropriate imaging when interpreting ele-
vated levels of any brain biomarker. In addition, extra-
cerebral sources exist for all markers, albeit to varying 
extent [103].

NSE is the best documented and the most widely avail-
able marker of PCABI. As such, is the only blood bio-
marker recommended for prognostication after cardiac 
arrest [22]. NSE-levels increase and peak at 48–72 after 
arrest in poor outcome patients [93]. The currently rec-
ommended cut-off for reliable prediction of poor out-
come is 60 mg L−1 at 48–72 h [22], which is considerably 
higher compared to earlier guidelines [104]. Normal lev-
els of NSE (< 17  mg L−1) predict good outcome [105]. 
NSE is present in blood cells and given that the half-life 
of free haemoglobin (2–4 h) is considerably shorter than 
the half-life of NSE (30 h), haemolysis, for example due 
to CPR or an intra-aortic pump, must be considered also 
when no longer detectable [106]. Serial measurements 
are recommended and high but rapidly decreasing levels, 
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typically by 50% or more in 24–48 h, should be consid-
ered a sign of haemolysis.

Neurofilament light chain (NFL) is a cytoskeletal com-
ponent of large, myelinated axons of the central and 
peripheral nervous system and increased blood lev-
els correlate with severity of several neurologic disor-
ders including stroke, amyotrophic lateral sclerosis, and 
dementia. A limited number of studies, using the highly 
sensitive SIMOA-technology, indicate that NFL has 
superior prognostic performance compared to the other 
biomarkers [107–109] and also to other available meth-
ods [108]. In a recent study [110] investigating the ability 
of six biomarkers to predict good neurological outcome 
after arrest, NFL was the most consistent predictor, hav-
ing the second best sensitivity and specificity. While 
NFL is gradually being introduced into clinical practice 
for other diagnoses, much development and validation 
is necessary before it can become a standard assay for 
PCABI.

Electrophysiology
Short-latency somatosensory evoked potentials (SSEPs) 
SSEPs of the upper limb are elicited by stimulation of the 
median nerve at the wrist, and the resulting ascending 
potentials are recorded at the plexus brachialis, the pos-
terior cervical level, and at the contralateral sensory cor-
tex [111]. The negative wave recorded at around 20  ms 

on the scalp is termed N20 (Fig.  5), and it reflects the 
activation of the primary sensory cortex. The SSEPs are 
resistant to hypothermia and neuro-depressant drugs. 
The bilateral absence of the cortical N20 wave after car-
diac arrest almost invariably indicates severe PCABI 
[112], even if false positive results have occasionally been 
reported [113]. In some instances, the N20 wave was not 
detected due to artefacts which prevented a correct read-
ing of the SSEP tracing [114]. One of the major sources of 
artefacts is muscular activity, which can be removed by 
muscle relaxants [115]. Use of muscle relaxants is recom-
mended when recording SSEPs for prognostic purposes 
[22].

Unlike EEG, a bilaterally absent N20 wave can yield 
100% specificity as early as 12 after cardiac arrest [69]. 
However, its sensitivity is low, often not exceeding 40%. 
Recent evidence [116, 117] has shown that not only 
an absent N20, but also a present but low-amplitude 
N20 wave predicts poor neurological outcome as well, 
increasing sensitivity.

EEG 
EEG is the most widely used test for assessing the sever-
ity of PCABI in clinical practice [118]. However, its inter-
pretation is complex and prone to subjectivity. In 2012, a 
standardised terminology for EEG in critical care patients 
was proposed by the American Clinical Neurophysiol-
ogy Society (ACNS) [119]. This terminology has been 
updated in 2021 [120]. The three main aspects to con-
sider when using EEG for prognostication are the back-
ground activity, the presence of superimposed discharges 
and the reactivity to stimulation.

In patients with PCABI, lack of continuity and lower 
amplitudes of the EEG background are associated with 
worse outcome than continuous and normal-amplitude 
patterns. When all amplitudes of the EEG recording 
are below 10 µV, the term suppression is used (Fig. 6a). 
Although EEG may be transiently suppressed early after 
ROSC in patients who subsequently recover, the per-
sistence of suppression after 24  h is almost consistently 
associated with unfavourable outcome [121, 122].

A suppressed EEG background alternating with bursts 
of electrical activity lasting < 50% of the tracing is defined 
as burst-suppression (Fig.  6b) [120]. As occurs for sup-
pression, the accuracy of burst-suppression for predic-
tion of poor neurological outcome is higher after 24  h 
from ROSC. There is substantial interrater agreement 
among experienced neurophysiologists for detection of 
BS [123]. In some recent studies, suppression (with or 
without superimposed periodic discharges, Fig. 6c), and 
burst-suppression have been combined to define ‘malig-
nant” background patterns [124, 125].
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5mA #1

5mA #1
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5mA #2
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Ei-Ec (D)

P14
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Fig. 5  Normal short-latency somatosensory evoked potentials 
(SSEPs) pattern after stimulation of the right median nerve at the 
wrist in a patient with good outcome after cardiac arrest. The N20 
wave (top tracing) is recorded on the contralateral scalp area cor-
responding to the somatosensory cortex. From the ProNeCA study 
database [82]
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ACNS has identified specific subtypes of burst-sup-
pression of special prognostic interest in PCABI. Burst 
suppression with identical bursts is a burst-suppression 
where the first 0.5  s or more of each burst or each ste-
reotyped cluster of 2 or more bursts appear visually 
similar. Highly epileptiform bursts are present if > 50% of 
the bursts include epileptiform discharges or rhythmic 
activity. In a multicentre European study on 850 patients 
[126], both these subtypes predicted poor neurological 
outcome at 6 months with 100% specificity as early as 6 h 
after ROSC.

Presence of electrographic seizures superimposed on 
the EEG background also portend a poor neurological 
outcome in PCABI. This is particularly true when sei-
zures occur early, during the first 12–24  h from ROSC 
[122, 126] or are associated with other unfavourable 
features such as an unreactive or suppressed EEG back-
ground [127]. ACNS defines ‘unequivocal seizures’ as 
generalised rhythmic spike-and-wave discharges with 
a frequency ≥ 3 Hz or clearly evolving discharges of any 
type > 4 Hz [120]. This definition has been inconsistently 
used in prognostication studies [93]. The term ‘status epi-
lepticus’ is used to indicate the presence of continuous 
and persistent seizures. The 2021 update of the ACNS 
terminology standardised the definition of ‘electro-
graphic status epilepticus’ (ESE) as an electrographic sei-
zure lasting for ≥ 10 min or for a total duration of ≥ 20% 
in a 60-min recording. However, the definitions used in 
the pre-2021 literature are inconsistent, and for that rea-
son the 2021 Guidelines on post-resuscitation care did 
not recommend using the term ‘status epilepticus” for 
prognostication until sufficient evidence using a stand-
ardised definition will be available.

EEG background reactivity consists of a measurable 
change in amplitude or frequency when a stimulus is 
applied. The methods of stimulation or assessment of 
reactivity vary widely and only recently an expert consen-
sus proposed a standardisation of both the stimulus type, 
repetition and duration [128]. This variability has proba-
bly contributed to the inconsistent accuracy of EEG reac-
tivity as a prognostic test in literature [93]. Presence of 
EEG reactivity is nevertheless a sign of good neurological 
outcome, while its absence has little added value to EEG 
background [124].

Imaging
Brain CT is extensively used shortly after cardiac 
arrest to rule out neurological causes of arrest [129], 
especially an intracranial haemorrhage which would 
contraindicate percutaneous coronary interventions. 
However, CT also allows assessing the severity of 
PCABI by detecting brain oedema. CT signs of vaso-
genic oedema include sulcal effacement and reduced 

Fig. 6  Examples of EEG-patterns after cardiac arrest that are classified 
as highly malignant: a suppression without discharges, b suppression 
with continuous discharges, c burst-suppression
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cerebral ventricle size. A pseudo-subarachnoid sign, 
caused by venous engorgement of cerebral sinuses, may 
also be observed [130].

On brain CT, neuronal swelling from cytotoxic 
oedema results in a decreased density of the grey mat-
ter (the neurons), while the white matter (the axons) 
remains relatively unaffected, so that the density 
ratio between the grey and the white matter (GWR) 
decreases, and the grey/white matter interface becomes 
less visible (Fig. 7). Several studies [131–133] assessed 
the prognostic value of a decreased GWR measured in 
specific regions of interest, within the basal ganglia or 
the cerebrum (centrum semiovale, or high-convexity 
area). The GWR thresholds for prediction of poor out-
come with 100% specificity varied widely. In a recent 
systematic review [93], the reported thresholds for the 
average GWR between the basal ganglia and the cer-
ebrum ranged from 1.07 and 1.23. The reason for this 
variability included differences in the sampling areas, 
and scanner software and hardware. In a multicen-
tre study on 356 post-arrest comatose patients [134], 
visual nonquantitative assessment of oedema on brain 
CT performed by an experienced neuroradiologist was 
also accurate in predicting poor outcome after cardiac 
arrest.

Cytotoxic oedema on magnetic resonance imaging 
(MRI) appears as a hyperintensity on diffusion weighted 
imaging (DWI) with corresponding hypoattenuation on 
apparent diffusion coefficient (ADC) values (Fig. 8). ADC 
allows a quantitative measurement of the restricted dif-
fusion on brain MRI, and several studies have identified 

[133, 135] or validated [136] ADC thresholds below 
which poor outcome can be predicted with 100% speci-
ficity. However, as for GWR, these thresholds vary widely 
across studies due to difference in measurement tech-
niques, brain region studied, and timing of imaging.

Regarding timing, although brain CT can show signs 
of severe PCABI less than 1 h after ROSC [93, 131, 137], 
limited evidence shows that in some patients these signs 
appear 2–6 days later [134], suggesting that perform-
ing later or serial CT scans may increase its sensitivity 
for prediction of poor outcome [138]. For MRI, signs of 
altered diffusion are more prominent in the basal ganglia 
during the first 3 days after ROSC, followed by the cortex 
and the subcortical white matter [139, 140]. Currently, 
there is no definite consensus on the optimal timing of 
imaging studies as prognosticators after cardiac arrest.

The ERC‑ESICM 2021 algorithm for prognostication
In the 2021 guidelines on post-resuscitation care [22], the 
European Resuscitation Council (ERC) and the European 
Society of Intensive Care Medicine (ESICM) suggested 
a prognostic strategy in adults who are comatose after 
resuscitation from cardiac arrest. The key elements of 
that strategy are:

1.	 the clinical neurological examination is central to 
prognostication; therefore, the prognostic balance 
can be made only after confounding from residual 
sedation or neuromuscular blocking drugs has been 
excluded.

Fig. 7  CT brain images showing; a normal CT brain from a 70-year-old man. b CT brain 40 h post-arrest in a 48-year-old man. Note generalized 
oedema with sulcal effacement, ventricular narrowing and reduction of the grey-white matter differentiation
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2.	 no predictor is 100% accurate, therefore prognostic 
judgement cannot be based on a single predictor. 
Recent evidence [141] showed that combining two 
or more tests for poor neurological outcome mini-
mises the risk of a falsely pessimistic prediction. The 
2021 guidelines introduced the principle of concord-
ance among test results. Two or more concordant 
unfavourable test results are required to prognos-
ticate poor neurological outcome, while in case of 
discordance between tests indicating poor prognosis 
and others indicating good prognosis, a prognostic 
reassessment is recommended. Signs indicating a 
potentially good outcome include: an early (within 
24 h) return of favourable EEG background (continu-
ous, reactive, and without epileptiform activity) [124, 
125], low blood levels of NSE within 72 h from ROSC 
[105, 110], and absence of diffusion changes on brain 
MRI.

The ERC-ESICM 2021 recommendations on prognosti-
cation are based on the algorithm in Fig. 9. In a comatose 
resuscitated patient who—after at least 72 h from ROSC 

and exclusion of confounders—has a motor response to 
pain no better than stereotypic (decorticate) posturing, 
poor prognosis is predicted when two or more of the fol-
lowing are present: (1) no pupillary and corneal reflexes 
at 72  h or later from ROSC; (2) bilaterally absent N20 
SSEP wave at 24 h or later; (3) a suppressed EEG back-
ground or burst-suppression after 24  h; (4) NSE blood 
levels above 60 µg/L at 48 h and/or 72 h; (5) a status myo-
clonus within 72 h; or (6) a diffuse and extensive anoxic 
injury on brain CT/MRI. If this condition is not met, the 
prognosis is indeterminate and further observation and 
reassessment are recommended.

Prediction of good neurological outcome
Most of the available evidence on prognostication after 
cardiac arrest is based on prediction of poor neurological 
outcome. Consequently, the current algorithms provide 
limited prognostic guidance in the population of patients 
lacking major unfavourable signs and whose outcome 
remains indeterminate. In three large studies [92, 112, 
142] this population ranged between 50 and 70% of the 
total cohort after the application of the 2015 ERC-ESICM 

Fig. 9  ERC-ESICM 2021 algorithm for prognostication in PCABI. EEG electroencephalography, NSE neuron specific enolase, SSEP short-latency 
somatosensory evoked potentials, ROSC return of spontaneous circulation. 1Major confounders may include sedation, neuromuscular blockade, 
hypothermia, severe hypotension, hypoglycaemia, sepsis, and metabolic and respiratory derangements. 2Use an automated pupillometer, when 
available, to assess pupillary light reflex. 3Suppressed background ± periodic discharges or burst suppression, according to ACNS. 4Increasing NSE 
values between 24 and 48 h or 24/48 h and 72 h further confirm a likely poor outcome. 5Defined as a continuous and generalised myoclonus per-
sisting for 30 min or more. *Caution in case of discordant signs indicating a potentially good outcome (see text for details)
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prognostic algorithm, and up to 64% of these patients 
may have a neurological recovery [143]. The ERC-ESICM 
2021 guidelines suggests caution and reassessment when 
predictors of poor outcome coexist with signs indicating 
a potential for recovery. These signs include a ‘benign’ 
EEG (continuous, reactive, non-suppressed background 
without epileptiform discharges), absence of diffusion 
changes on brain MRI and low blood values of biomark-
ers [110, 112, 144]. However, there are no currently 
recommended strategies to predict good neurological 
outcome after cardiac arrest. A systematic review (PROS-
PERO CRD42019141169) is underway to investigate pre-
dictors of recovery in PCABI.

Conclusions
PCABI is the most important cause of disability and 
mortality after cardiac arrest, and it is due to a series of 
complex mechanisms triggered by both ischaemia and 
reperfusion during and after resuscitation. In lack of a 
direct treatment, PCABI may possibly be attenuated by 
limiting derangements in oxygenation, ventilation, and 
blood pressure. However, the optimal values for these 
parameters are not currently known. Based on results 
of recent trials, the role of TTM for PCABI treatment 
is debated and may need revision. In patients who are 
comatose due to PCABI, prediction of neurological out-
come is essential to inform relatives and ensure a propor-
tionate care. Prognostication after cardiac arrest should 
be multimodal, and clinicians should be aware of the lim-
itations of the available predictive indices and of the risk 
of a self-fulfilling prophecy.
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