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Abstract

Advances in microelectronics and nanofabrication have led to the development of implantable 

biomaterials. However, biofilm-associated infection on medical devices is a major hurdle that 

substantially undermines the clinical applicability and advancement of biomaterial systems. 

Given their attractive piezoelectric behavior, BTO-based materials have also been used in 

biological applications. Despite its versatility, the feasibility of BTO-embedded biomaterials as 

anti-infectious implantable medical devices in the human body has not been explored yet. Here, 

the first demonstration of clinically viable BTO-nanocomposites is presented. It demonstrates 

potent antibiofilm properties against Streptococcus mutans without bactericidal effect while 

retaining their piezoelectric and mechanical behaviors. This anti-adhesive effect led to >10-fold 

reduction in colony-forming units in vitro. To elucidate the underlying mechanism for this 

effect, data depicting unfavorable interaction energy profiles between BTO-nanocomposites and 

S. mutans using the extended-Derjaguin, Landau, Verwey, and Overbeek theory is presented. 

Direct cell-to-surface binding force data using atomic force microscopy also corroborate reduced 

adhesion between BTO-nanocomposites and S. mutans. Interestingly, poling process on BTO­

nanocomposites resulted in asymmetrical surface charge density on each side, which may help 

tackle two major issues in prosthetics- bacterial contamination and tissue integration. Finally, 

BTO-nanocomposites exhibit superior biocompatibility towards human gingival fibroblasts and 

keratinocytes. Overall, BTO-embedded composites exhibit the broad-scale potential to be used in 

biological settings as energy-harvestable antibiofilm surfaces.
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Introduction

Medical/dental implants and devices have been widely used for the treatment of various 

diseases as well as in the prosthetic substitution of tissues and organs, including dental, 

orthopedic, and nasal implants.1-3 However, the sharp increase in using these implants 

and devices has led to the development of a new class of microbially-induced infectious 

diseases due to the rapid bacterial accumulation on material surfaces.4 When bacteria adhere 

to surfaces, they often aggregate and form microcolonies while producing extracellular 

polymeric substances (EPS).5 Such EPS promotes cell adhesion and cohesion, resulting in a 

highly structured and adherent biofilm. Notably, once biofilms are established, either killing 

embedded bacteria or mechanically removing biofilms from surfaces is extraordinarily 

onerous. Thus, it is imperative to interrupt the bacterial surface sensing mechanism and their 

initial binding process to surfaces to reduce the prevalence of microbially-induced medical 

device infections.

Although a range of biomaterials has been fabricated for human use, biofilm-associated 

infection on medical devices is still an unresolved problem in modern healthcare. An 

infection resulting from the breaching of soft tissue at the interface with the medical device 

or implant presents a major hurdle that substantially undermines the clinical applicability 

and advancement of biomaterial systems.6, 7 Indeed, 60-70% of all healthcare-associated 

infections are attributed to implantable medical devices according to the Center for Disease 

Control.8 Since these biomaterial-associated infections often involve discomfort, painful 

and costly surgical intervention,9 and may even result in life-threatening conditions,10 the 

development of infection-resistant biomaterials is crucial to confront pervasive microbial 

infectious diseases.

Barium titanate (BaTiO3; BTO) is a dielectric material that exhibits piezoelectricity 

and ferroelectricity. Traditionally, BTO-based devices have been utilized in products 

such as capacitors,11 field-effect transistors,12 and electromechanical devices.13 Given 

their attractive piezoelectric properties, BTO-based systems have also found use in 

biological applications including intravascular ultrasonic transducers for biomedical imaging 

applications,14 biocompatible nanogenerators for application as in vivo power sources,15 

biocompatible composites for use in bone regeneration,16 and scaffolds to support cellular 

survival and proliferation for potential use in personalized bone implants.17 There have also 

been attempts to utilize BTO-based systems in antibacterial or oral application. For example, 

the bactericidal activity of BTO as free nanoparticles in high concentration in solution 

has been tested.18, 19 Recently, BTO-embedded surface was tested against Escherichia 
coli using reactive oxygen species (ROS) generated by ferroelectric and photocatalytic 

routes.20, 21 Additionally, tooth whitening via piezocatalysis has been reported using poled 

BTO nanoparticles in liquid form.22 We also recently utilized a BTO-embedded dental 
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crown composite to develop a self-powered smart dental implant system for in situ photo­

biomodulation therapy by utilizing its piezoelectrical property.23 Yet, despite its versatility, 

the feasibility of bimodal BTO-embedded biomaterials as anti-adhesive implantable medical 

devices and sustainable power sources has not been explored in a biological setting with 

cytotoxicity tests.

Here, we present the first demonstration of bimodal BTO in a bound state, i.e., embedded 

in a UV-curable polymeric composite (Figure 1) with potent antibiofilm and energy­

harvestable functions. Negatively charged BTO-nanocomposites exhibited significant anti­

adhesion effects against a model oral biofilm-forming pathogen (Streptococcus mutans) 
while retaining sufficient levels of piezoelectric behavior and mechanical properties for 

potential clinical uses. Particularly, we observed >10-fold reduction in biofilm colony 

forming units (CFUs) in vitro from 30% BTO-nanocomposites with no bactericidal activity. 

To reveal the underlying mechanism for this anti-adhesion effect, we provided surface 

roughness data and interaction energy profiles between BTO-nanocomposites and S. 
mutans using the extended-Derjaguin, Landau, Verwey, and Overbeek (xDLVO) theory 

corroborated by binding force data using atomic force microscopy (AFM). Interestingly, 

poling process charged BTO-nanocomposites oppositely on each side, which may enhance 

tissue integration on a positively charged surface while maintaining significant antibacterial 

adhesion properties on a negatively charged surface. Lastly, to demonstrate biocompatibility, 

we evaluated the cytotoxicity of our BTO-nanocomposites towards human gingival 

fibroblasts and keratinocytes (HGFs and HGKs). Overall, we present stable, non-toxic, 

self-powering BTO-nanocomposites that have broad-scale potential to be used in biological 

settings.

Experimental Section

Fabrication of BTO-nanocomposites

The schematic for the fabrication of BTO-embedded discs is shown in Figure S1. We 

fabricated BTO-nanocomposites equivalent in size to hydroxyapatite discs (commonly 

used in bacterial studies).24, 25 Hydroxyapatite discs (12 mm diameter and 1.3 mm 

thick; Clarkson Chromatography Products Inc., South Williamsport, PA, USA) were 

placed in standard 50 mm Petri dishes (Corning Inc., Corning, NY, USA). 10:1 wt% of 

polymer:cross-linker was used to prepare polydimethylsiloxane (PDMS) molds (Sylgard® 

184, Dow Silicones Corporation, Midland, MI, USA). Uncured PDMS was poured over 

the hydroxyapatite discs in Petri dishes. The setup was degassed and allowed to cure at 

80°C for 2 hours using a vacuum oven (Across International, Livingston, NJ, USA). PDMS 

molds were extracted from the Petri dishes after curing. For discs with 400 nm BTO, 

the nanopowder (US Research Nanomaterials Inc., Houston, Tx, USA) and clear resin 

(FormLabs, Somerville, MA, USA) were mixed to prepare 0 (control), 10, 20, and 30 wt% 

BTO-resin mixtures. Additionally, 30 wt% BTO discs were also prepared using 50, 200, 

and 500 nm BTO nanopowder for size-dependence studies. The mixtures were thoroughly 

stirred overnight on a roller mixer (LC-3DMixer, 3D Systems, Rock Hill, SC, USA). After 

overnight stirring, mixtures were degassed and poured into the PDMS molds. To obtain a 

uniform surface, a piece of UV transparency film (Apollo, ACCO Brands, Lake Zurich, IL, 
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USA) was gently placed onto uncured BTO-resin mixtures while releasing air bubbles out 

of the mold. Samples were cured under UV (405 nm, SunRay 400, Uvitron International, 

West Springfield, MA, USA) for 5 minutes. The transparency films were then removed, and 

the discs were cured under UV for an additional 25 minutes. Cured discs were removed 

from the PDMS molds and washed with ethanol. To dislodge any loose BTO from the 

disc surfaces, the discs were sonicated (3X for 10 minutes each) in Milli-Q water (Millipore­

Sigma, Burlington, MA, USA). The discs were then autoclaved (121°C and 15 psi) in 

custom-made disc holders25-27 and stored for use in experiments. To assure the homogeneity 

of BTO in the composite, the highest concentration of BTO-nanocomposites (30% BTO­

nanocomposites) was subjected to Scanning Electron Microscopy (SEM) (Quanta FEG 250, 

FEI, Hillsboro, OR, USA) at an operating voltage of 20 kV and particle distribution analysis 

using ImageJ with nearest neighbor distance (NND) plugin. A representative SEM image 

of 30% BTO-nanocomposites depicts BTO nanoparticles that are well distributed across the 

disc (average distance between particles was 1.88 μm (± 0.55); Figure S2).

Strain and culture conditions

S. mutans UA159, a cariogenic oral pathogen and well-characterized EPS producer, was 

used for the biofilm experiments. Stocks were stored at −80 °C in tryptic soy broth 

containing 50% glycerol. Strains were grown to mid-exponential phase in ultrafiltered (10 

kDa molecular-mass cutoff; Millipore, Billerica, MA, USA) tryptone-yeast extract broth 

(UFTYE; pH 7.0) containing 1% glucose. Cells were harvested by centrifugation (5500g, 10 

min, 4 °C).

In vitro biofilm model

S. mutans UA159 was transferred from stock culture to the culture medium (UFTYE 

containing 1% glucose) and incubated overnight at 37°C and 5% CO2. From this culture, 

bacteria were transferred onto a fresh culture medium and incubated at 37 °C and 5% 

CO2 to mid-exponential phase (optical density of 1.0 at 600 nm). Biofilms were grown 

on saliva-coated discs (control and BTO) that were vertically suspended in 24-well plates 

using a custom-made disc holder.25-27 Each well was inoculated with ~ 2 × 106 CFU/mL 

of S. mutans in UFTYE containing 1% sucrose and incubated at 37°C and 5% CO2 for 18 

hours. At the end of the experimental period, biofilms were removed and homogenized by 

sonication, and the number of viable cells (CFU/mL) was determined on blood agar plates 

(BD BBL™ Prepared Plated Media: Trypticase™ Soy Agar (TSA II™) with Sheep Blood, 

Thermo Fisher Scientific, Waltham, MA, USA).25, 27 Three experiments were conducted in 

duplicate.

Biofilm analysis by confocal microscopy

Biofilms were examined using confocal laser scanning microscopy (CLSM) combined 

with quantitative computational analysis. Briefly, S. mutans cells were stained with 2.5 

μM SYTO 9 green-fluorescent nucleic acid stain (485/498 nm; Molecular Probes Inc., 

Eugene, OR, USA) and EPS glucans were labeled with 1 μM Alexa Fluor 647-dextran 

conjugate (647/668 nm; Molecular Probes Inc.) as detailed previously.28 The confocal 

images were obtained using an upright single-photon confocal microscope (LSM800, Zeiss, 

Jena, Germany) with a 20X (numerical aperture, 1.0) water objective. Each component was 
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illuminated to minimize crosstalk as follows: SYTO 9 (S. mutans) was excited using 488 nm 

and was collected by a 480/40 nm emission filter, and Alexa Fluor 647 (EPS) was excited 

using 640 nm and collected by a 670/40 nm emission filter. Biofilms were imaged at 18 h 

after seeding microorganisms on the discs. Image stacks for each channel were converted 

to 8-bit ome.tiff files and the COMSTAT plugin of ImageJ29 was used to generate values 

for biovolume (μm3/μm2). Biovolumes of S. mutans and EPS glucans were quantified using 

COMSTAT2 as detailed elsewhere.27, 30-32 Three independent experiments were conducted 

in duplicate for confocal imaging. Biovolumes from each channel were quantified for 6 

representative images from each condition.

Assessing bactericidal activity

Bactericidal activity was assessed as detailed elsewhere.33 Briefly, S. mutans UA159 was 

transferred from stock culture to the culture medium (UFTYE) containing 1% glucose and 

incubated overnight at 37 °C and 5% CO2. From this culture, bacteria were transferred onto 

a fresh culture medium and incubated at 37 °C and 5% CO2 to an optical density of 1.0 

at 600 nm. 50 μl of 2 x 105 S. mutans was inoculated on blood agar plates, followed by 

covering spots with control or BTO discs. After incubation for 24 h at 37 °C and 5% CO2, 

the viability of S. mutans was determined. Three experiments were conducted in duplicate.

Measurement of surface roughness

Sample topography was imaged to measure the roughness of the BTO-nanocomposite discs 

by a non-destructive confocal contrasting method using Zeiss LSM800 with a C Epiplan­

Apochromat 50X (numerical aperture, 0.95) non-immersion objective in air. The images 

were processed using ConfoMap (Zeiss) to create 3D topographical renders. Arithmetical 

mean height (Sa) was measured using ISO 2517834 with a 12.8 μm x 12.8 μm scan area 

per data point. Sa values were measured for 10 randomly selected areas across each sample. 

Experiments were conducted in triplicate.

Measurement of contact angles and surface energy

Contact angles for 3 μL drops of Milli-Q water (MilliporeSigma), formamide (Sigma­

Aldrich, St. Louis, MO, USA), and diiodomethane (MilliporeSigma) were measured using 

the sessile drop method35, 36 on a contact angle goniometer (Ossila Ltd., Sheffield, UK). 

For BTO-nanocomposites, drops were allowed to stabilize on the surface for 90 s before 

measurement. For bacterial lawns, a protocol was developed as an adaptation of previous 

studies.37, 38 Briefly, 3 starter cultures (grown for 16 h overnight) were used to form 

bacterial lawns on 0.22 μm PES (polyethersulfone) membranes (Millipore-Sigma). Samples 

were air-dried for 60 min to reach the plateau contact angle. Drops were allowed to stabilize 

for 4 s before measurement. Three independent runs were conducted with 10 drops per 

sample. Surface energy values for BTO-nanocomposites and lawns of S. mutans were 

estimated by the Owens-Wendt method35, 39 using three test liquids—water, formamide, 

and diiodomethane. Surface free energy parameters40 (Table S1) and average contact angles 

were used to calculate polar and dispersive surface energies from Equation S1.
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Measurement of interaction energies between S. mutans and BTO-nanocomposite discs

The xDLVO theory was used to measure the interaction energy between S. mutans and 

BTO-nanocomposite discs assuming the bacteria as spheres and the BTO-nanocomposite 

discs as semi-infinite plates. The protocol followed was adapted from previous studies.37, 38 

Values for components of the interaction energy were calculated using Equation Set S2. 

Zeta potential values for S. mutans were measured in Milli-Q water using a Delsa Nano 

C particle analyzer (Beckman Coulter, Indianapolis, IN, USA) at the optimal intensity 

in photon counts/s (16 h overnight starter cultures and dilutions were used to maintain 

samples in the optimal intensity range). Surface potential values for BTO-nanocomposite 

discs were measured using AFM in Kelvin Probe Force Microscopy mode (KPFM on an 

MFP-3D AFM, Asylum Research, Oxford Instruments, Goleta, CA, USA) in Milli-Q water 

as detailed previously41 using AC240TM cantilevers (Si with Ti/Pt tip coating; ElectriLever, 

Asylum Research). Zeta potential values for the BTO-nanocomposite discs were estimated 

using the surface potential values in Equation S3.42

Measurement of binding forces between S. mutans and BTO-nanocomposite discs

A previously established protocol for single-cell AFM27 (sc-AFM) was adapted for use in 

this study. Briefly, to functionalize the AFM probe with S. mutans, tipless cantilevers (PNP­

TR-TL-50, NanoWorld, Watsonville, CA, USA) were used. The probes were immersed 

in poly L-Lysine (pLL) solution (0.1%, Sigma-Aldrich, St. Louis, MO, USA) for 2 min 

to facilitate bacterial binding. pLL-coated cantilevers were then incubated with washed 

bacterial cells for another 2 min. After binding, the functionalized probes were washed using 

phosphate-buffered saline (PBS, HyClone Laboratories Inc., Logan, UT, USA). 10 x 10 

adhesion force maps were obtained for 4 random spots per disc with 3 independent runs 

from distinct culture preparations. Overall, 1200 force-distance curves per condition were 

analyzed using AtomicJ.43

Poling of BTO-nanocomposite discs and assessing antibiofilm activity

To further elucidate the anti-adhesive mechanism of BTO-nanocomposite discs in relation 

to their piezoelectric nature, 30% BTO-nanocomposites were subjected to poling process. 

The discs were loaded to our custom-made poling stage, which can hold the discs between 

a copper bottom plate and a spring-loaded needle electrode from the top. The poling stage 

with discs was submerged in a silicone oil bath while heated near Curie temperature of BTO 

(> 80 °C). This is to decompose electric dipoles so that an externally applied strong electric 

field can align them. Using the poling stage and a high voltage source (230-30R, Spellman, 

Hauppauge, NY, USA), a uniform electric field of 1kV/mm was applied across the discs. 

The total poling time was 2 hours. Discs in custom-made holders25-27 were placed in 1% 

bleach for 30 minutes followed by sterilization under UV for 30 minutes and stored for use 

in experiments.

The crystal structure of BTO discs was determined using an X-ray diffractometer (XRD; D8 

advance powder XRD, Bruker, Billerica, MA, USA) with Cu-Kα radiation (λ = 1.5418 Å, 

40 kV, 40 mA) operating in the reflection mode. The spectrum was obtained for the 2θ range 

between 20° and 80° with 0.0205° increment and 2 s per step.
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For estimation of CFU/mL on top and bottom surfaces of the discs, S. mutans biofilms 

were grown on saliva-coated discs (control, unpoled, and poled) as described in the ‘In vitro 
biofilm model‘ section. At the end of the experimental period, the biofilm from each surface 

was scraped off with a sterile spatula into separate tubes instead of sonicating the entire disc. 

Further steps remained unchanged.

Measurement of piezoelectric properties

The piezoelectric output of the BTO-nanocomposite discs was characterized by measuring 

voltage output under mechanical stimulation. BTO-nanocomposite discs with 400 nm BTO 

nanopowder at 0, 10, 20, and 30 wt% were used. To provide electrical connections, 

small areas on both sides of the discs were deposited with nickel (M.G. Chemicals, 

Burlington, ON, Canada) and copper wires were attached using silver epoxy (8331, M.G. 

Chemicals). The discs were then placed on a custom-made mechanical vibration table, 

which could provide up to 1 mm of displacements at 500 kHz. Voltages were measured 

using an oscilloscope (MSOX3024T, Keysight Technologies, Santa Rosa, CA, USA). 

Voltage measurements were repeated 5 times for 4 BTO discs per concentration.

Measurement of mechanical properties and stability

Three-point flexural strength tests were performed by following ISO 4049 (Dentistry – 

Polymer-based restorative materials) guidelines.44 Test specimens were prepared using 

the previously described fabrication procedure at dimensions of 2 mm × 2 mm × 25 

mm. A total of 48 test specimens were prepared (12 each for 0, 10, 20, and 30 wt%). 

Load and deformation were measured using an electromechanical testing machine (311R, 

TestResources Inc., Shakopee, MN, USA) and a three-point flexural test fixture. Flexural 

strength (FS) and flexural modulus (FM) values were then calculated using Equation set S4. 

The long-term stability of BTO discs was also assessed. We employed the Arrhenius model 

and experimentally measured the mean-time-to-failure (MTTF) in an accelerated condition 

(i.e., high temperature), which is defined by Equation S5. To obtain the activation energy, 

the daily weight of BTO-nanocomposite discs was monitored for 14 days while the discs 

were kept in two different temperatures in aqueous environments (6 each at 65 °C and 80 °C 

in DI water). Each sample’s weight was measured (Aczet Inc., Piscataway, NJ, USA) after 

taking the sample out of DI water and removing moisture. The 14-day weight loss was then 

modeled based on an exponential decay (Equation S6).45 Using the weight loss model, we 

estimated the MTTF with failure corresponding to the BTO-nanocomposite discs reaching 

90% of its initial state. The activation energies were obtained by solving the Arrhenius 

model (Equation S6) with experimentally measured MTTFs for 14 days at 65 °C and 80 °C. 

Lastly, the lifespan at normal operating temperature (37 °C) was estimated by calculating the 

acceleration factor (AF) between each temperature (37 °C vs. 65 °C and 37 °C vs. 80 °C) 

using Equation S7.

Measuring cytotoxicity towards HGFs and HGKs

Extract-based cytotoxicity screening assays were performed on HGFs (kindly provided 

by the laboratory of Dr. Jonathan Korostoff, School of Dental Medicine, University of 

Pennsylvania) and HGKs (kindly provided by the laboratory of Dr. Dana T. Graves, School 

of Dental Medicine, University of Pennsylvania) following ISO 10993-5 guidelines.34 Cells 
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were maintained in their respective culture media (HGFs: Fibroblast Basal Medium (ATCC, 

Manassas, VA, USA) supplemented with Fibroblast growth kit (ATCC, PCS-201-041) and 

1% v/v Anti-Anti (Gibco, Gaithersburg, MD, USA); HGKs: Keratinocyte Basal Medium 

(KBM-Gold, Lonza Group AG, Basel, Switzerland) supplemented with KGM-2 SingleQuots 

kit (Lonza) and incubated at 37 °C in a humidified atmosphere of 5% CO2 until confluence. 

BTO-nanocomposite and control discs were placed in serum-free media for the respective 

cells and used for extract testing following ISO guidelines for surface area/volume (3cm2/

mL). For cytotoxicity screening, cells were seeded in 100 μL of culture media (5000 cells/

well in 96-well plates). The next day, the media was replaced with spent media from 

the extracts for the treatment time (1 h and 24 h). After treatment, well volumes were 

replaced with fresh serum-free media and left for a total of 24 h. 0.5% phenol treatment 

for 1 h was used as a cytotoxic control. The next day, 10 μL of MTT reagent (Sigma­

Aldrich, St. Louis, MO, USA) was added to 90 μL of fresh serum-free media. Samples 

were left for 5 hours. Well volumes were then replaced with DMSO (Sigma-Aldrich, 

St. Louis, MO, USA). Absorbance values were read at 570 nm using a SpectraMax M2 

(Molecular Devices, Sunnyvale, CA, USA). Percentage cell viability was calculated from 

the absorbance readings. Three independent experiments were conducted in triplicate.

Statistical analyses

All statistical analyses for biochemical, microbiological, biovolume, and topographical data 

were carried out using GraphPad Prism 9 via i) analysis of variance (ANOVA), followed by 

Dunnett’s test for post-hoc analysis or ii) Student’s t-test where appropriate. The level of 

significance was set at 5%.

Results

Antibiofilm activity of BTO-nanocomposite discs

Given the limited evidence of the biological usefulness of BTO nanoparticles in terms of 

antibiofilm and antibacterial behavior, we tested our BTO-nanocomposite discs to assess 

their susceptibility to bacterial binding. The piezoelectric properties of BTO nanosystems 

are normally dictated by their crystal size;46, 47 particles with a size greater than 100 nm 

typically form tetragonal crystal systems and display sufficient piezoelectricity.48 Thus, with 

the consideration of the broader application for biomedical implant devices, we chose 400 

nm BTO nanoparticles for use in BTO-nanocomposite disc fabrication and investigated 

their biological actions (see Experimental Section and Figure S1 for details). Then, we 

measured the antibiofilm activity of 400 nm BTO-nanocomposite discs with varying BTO 

wt% using S. mutans UA159 in an established in vitro model.25, 27 Interestingly, the discs 

displayed a dose-dependent reduction in CFU/mL (Figure 2A) with increasing wt% of BTO; 

a similar amount of bacteria bound to 10 wt% BTO-nanocomposite discs (vs. control disc 

with no BTO) while the amount started reducing when BTO content was higher than 20 

wt%. At the highest wt% (30%), we measured a significant 10-fold reduction in CFU/mL 

when compared to the control discs. Additionally, we tested the antibiofilm activity of 30 

wt% BTO-nanocomposite discs made from varying sizes (50-500 nm). Encouragingly, the 

antibiofilm nature of the BTO-nanocomposite discs persisted (~10-fold reduction) with no 

significant differences in CFU/mL between discs made from varying sizes of BTO (Figure 
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S3). This indicates that the wt% of BTO added to the discs played a dominant role in the 

drop in biofilm formation.

To further understand the differences in biofilm properties on the discs, we investigated 

the microbial growth and tertiary structures of the biofilms using confocal microscopy. 

Representative confocal images to visualize the drastic reduction in CFU/mL at 18 h 

are shown in Figure 2B. As shown, there were significantly fewer microcolonies of S. 
mutans (labeled as green) on discs with 30 wt% BTO in comparison to control discs with 

no BTO. This reduction was also observed in the amount of EPS (labeled as red) on 

the disc surfaces. Overall, the biofilms on BTO-nanocomposites were thinner than those 

observed on the control discs. Interestingly, the 30 wt% BTO-nanocomposite discs had 

bacterial microcolonies that were sparse and not well connected. To quantify the changes 

in confocal imaging, we determined the biovolume of S. mutans and EPS (Figures 2C-E). 

Image quantification analysis coincided with our bacterial population data on 30 wt% BTO­

nanocomposite discs (CFU/mL) in comparison to control discs, showing ~10-fold reduction 

in S. mutans biovolume (Figure 2C) accompanying a ~3.5-fold reduction in biovolume 

of produced EPS (Figure 2D). Overall, there was a combined ~6-fold reduction in total 

biovolume of the biofilm on BTO-nanocomposite discs (vs. control; Figure 2E).

Then, we performed further experiments to investigate the underlying mechanism of biofilm 

prevention activity of BTO-nanocomposite discs by determining whether the antibiofilm 

nature of BTO-nanocomposite discs was due to bacterial killing or repelling bacterial 

adhesion. First, we conducted 24 h contact tests of BTO-nanocomposite discs with colonies 

of S. mutans growing on blood agar plates to assess bactericidal activity. Intriguingly, 

both BTO-nanocomposite and control discs had no bactericidal activity; S. mutans grew 

regardless of the BTO content (Figure S4). The results strongly postulated that the drop 

in biofilm formation on the BTO-nanocomposite discs could be primarily due to an anti­

adhesion effect. Thus, to validate our hypothesis of an anti-adhesion effect preventing 

biofilm formation and understand the mechanism of action of such bacterial repelling 

behavior, we comprehensively analyzed the surface properties of the control and BTO­

nanocomposite discs.

Surface Roughness of BTO-nanocomposite discs

Among various surface properties affecting bacterial adhesion, surface roughness is one 

of the critical factors.5 Therefore, we performed an ISO 2517849 test in non-contact 

mode using optical sectioning on a confocal microscope. As expected, embedding BTO 

nanoparticles into resin mixtures led to a small increase in surface roughness. Arithmetical 

mean height values (Sa) rose in a dose-dependent manner with increasing wt% of BTO 

(Figure 3A). Representative images for discs with increasing wt% of BTO indicated 

a gradual increase in roughness (Figure 3B). Furthermore, we conducted the same 

topographical assessment of 30 wt% BTO-nanocomposite discs with varying sizes (50-500 

nm). The Sa values for discs with 200, 400, 500 nm BTO nanoparticles showed similar 

surface roughness values, while those for discs with 50 nm BTO nanoparticles presented 

significantly lower surface roughness values similar to control discs (Figure S5). Since S. 
mutans binding was inversely proportional to the BTO wt% (Figure 2) and its pattern to 30% 
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wt BTO discs was similar regardless of surface roughness values (Figure S3 and S5), the 

data confirmed that surface roughness did not play a large role in the antibiofilm nature of 

BTO-nanocomposite discs.

Interaction energy between S. mutans and BTO-nanocomposite discs

To delve deeper into investigating the mechanism behind the antibiofilm activity of BTO­

nanocomposite discs, we estimated their surface energies. Given that the Owens-Wendt 

method (Equation S1) is best suited for polymeric surfaces containing methacrylates (the 

base material of our discs),50, 51 we utilized this method to determine if differences 

in polar and dispersive components of surface energy could explain the anti-adhesion 

effect. First, we determined the contact angles of control and BTO-nanocomposite discs 

with previously established parameters40 for 3 reference liquids – water, formamide, and 

diiodomethane (Table S1) to estimate the polar and dispersive components of the discs. 

Results indicated an increase in polar surface energy with increasing wt% of BTO while 

the overall surface energy did not change significantly. We also observed a similar trend for 

BTO-nanocomposite discs with varying sizes of BTO (50–500 nm). Additionally, we used 

the same method to estimate the surface energy for lawns of S. mutans. These results are 

compiled in Table S2. Our results for the contact angles and surface energy of S. mutans 
were in close agreement with previous studies.52

Since the data indicated that BTO nanoparticles altered the polar interaction properties of the 

disc surfaces, we modeled the interaction energy between S. mutans and discs using xDLVO 

theory to further explain S. mutans’ binding behavior on control and BTO-nanocomposite 

discs. The xDLVO theory provides an estimate for the total interaction energy between 

two surfaces by accounting for Lifshitz–van der Waals (LW) interactions, electrostatic 

interactions (EL), and the acid-base interactions (AB) that the two surfaces encounter in 

their environment. It has been extensively used to model the interactions between bacteria 

and solid surfaces.37, 38, 52, 53 Here, we used it to model the interaction between S. mutans 
(assumed to be a sphere) and 30 wt% BTO-nanocomposite discs (vs. control discs; assumed 

to be semi-infinite plates) using Equation S2 and S3. Briefly, contact angles for the 3 test 

liquids (same as the Owens-Wendt method above) and zeta potentials of the discs and S. 
mutans (Table S2) were used to calculate the LW, EL and AB interaction energies (ΔGLW, 

ΔGEL and ΔGAB, respectively) as a function of the separation distance between S. mutans 
and the discs (using parameters in Table S3).

The resultant interaction energies for 30 wt% BTO-nanocomposite (400 nm) and control 

discs are shown in Figure 4A. Clearly, the ΔGAB interactions dominated the types of 

interactions for both disc surfaces. The ΔGLW+EL (classical DLVO theory) interaction 

energies are shown separately in Figure 3B, which presents an unfavorable energy barrier for 

S. mutans-BTO-nanocomposites interaction compared to the profile for S. mutans-control 

disc. This indicated that the BTO-nanocomposite discs with a higher negative surface charge 

density (vs. control discs; from zeta potentials in Table S2) prevented the adhesion of S. 
mutans (also negatively charged). This effect was amplified with the ΔGAB interactions 

added in (to complete the xDLVO components – Figure 4C). At separation distances under 

5 nm, the total interaction energies profiles separate out in opposite directions, resulting in 
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an unfavorable barrier for S. mutans-BTO-nanocomposites interactions while a relatively 

favorable profile for S. mutans-control disc interactions. The inset in Figure 4C depicts 

a magnified view of the interaction energy profiles with opposing tendencies. We also 

calculated the profiles for 10 and 20 wt% 400 nm BTO-nanocomposite discs (Figure S6A). 

The interaction energy profiles clearly support the trend in antibiofilm activity varying 

with BTO wt% (Figure 2) with 30 wt% discs displaying the most unfavorable profile for 

adhesion, followed by 20 wt%, 10 wt%, and control discs. As with our previous results, we 

tested this model with varying sizes of BTO (50–500 nm) and found that the interaction 

energy profiles for S. mutans-BTO-nanocomposites interactions were always unfavorable 

and opposed to S. mutans-control disc interactions regardless of the size of the BTO 

nanoparticles used to fabricate the discs (Figure S6B).

Our xDLVO modeling data in Figure 4 provided strong anti-adhesion evidence as an 

explanation for the mechanism of the antibiofilm activity seen in Figure 2. The data also 

suggest that the antibiofilm activity of the BTO discs in comparison to control discs is likely 

due to an intrinsic anti-adhesion effect that presents an unfavorable binding environment for 

S. mutans.

Binding forces between S. mutans and BTO-nanocomposite discs

To corroborate the xDLVO theory and the proposed anti-adhesion mechanism for antibiofilm 

activity, we measured S. mutans - disc interactions (i.e., direct cell-to-surface binding force) 

via biophysical measurements using sc-AFM (see Experimental Section for details). We 

observed clear differences in binding force patterns between S. mutans - control and S. 
mutans - BTO-nanocomposite discs. The binding force distribution for S. mutans - control 

discs was broad with ~50% of the adhesion force values lying in the 3 most populated 

bands (between 1-1.6 nN). The highest force value for this distribution was 2.51 nN. The 

binding force distribution for S. mutans - BTO-nanocomposite discs was narrow with ~70% 

of the adhesion force values lying in the 3 most populated bands (between 0.4-1 nN). The 

highest force value for this distribution was 1.09 nN. Overall, the average binding forces 

for S. mutans - BTO-nanocomposite discs were ~2.25-fold lower (~0.4 nN compared to 

~0.9 nN) than those for S. mutans-control discs (Figure 5A). Representative force curves 

for these interactions are shown in Figure 5B. These representative curves also highlight 

a longer and “stickier” rupture of the interaction between S. mutans - control rather than 

S. mutans - BTO-nanocomposite discs. Overall, this provides strong evidence to support 

both the findings of actual S. mutans binding patterns to discs and their modeled interaction 

energies (Figure 2 and 4).

Effect of poling process on antibiofilm activity of BTO-nanocomposite discs

Next, we further elucidated the anti-adhesive mechanism of BTO-nanocomposite discs in 

relation to their piezoelectric nature. We evaluated the surface roughness, contact angles, 

Owens-Wendt surface energy, and zeta potentials for both surfaces of poled and unpoled 

BTO-nanocomposite discs (Table S4).

First, we verified the poling by obtaining the crystal structures and orientation using 

XRD on the fabricated 30% BTO-nanocomposites before and after poling (Figure S7). 
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The diffraction peak positions were in good agreement with previous literature.54, 55 The 

tetragonal phase of BaTiO3 was confirmed by the peak splitting at 2θ near 22° and 45°. 

Furthermore, the enhancement of peak ratios of (001)/(100) and (002)/(200) was observed 

after poling, indicating the piezoelectric domains are aligned along the poling direction of 

(001).

While the surface roughness, contact angle, and surface energy data did not vary 

significantly for the top and bottom surfaces of poled and unpoled discs, the poling process 

altered the zeta potential of one surface of poled discs resulting in positive values (Table S4). 

Then, we determined the bacterial binding on each surface of control, poled, and unpoled 

discs with 30 wt% BTO of 400 nm individually (Figure 6). For convenience, we named 

a more negatively charged surface as the top. Interestingly, the positively charged surface 

(bottom) of poled discs favored bacterial binding and did not show significant antibiofilm 

activity (vs. both surfaces of control discs). On the other hand, the negatively charged side 

(top) of poled discs demonstrated a slight improvement in the reduction of bound bacteria 

(vs. unpoled BTO-nanocomposites). This directly supports our proposed mechanism of the 

antibiofilm activity via repulsive interaction between bacteria and surfaces depending on 

the physicochemical properties of the surface. Representative confocal images depicting this 

distinction in bacterial binding behavior on top and bottom surfaces of the discs are shown in 

Figure S8.

Piezoelectric and mechanical properties of BTO-nanocomposite discs

To be a useful emerging biomaterial, BTO-nanocomposite discs also need to retain their 

intrinsic piezoelectric properties. Thus, we confirmed that the composites maintained their 

piezoelectric behavior and mechanical stability, in addition to their antibiofilm activity 

shown above. We evaluated the piezoelectric properties of BTO-nanocomposite discs (with 

BTO size of 400 nm) by measuring voltage outputs under mechanical vibration. The output 

voltages showed a promising BTO concentration-dependency; voltage output increased 

proportionally and substantially to the BTO concentration (Figure 7A and B). 30 wt% 

BTO-nanocomposite discs demonstrated ~35-fold improvement in output voltage compared 

to control discs (~32-fold and ~26-fold improvement over control discs for 20 wt% and 10 

wt% BTO-nanocomposite discs, respectively).

Additionally, we tested the mechanical strength (FS and FM) of the BTO-nanocomposite 

discs to evaluate the impact of the addition of BTO nanoparticles. We observed a small 

reduction in FS of up to 24.87 MPa for the 30 wt% BTO-nanocomposite discs in 

comparison to control discs. Our results were comparable to previous studies involving 

dental applications.23, 56, 57 The FM values fluctuated with BTO concentration with no clear, 

significant differences (Figure S9). These results were comparable with our recent work on a 

Smart Dental Implant23 indicating that our discs were suitable for potential use in biological 

settings.

Long-term stability is another important parameter for determining the durability of 

biomaterials in a biological environment. Therefore, we tested the leaching of BTO 

nanoparticles from the discs to their surroundings. We also used an industrial standard, 

accelerated life testing, to estimate the MTTF of the discs (Table S5 and Figure S10). 
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The long-term stability of discs was modeled by assessing the daily weight lost over a 

14-day period and estimating the MTTF at 37 °C, 65 °C, and 80 °C by measuring the 

AF. Excitingly, we observed negligible loss of the disc over a 14-day period under 37 °C, 

exhibiting lifetime durability. Indeed, MTTF of 30% wt BTO disc at 37 °C was estimated 

to be approximately 27.5 years. Even under harsh conditions (clinically irrelevant) such as 

at 65 °C and 80 °C, the discs only lost ~1 mg (<0.4%) over 14 days and the estimated 

MTTFs were close to 1,000 days and a year, respectively (Figure S10A and B). The 

data indicate that our BTO-nanocomposite discs exhibit reliable durability under clinically 

relevant conditions against external forces and temperatures without compromising their 

antibiofilm and piezoelectrical properties.

Cytotoxicity towards human gingival fibroblasts and keratinocytes

Previous biological studies involving free BTO nanoparticles did not assess the cytotoxicity 

of BTO.18, 19 In this study, we studied the antibiofilm activity of BTO-nanocomposite discs 

against a model oral pathogen, S. mutans. To be useful in the oral environment and as an 

extension to our recent work on BTO-dental crown composites,23 the cytotoxicity of BTO­

nanocomposite discs needs to be assessed in an appropriate cellular environment. Thus, we 

followed ISO 10993-534 guidelines to perform an extract cytotoxicity test on 30 wt% BTO 

discs (with BTO size of 400 nm) and control discs against human gingival cells (HGFs and 

HGKs). The data from MTT assays performed with spent media (media in contact with 

samples for 24 h at 37 °C and 5% CO2) demonstrated no significant drop in cell viability 

for either cell line (Figure 8A – HGFs and 8B – HGKs) with treatment times of 1 h and 

24 h. This result complied with the non-leaching data from Figure S10. On the other hand, 

cytotoxic controls with 0.5% phenol led to an almost complete loss in cell viability for both 

cell lines. In summary, all the data strongly suggested that the BTO-nanocomposites can 

serve as a platform for biomaterials that require microbial infection resistance and electrical 

power for functionality.

Discussion

Rapid advances in micro and nanotechnology have led to a dramatic upgrade in the 

usefulness of implantable biomaterials making them increasingly advantageous in disease 

monitoring, diagnosis, and treatment.58 Furthermore, recent progress in microelectronics 

enables communication of implantable devices with external devices worn by the host/

user. To reliably fulfill their function over a long-term period, however, such devices 

require sustained power generation. Yet, these devices are often limited by the size, 

capacity, and lifespan of their batteries, which require frequent replacement if not 

rechargeable (rechargeable batteries allow up to 1,000 charge cycles). Concomitantly, 

these implantable devices should be infection-resistant to avoid severe, painful, and 

costly surgical replacement due to failure. The most common methods for controlling 

microbially-induced infections include antimicrobial coatings (e.g., leachable59 and non­

leachable60). However, the escalating pervasiveness of antimicrobial resistance hinders these 

approaches and the management of biomaterial-associated infections.6 To address both 

sustained energy production and biomaterial-associated infection, in this study, we aimed 

to develop an ingenious multi-functional biomaterial platform utilizing BTO as a smart 
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component, exhibiting excellent piezoelectricity and outstanding bacterial binding repellant 

properties without relying on an antimicrobial component. Then, we comprehensively 

analyzed the biological, electrical, and mechanical properties of BTO-nanocomposites to 

significantly broaden BTO’s potential applications for infection-resistant, non-toxic, and 

energy-harvestable biomaterial platforms.

Our highly reproducible fabrication strategy (Figure S1) was optimized to ensure that the 

BTO-nanocomposite discs retained potent piezoelectric and mechanical behavior while also 

serving as candidates to run established in vitro oral biofilm assays.25, 27 By performing 

proof-of-concept biofilm assays against a model oral pathogen, S. mutans, we demonstrated 

>10-fold reduction in bacterial population bound to BTO-nanocomposite discs (vs. control; 

Figure 2 and 6). Previous studies with BTO nanoparticles have shown moderate bactericidal 

activity.18, 19 However, these results were for free nanoparticles with concentrations as high 

as 100 μg/mL. Additionally, the size of the BTO nanoparticles (smaller than the diameter 

of 100 nm) prevented them from demonstrating any piezoelectric behavior in biologically 

relevant conditions. In this study, we primarily demonstrated the biological usefulness 

of piezoelectrically-active BTO-nanocomposite discs with a particle size of 400 nm at 

different wt% (0-30 wt%). Nevertheless, the antibiofilm activity of our BTO-nanocomposite 

discs persisted regardless of the size of the BTO used (Figure S3). Notably, the BTO­

nanocomposite discs were able to reduce the number of bound bacteria to the surface 

without displaying any bactericidal activity (Figure S4). In comparison to conventional 

therapies, such non-microbicidal approaches can be extremely beneficial as they may not 

disrupt normal microflora nor induce the prevalence of drug resistance over time.

Given that the BTO-nanocomposite discs did not depict any bactericidal activity, we 

surmised that BTO-nanocomposite discs may display an anti-adhesive effect to prevent 

biofilm formation. To investigate this claim, we first investigated the effect of surface 

roughness of the discs on S. mutans adhesion. Some studies reported that surface roughness 

increased bacterial adhesion.61, 62 In our study, we observed that the surface roughness 

increased with increasing BTO content and size; the mean surface roughness value of 30 

wt% BTO-nanocomposite discs was ~4-fold higher than that for control discs, while the 

overall roughness was indeed under 100 nm for all discs. However, our binding data showed 

that the magnitude of bacterial binding coincided with BTO content rather than surface 

roughness (Figure 2 and 3). Although surface roughness can act as a determinant to govern 

bacterial binding to surfaces, it should not be used as the sole descriptor to explain adhesion 

on surfaces 63. Since there are many other factors affecting bacterial adhesion, bacterial 

binding can be varied to surfaces with the same roughness, depending on other material 

properties (e.g., charge density, wettability, stiffness, and topography) and bacterial species.5 

Interestingly, Lassila et al. 64 have previously reported that there was no change in the 

adhesion of S. mutans to composite resins and commercial restorative materials of varying 

roughness values (Ra ranging from 0.3 to 2.3 μm) indicating that the adhesion of S. mutans 
can be dependent on other surface parameters. In particular, the scale of the roughness of the 

BTO-nanocomposite and control discs tested in our study is consistent with nano-enabled 

mechanisms where physicochemical forces dominate parameters affecting adhesion.63
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The zeta potential values of the substrate clearly indicate that BTO-nanocomposite discs 

had a higher negative surface charge density in comparison to the control discs (Table 

S2). Additionally, the zeta potential values for S. mutans were in agreement with a 

previous study on various isolates of S. mutans65 depicting low negative values near 

neutral pH. This helped us elucidate the mechanism of the anti-adhesive action of our 

BTO-nanocomposites using xDLVO modeling (Figure 4). As expected, the AB interactions 

dominated the LW+EL component in an aqueous environment.42 The trend in these profiles 

did not change with varying the size of BTO (Figure S6) indicating that negatively charged 

BTO may intrinsically be preventing binding of negatively charged S. mutans in an aqueous 

environment. While the modeled data was strongly suggestive of the anti-adhesive behavior 

of our BTO-nanocomposite discs, sc-AFM data (Figure 5) experimentally and quantitatively 

confirmed that the anti-adhesive character of the BTO-nanocomposite discs was a major 

driving force to inhibit S. mutans adhesion. It is worth noting that we observed antibiofilm 

activity on both poled and unpoled discs with varying degrees of efficacy depending on 

the attractive/repulsive interactions between specific surfaces of the discs and S. mutans. 

Specifically, the positively charged surface of the poled disc with no significant antiadhesive 

property (Figure 6) supports our proposed mechanism of the antibiofilm activity via 

repulsive interaction between bacteria and surfaces. Our BTO-nanocomposites utilize the 

unique physicochemical surface properties that inhibit bacterial adhesion, while recent 

studies of BTO-based systems utilize ROS to kill E. coli,20, 21 which could be temporary 

in the human body (e.g., in the mouth) as the ROS generation is subjected to mechanical 

stimuli.

The opposite charge of BTO-nanocomposites on each side by poling process may provide 

additional benefits in biomedical applications. As we observed in this study, a negatively 

charged surface could inhibit bacterial adhesion to the surface. In contrast, a positively 

charged surface could facilitate the integration of biomaterial into soft tissues as reported 

elsewhere.66-69 Our intended application in the oral cavity involves the negatively charged 

surface facing outwards (exposed to saliva and bacterial insults) and the positively charged 

surface facing inwards (towards tissue). This may allow us to synergistically integrate 

the two functions of our BTO-nanocomposites by placing them accordingly, thereby 

tackling two major issues in prosthetics- bacterial contamination and tissue integration. It 

is important to mention that the poling electric field and nanoparticle concentration can 

dictate the magnitude of surface charge, which should be further explored in future studies.

Notably, our data also demonstrated other important features of multifunctional BTO­

nanocomposites that can potentially benefit many implantable devices. For example, the 

substantial mechanical strength of our BTO-nanocomposite (Figure S9) warrants a wide 

adoption as simple packaging. As we demonstrated tangible electrical outputs using the 

piezoelectricity of BTO (Figure 7), it can also be useful for low-power electronics. 

Furthermore, the long-term stability data (low leaching and MTTF; Table S5 and Figure 

S10) strongly suggest that our BTO-nanocomposites are less likely affected by the gradual 

and passive loss of antibiofilm effect, which has been a major drawback of many of the 

antibiofilm materials. Finally, the confirmed biocompatibility, provided by the absence of 

cytotoxicity towards HGFs and HGKs (Figure 8), bodes well for translation into biological 

settings and clinical applications. There has been a report that Ba2+ can be leached out 
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from free-floating BTO surfaces.70 However, we did not observe significant cytotoxicity 

to gingival keratinocytes and fibroblasts that can be caused by leaching of BTO from the 

disc, possibly due to the low surface area of BTO tightly embedded in the nanocomposites. 

Altogether, the data strongly suggest that our BTO-nanocomposites, with their robustness 

and ability to resist bacterial contamination, make them attractive candidates for use in the 

diverse biomedical arena.

Conclusion

In summary, we present the first demonstration of clinically viable infection-resistant 

energy-harvestable hybrid nanocomposites functionalized with BTO that have adequate 

mechanical properties and outstanding biocompatibility. The mechanism for this antibiofilm 

activity was a strong anti-adhesive effect that inhibited S. mutans adhesion. Yet, this 

anti-adhesive property and the underlying mechanisms of BTO-nanocomposites need to 

be validated against other model pathogens as well as complex multi-species biofilm 

models to improve the relevance and broaden the scope of its potential uses. Additionally, 

heterogeneously charged surfaces of poled discs may grant us to address unresolved 

issues in prosthetics- bacterial contamination and tissue integration. Furthermore, future 

studies may benefit to further improve the mechanical strength of BTO-nanocomposites by 

considering other emerging base materials to be compliant with areas facing strenuous cyclic 

compression loading, such as tibia. This coupled with non-bactericidal activity, stability 

and non-toxicity suggests that our BTO-nanocomposites can serve as a potent biomaterial 

platform for developing implantable ambulatory devices in the human body.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic diagram of bimodal BTO-nanocomposites biomaterial platform with antibiofilm 

and self-powering functionalities.
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Figure 2. 
Antibiofilm activity of BTO-nanocomposite discs. (A) Dose-dependent reduction in 

CFU/mL with increasing wt% of BTO in discs. Data represent means. Error bars are 

standard deviations. Statistics: One-way ANOVA: p < 0.001. Post-hoc (Dunnett’s method): 

*** represents p < 0.001 in comparison to control discs (0 wt%) (n=3). (B) Representative 

top (XY) and orthogonal (XZ) views of confocal images of S. mutans biofilms at 18 h for 

control discs (0 wt%) and 30 wt% BTO-nanocomposite discs. Bacterial microcolonies were 

labeled with SYTO 9 (green) and EPS α-glucan were labeled with Alexa Fluor 647 (red). 

Scale bar: 50 μm. Quantified biovolume of (C) S. mutans, (D) EPS, and (E) total (sum of S. 
mutans and EPS) in the biofilm as determined by COMSTAT. Data represent means. Error 

bars are standard deviations. Statistics: t-test with **** representing p < 0.0001 (n≥3).
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Figure 3. 
Surface roughness of control and BTO-nanocomposite discs. (A) Quantified surface 

roughness values of control and BTO-nanocomposite discs. The data show a dose-dependent 

increase in surface roughness (arithmetical mean height values, Sa) for increasing wt% 

of BTO in discs. Data represent means. Error bars are standard deviations. Statistics: One­

way ANOVA: p < 0.0001. Post-hoc (Dunnett’s method): **** represents p < 0.0001 in 

comparison to control discs (0 wt%). (B) Representative 3D topographical scans (12.8 μm x 

12.8 μm scans; 10 random spots per disc) for discs with varying BTO wt% (n≥3).
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Figure 4. 
Interaction energy profiles between S. mutans and discs. (A) Modeled components of 

the total interaction energy (ΔG) from the xDLVO theory (LW: Lifshitz–van der Waals 

interactions; EL: electrostatic interactions; AB: Lewis acid-base interactions) for control and 

30 wt% BTO-nanocomposite discs. (B) Energy profiles of the sum of LW and EL (DLVO 

components) depict a larger repulsive energy barrier for interaction between S. mutans and 

30 wt% BTO-nanocomposite discs. (C) Total interaction energy (LW+EL+AB) for control 

and 30 wt% BTO-nanocomposite discs. Inset depicts a magnification of the profiles between 

separation distances of 2 to 4 nm (n≥3).
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Figure 5. 
Binding forces between S. mutans and discs. (A) Frequency distributions for adhesion forces 

between S. mutans - control discs and S. mutans - 30 wt% BTO-nanocomposite discs using 

sc-AFM. Distributions represent 1200 force curves from 10 x 10 force maps. Adhesion 

forces for S. mutans - control discs were 2.25-fold higher than for S. mutans - 30 wt% BTO­

nanocomposite discs. (B) Representative adhesion force curves between S. mutans-control 

discs and S. mutans-30 wt% BTO-nanocomposite discs indicating a longer and “stickier” 

rupture of the interaction between S. mutans - control than S. mutans - BTO-nanocomposite 

discs (n≥3).
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Figure 6. 
Antibiofilm activity of separate surfaces of poled and unpoled BTO-nanocomposite discs. 

Data represent means. Error bars are standard deviations. Statistics: One-way ANOVA: p 
< 0.0001. Post-hoc: ‘a’, ‘b’ and ‘c’ represent p < 0.0001 in comparison to control for top, 

bottom, and total, respectively; top and bottom surfaces within each condition are compared 

by * marks (n=3).
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Figure 7. 
Piezoelectric output voltages for BTO-nanocomposite discs. Piezoelectric output increases 

with increasing BTO concentration in the composites: (A) measured voltage output under 

mechanical stimulation and (B) averaged voltage output as a function of BTO concentration. 

Data represent means. Errors bars are standard deviations. Statistics: One-way ANOVA: p < 

0.0001. Post-hoc (Dunnett’s method): **** represents p < 0.0001 in comparison to control 

discs (0 wt%) (n≥3).
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Figure 8. 
Cytotoxicity of discs towards HGFs and HGKs. Percentage cell viability for extract test­

based cytotoxic screening of control and 30 wt% BTO-nanocomposite discs towards (A) 

human gingival fibroblasts (HGFs) and (B) human gingival keratinocytes (HGKs). Neither 

disc had any significant cytotoxicity towards both HGFs and HGKs. Data represent means. 

Error bars are standard deviations. Statistics: One-way ANOVA: p < 0.001. Post-hoc 

(Dunnett’s method): **** represents p < 0.0001 in comparison to negative control (n≥3).
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