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ABSTRACT: The explosion in the use of machine learning for
automated chemical reaction optimization is gathering pace.
However, the lack of a standard architecture that connects the
concept of chemical transformations universally to software and
hardware provides a barrier to using the results of these optimizations
and could cause the loss of relevant data and prevent reactions from
being reproducible or unexpected findings verifiable or explainable.
In this Perspective, we describe how the development of the field of
digital chemistry or chemputation, that is the universal code-enabled
control of chemical reactions using a standard language and ontology,
will remove these barriers allowing users to focus on the chemistry
and plug in algorithms according to the problem space to be explored
or unit function to be optimized. We describe a standard hardware
(the chemical processing programming architecturethe ChemPU) to encompass all chemical synthesis, an approach which unifies
all chemistry automation strategies, from solid-phase peptide synthesis, to HTE flow chemistry platforms, while at the same time
establishing a publication standard so that researchers can exchange chemical code (χDL) to ensure reproducibility and
interoperability. Not only can a vast range of different chemistries be plugged into the hardware, but the ever-expanding
developments in software and algorithms can also be accommodated. These technologies, when combined will allow chemistry, or
chemputation, to follow computationthat is the running of code across many different types of capable hardware to get the same
result every time with a low error rate.
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1. INTRODUCTION

The exploration and optimization of chemical reactions can be
a laborious and time-consuming endeavor1 as poor optimiza-
tion strategies, combined with human intuition laced with
biases, means that a large number of reactions must be
undertaken to map a given chemical space.2 Worse yet,
published and previously optimized methods have well-known
reproducibility issues.3 A host of different procedures must be
carried out in any chemical synthesis leaving significant room
for miscommunication, lack of detail, or omission of tacit
knowledge.4 In recent years, attention has turned to addressing
these problems through initiatives which aim to normalize data
generation and improve data sharing standards as well as
applying novel methods for analyzing available reaction data,
including machine learning.5−11 These efforts can be seen as
first steps toward the full digitization of chemistry (Figure 1).12

At first glance, the digitization of chemistry can be seen as
the process of converting information, typically gained from
physical experiments, into a digital format. However, on a
deeper level the digitization of chemistry involves the full
control of chemical processes by capturing all relevant input
parameters, process operations and output data, and
representing these in a machine-readable fashion to allow

consistent reproduction of processes and efficient dissem-
ination of the knowledge obtained.13−16 We envision that
future digital chemistry laboratories will run automated,
multistep reactions on a variety of interoperable hardware.
Processes will be monitored with an array of sensors and
process analytical tools, enabling rapid sharing of experimental
data and advanced algorithmic control, which will be key to
fully exploit new understanding and develop new models.17,18

In addition, for full exploitation of the potential of digital
chemistry, a unified set of data formats, data capture standards
and sharing guidelines are required to prevent research groups
and fields becoming siloed. Incorporation of digital tools into
the workflow of chemistry has already begun to increase
efficiency, discovery, and the pace of innovation and it is clear
that the volume of scientific data will rapidly proliferate in the
coming years.9,19−23 In chemical synthesis and reaction
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analytics, it will be essential to capture all the key parameters of
a preparation or experiment, including the context of the work.
This approach will be essential for reproducibility, however,
with only a few exceptions, this data has not been recorded
reliably to date. Herein we describe how, in order to achieve
this vision we need a standard architecture, comprised of a
high-level machine and human readable code, to describe and
record chemical process steps. It will be vital to connect this via
a standard data structure to a wide range of affordable, modular
synthetic, and analytical hardware (Figure 2).4,14 This
architecture must also work in tandem with feedback
algorithms to provide the key features required for process
optimization and the acquisition of large reaction data sets.24

2. DIGITIZING CHEMICAL REACTIONS
To describe a reaction, chemists typically draw a reaction
scheme made up of 2D graphs of the molecular structures

comprising the reagents, any catalysts, and the products, see
Figure 3A. Reaction conditions may or may not be indicated
by inclusion of parameters in the scheme. While this may
indicate key variables, much knowledge is assumed or omitted
in these “schemes”. In addition, the actual description of how
to perform the reaction in detail is often recorded in
continuous prose in a different supplementary document to
where the graph is documented, see Figure 3B.
In the context of reaction optimization, experiments are

often carried out using a one factor at a time (OFAT)
methodology and may be represented in a parameter table,
listing the values of continuous (e.g., temperature, time) and
categorical (e.g., solvent type) variables as well as the reaction
outcome, see Figure 3C. Alternatively, design of experiments
screening,2 spider plots,25 and traffic light systems26 have all
been used to identify the specific parameters, which
disproportionately influence reaction yield or any other
optimizable metric. However, for all these methods, the
decision regarding which parameters are varied or recorded
during an optimization campaign is the choice of the chemist
and is, therefore, somewhat subjective. In addition, an arbitrary
threshold may be set for the optimal output value, and the
process operation described by the variables recorded can also
be ambiguous.
For cheminformatic applications, the simplified molecular-

input line-entry system (SMILES) was developed as a simple
single line notation representing the chemical structure of a
molecule in ASCII strings.27 SMILES representations have
now been widely adopted for digital representations of
molecules and can be easily converted into graph-based
representations of the structures as to enable easy interpreta-
tion by the chemist. In this context reactions are often
represented as reaction SMILES where reactants are separated
by a period (.) and the reaction arrow is indicated by “ ≫ ”
with the option to insert “arrow conditions”, see Figure 3D.
Notable alternative representations of reactions include
RInChI,28 which extend the idea of the IUPAC International
Chemical Identifier (InChI)29 toward reactions, reaction-data
files (RDfiles), CSRML,30 Reaction-MQL (an extension of the
molecular query language (MQL)),31 difference vectors based
on molecular maps of atom-level properties (MOLMAPS),32

and condensed graph of reaction (CGR),33 which were

Figure 1. Digitization of a chemistry lab involves all aspects of lab
work and data analysis. Automatic synthesis hardware should be able
to undertake multiple unit operations or steps and use modular
hardware that can communicate with different control systems and
hardware systems. Analytics includes not only spectroscopy,
spectrometry, and chromatography but also sensors for the
continuous monitoring of process variables, such a temperature,
which are vital input/output parameters for optimizations. Data must
be collected, stored, and shared using FAIR principles such that both
suboptimal and optimal conditions are recorded.

Figure 2. Chemputation: The process of converting a chemical code (χDL) to a reaction outcome with low error in any compatible robotic
architecture, c.f. computationrunning code on a digital computer. A chemical processing unit converts the inputs (starting materials, χDL code,
and synthetic hardware) into outputs (reaction products, analytical data).
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developed as a pseudomolecular object that represents the
reaction by indicating the bonds formed and broken.34

Most machine learning algorithms are designed to work with
fixed-length vector representations such as concatenated
structural fingerprints, a set of calculated descriptors, or
learned representations, see Figure 3F.35,21 Graph-neural
networks have been employed for reaction prediction tasks,36

but simple text representations in combination with advanced
natural language processing (NLP) techniques have achieved a
similar performance.37 String representations such as SELFIES
or DeepSMILES have recently been developed to increase
reliability and ease for data-heavy cheminformatics applica-
tions.38

A number of tools have been developed to translate the full
synthetic protocols, written in natural language into a machine-
readable format.39 Chemical tagger was developed as a rule-

based text-mining tool and eventually led to the US patent and
trademark office (USPTO) data set where the procedure is
stored as an action sequence in the XML-based chemical
markup language (CML), which was developed to allow both
humans and machines to disseminate chemical data without
information loss.40−42 In addition, data-driven approaches for
converting text into action sequences have also been
demonstrated.43 Despite this most procedures currently in
the literature do not contain all of the information required to
fully automate a procedure with factors such as stirring rate
and the addition rate. Furthermore, other data, such as the
actual temperature, pressure, humidity, etc., the reaction was
conducted (rather than room temperature) could be critical for
successful automation.
In 2019, we introduced our invention of the Universal

Chemical Description Language (χDL, see Figure 3E),4,14,44 in

Figure 3. Different representations of the same reaction. Chemists commonly use Kekule ́ type reaction graphs (A) to depict reactions however
these assume many procedural variables. More variables may be captured in prose (B), but this can be challenging for machines to interpret.
Parameter tables are commonly used to capture optimization data (C). However, for digital chemistry representations, such as ReactionSMILES
(D), vectors (F), or a markup language (E), which may or may not utilize the former, are favored.

Figure 4. χDL files act as a bridge between the generalized abstraction of a chemical reaction process and the specific commands required for each
platform or hardware.
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which all synthetic procedures can be encoded without
ambiguity, executed on any compatible robotic platform, or
manually, and exchanged using a standard format, see Figure
4.4,45 The aim was to expand on previous work by directly
linking the sequences of actions to robotic execution on an
automated synthesis machine.14 This was achieved by
generating the universal abstraction of a batch chemical
reaction. In general, all batch reactions follow the same
procedure: (i) reaction, (ii) workup, (iii) isolation, and (iv)
purification. Even complex stepwise synthetic procedures just
follow the same abstraction in loops whereby one set of
reagents is transformed into a set of products, and this is
carried on to the next step and the process occurs again in a
loop as the output products from step n become the reagents
in step n + 1. This key recognition of the modular nature of the
abstraction means it should be highly amenable to coding. The
key is that many of the operations, once perfected, could be
reused again. Furthermore, the abstraction being based on
batch has parallels with computational architectures since the
hardware could be set into specific states around the batch
synthesis, whereas starting the abstraction in flow is harder.
This is because flow processes are continuous which makes
mathematical analysis difficult to make universal. However, the
transformation from batch into flow is much easier because the
frequency of the operations can be increased until they are
continuous, and since these could have a discrete time stamp it
will be easier to globally synchronize them. The instantiation of
the abstraction requires the hardware modules to be capable of
carrying out the operations described such that the hardware
can be reset to the ready state (e.g., by cleaning) after each
operation.
The modules that carry out the operations can then be

represented on a graph as the nodes and these are given a
network (IP) address, whereas the material transfer pathways
(e.g., pipes moving liquids or path of a robot arm) are shown
as the edges connecting the nodes together. The hardware set
detailed in the graph has a defined set of unit operations they
are each able to perform, while the χDL details all the unit
operations required to undertake a given procedure. Thus, any
robotic system with the required hardware modules organized
appropriately on a graph can execute a given procedure by
generating a platform specific executable file (XDLEXE) from
the universal χDL. Importantly, χDL is simple and easily
readable by both human and machine but can be produced
automatically from natural language by extraction of action

sequences from the procedures which allows the incorporation
of key parameters such as order of addition.
Despite the vast wealth of chemical data contained in the

literature, failed experiments are commonly omitted from the
data published with articles in many journals46 even though
this data has been shown to be valuable in predicting reaction
outcomes.47 Most of this “failed” reaction data is currently
stored, unindexed, in paper-based or electronic laboratory
notebooks in academia or industry and is time-consuming to
search even to those with access. With the advent of deep
learning for chemistry, machine-readable data sets become
increasingly important for computer-aided synthesis planning
(CASP), automated synthesis and machine learning applica-
tions.48 Publicly available databases of chemical reactions
remain rare with the most detailed and information rich
databases, such as Reaxys, SciFinder, or Spresi, held behind
paywalls (Table 1). For this reason, a consortium of academic
groups and industry representatives was formed to develop the
open reaction database (ORD) - an open-access repository of
chemical reactions to fuel research in machine learning applied
to chemistry.49 Despite this, the ORD does not intend to
include digital action sequences geared toward automatic
execution of reactions. In addition, analytical data (e.g., from
LCMS, IR, NMR) is rarely available in an usable format from
any of these databases. One vital component that is currently
absent from the databases is the ability to store any run-time or
current real-time data collected by sensors attached to the
reaction hardware, for example, temperature probe on a stirrer
hot plate to name a very simple example. We believe that the
ability to collect real time data, or reaction telemetry, will be
incredibly useful to both fingerprint successful reactions,
record failure, and generate new insights and understanding.
The so-called reaction-telemetry fingerprints that will be
generated should have great potential to increase the
robustness of automated workflows, validate robotically
generated data for reaction optimization, and also aid in
teaching and training of chemistry at all levels.
Laboratory automation equipment is often expensive, highly

specialized for certain tasks and only accessible to a small
group of expert users.50 Open software and open hardware
movements contribute to widening access but with an ever-
increasing number of custom robotic platforms, cheminfor-
matic workflows and file formats, there is an increasing need
for standardization.51 The standardization in laboratory
automation (SiLA) consortium was formed to develop
principles that would enable plug-and-play laboratory

Table 1. Chemical Reaction Databases and Their Respective Data Classes Provided

Reaxys USPTO Pistachio
Open Reaction

Database CAS Reactions

curator Elsevier D. Lowe/NextMove NextMove ORD Consortium CAS
source Gmelin, Beilstein,

patents, papers
text-mined US patent grants and
applications from 1976 to 2016

text-mined US and EPO
Patents from all available
years

public data sets +
contributed data
sets

curated from journals,
patents, dissertations,
etc.

size >55 M 3.7 M >9 M NA >136 M
failed
reactions

N N N Y ∼7 k

classification Y N Y Y N
text Y Y Y Y Y
conditions Y Y Y Y Y
machine-
readable
actions

N Y Y N N

open access N Y N Y N
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automation.52 SiLA 2 was released in 2019 and is based on a
microservice architecture and built to connect with laboratory
information management systems (LIMS), electronic lab
notebooks (ELNs), and other common laboratory software.53

For chemistry, ESCALATE (experiment specification, capture,
and laboratory automation technology) was developed as a
software pipeline to specify automated experiments and
capture generated data in a structured manner.54 Research
data should be findable, accessible, interoperable, and
reproducible (i.e., FAIR) but since the inception of these
principles by Mons et al. in 201655 confusion on how to
implement them has led to slow adoption.56 As HTE
workflows become more commonly used to generate large
amounts of data, there is an increasing need to validate and
verify the data quality, for example, a simple hardware failure
could lead to a large amounts of false negative reaction data.
In our experience, best practices for digital chemistry

research include describing the experiment in a human- and
machine-readable mark-up language which provides a high-
level user interface, capturing exact versions of control software
and dependencies, declaring the platform as a graph with all
relevant metadata (such as type and volume of vessels, devices
used etc.).57,58 The disconnect between process variables and
actions, the suggestion of missing values and the removal of
ambiguity in reaction data are currently bridged by expert
chemists and need to be addressed by future standards.
Importantly, the digitization of chemistry remains an ultimately
human endeavor which is dependent on a change of the
research culture. This means that university curricula must be
adapted to provide education and training in digital
technologies.59 Similarly, existing publication standards must
be revised with new applications such as data mining in mind.

3. AUTOMATION OF CHEMISTRY
The synthesis of organic small molecules is still largely
performed by hand in a laboratory setting that has barely
changed in decades, but experts see the digitization of synthesis
fast approaching.13,60 Merrifield pioneered the field by
introducing the concept of automated solid phase peptide
synthesis in 1965.61 The robust chemistry, simple purification
procedure and iterative reaction cycles made the process
amenable to automation. Smart laboratory automation holds
promise to accelerate chemical research, eliminate tedious
tasks, improve safety, and reliability.62 Indeed, the automated
synthesis of oligopeptides, oligonucleotides,63 oligosacchar-
ides,64 and metal oxides22,65−67 provided unprecedented access
to these compound classes fueling exciting research in the areas
of protein biochemistry,68 synthetic biology,69 chemical
glycomics,70 and materials. Within the chemistry domain,
automation may prove as a valuable tool for studying kinetics,
optimization, discovery, and reaction telescoping.10,71−73 Over
the last few decades, a range of synthetic hardware has become
available to handle the throughput and procedural needs of
autonomous optimization of chemical reactions (Figure 5).
Flow chemistry is one of the key enabling technologies for

automation in chemistry.74−76 Ideally suited for solution-based
reactions or those with immobilized catalysts, flow systems are
easily automated as they rely on the simplest liquid handling
robotics, i.e. syringe pumps. The ability to carry out multiple
synthetic steps in tandem by facile addition of flow loops, to
improve heat or light transfer and to append in-line analytics
are all significant advantages for flow chemistry.77 These
advantages were leveraged for the on-demand synthesis of

multiple active pharmaceutical ingredients in a single robotic
flow chemistry platform.78 While this approach required
manually adjusting the platform to switch between different
processes, a “radial synthesizer” was capable of performing
multistep syntheses and optimizations for specific target
molecules, as well as derivative libraries without instrument
reconfiguration.79 The utility of automated flow for the
optimization of cross-coupling reactions was demonstrated
by performing over 5700 reactions on a micromolar scale in
flow with inline HPLC analysis.80 Interestingly, it was possible
to overcome the common inability of flow systems to
meaningfully vary the reaction solvent by injecting a 9:1
ratio of diluent solvent to reagent stock solutions, achieving
homogeneous mixing and screening the effect of solvent on the
process. Jensen et al. elegantly demonstrated the advantages of
flow automation for optimization with their “plug-and-play”
modular flow reactor which features discrete loops for heating,
cooling and photoirradiation.7 Despite these examples, current
flow system architectures are not able to access full gamut of
reactions available to batch chemists and parallelization of unit
operations is required for continuous processing,81,82 meaning
systems are only reproducible under equivalent flow
conditions. In addition, in systems with metal-based flow
loops, the role of the hardware in the chemistry may be
noninnocent, adding significant complications for reproduci-
bility.83 Finally startup and shutdown of these systems presents
additional complications over beginning batch processes
adding to the method development required for these
syntheses. With the majority of reactions still performed in
batch, significant method development is required to adapt
known chemistry to flow platforms.
An alternative approach to automation is the combinatorial

use of multiparallel batch reactors for high-throughput
experimentation (HTE), which became popular in the early
1990s for the synthesis of large diverse screening libraries for
drug discovery. This combinatorial chemistry and high-
throughput screening paradigm was often blamed for a decline
in productivity in the pharmaceutical industry,84 and yet it
became a valuable research tool whose relevance is underlined
by the commercial availability of mature XYZ Gantry
(Chemspeed, Tecan) and ultralow-volume pipetting platforms
(Mosquito). In recent years, we have observed a renaissance in
the use of massively parallel, miniaturized ultrahigh-throughput

Figure 5. Automation hardware can be categorized by execution
mode or by scale. Each has its advantages and disadvantages.
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experimentation35,85−87 combined with design of experiments
(DoE) and other screening techniques applied to these
reactors for discovering and optimizing novel reactivity,
properties88 and even bioactivity,89 though not necessarily
isolation procedures.90 These reactors, usually based on 96-,
384-, or 1536-well plate type designs, and allow hundreds of
reactions to be run at once under the same process
conditions.80 Despite this, the material consumption and
waste were minimized because of the small reaction scale.
While extremely powerful, this setup is far from general as
there are significant experimental constraints imposed by the
hardware (scale, compatible solvents, feasible temperature
range) and such approaches appear to miss the flexibility
required to automate multistep organic syntheses. Progress in
recent years has led to significant progress toward a universal
batch synthesis platform.21,72 The synthesis of many different
types of small molecules in one automated process using N-
methyliminodiacetic acid (MIDA) boronate building blocks
could be accomplished by applying iterative synthesis similar to
peptide synthesis enabled by a general MIDA catch-and-release
purification protocol.91

In 2019, we reported the development of a new approach to
chemical synthesis architectures we first embodied in the
“Chemputer” (now known as the ChemPU, Figure 6)
providing standard software and hardware for complete
automated synthesis and workup of a range of organic
compounds based on a universal liquid handling backbone
and modular additions for filtration, extraction, solvent
evaporation, etc., see Figure 4.14 This platform emulates the
traditional process operations, which would be carried out
manually by a laboratory chemist and since the vast majority of
the literature is based on batch chemistry, automation of these
syntheses requires robotics founded in batch. Extension of the
modularity of the original platform allowed for the execution of
a wide range of chemistries on a single platform, including
cross coupling, amide bond formation via peptide synthesis
and diazirine formation.57 Importantly, the hardware modules,
which make up each platform in the ChemPU family, are
represented graphically and flexibly modified for each

procedure using an online GUI. Both the hardware graph
and the procedure are required for the generation of a platform
specific executable to run the procedure. The procedure files
for the ChemPU use the simple human and machine-readable
chemical description language (χDL) which is hardware
independent and therefore represents a universal chemical
coding format. These χDL files describing synthetic procedures
can be executed directly on the platform with minimal human
intervention recording accurately every unit operation under-
taken by the ChemPU.4 χDL files and hardware graphs can
then be shared via Github upon publication allowing for others
to reproduce these procedures exactly as performed in
Glasgow even on different hardware as long as it meets the
minimum standards for χDL compatibility.4

3.1. Control Systems

Simple experimental tasks can easily be automated using
microcontrollers or single board computers with only a few
lines of Python or Arduino (C++) code.92 While short linear
scripts and hardcoded variables may suffice in some
applications, robust and reusable software is needed to meet
the reproducibility expectations of work that is to be classed as
scientific research. Contrary to the expectation that digitization
and automation should lead to increased reproducibility, code
from many academic software projects does not execute, even
just a few years after initial publication.93 This phenomenon is
commonly known as “bit rot”, a term describing the apparent
decay of software over time, can only be prevented by good
software development practices and active maintenance by
highly skilled programmers. This is hard to achieve in fast-
paced research environments and with the high turnover of
junior researchers in academia. Therefore, it cannot be
expected that the end-user, most likely a chemist, is proficient
in programming for broad adoption, but at the same time a
well-designed user experience (UX) is of key importance.94 A
simple standardized, flexible digital framework for chemical
operations, interfacing with hardware, and controlled by a
procedure code that links the operations to the framework is
required for a digital revolution in the field because it could be

Figure 6. Photograph of the modular, universal ChemPU (Previously Chemputer) platform.
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designed with UX in mind, and in such a way that it could be
maintained and developed collaboratively, c.f., Linux.
Commercial equipment often has proprietary software that

comes with a user-friendly interface and, in some cases, basic
scripting capabilities. However, closed platforms can lead to a
vendor lock-in and impose barriers to innovation in research
laboratories. For custom robotic workflows, open application
programming interfaces (APIs) are therefore of great
importance to integrate third party equipment and software.95

We believe independent bodies, such as the SiLA consortium,
could and should establish standard APIs to interface with a
wide variety of commercial laboratory equipment. LabVIEW
by National Instruments (NI) is a generalized proprietary
control software for a range of automation workflows
integrating equipment from different third-party vendors.96

Its graphical programming approach allows users without
programming experience to develop workflows via drag-and-
drop. Furthermore, it is inherently concurrent, allowing for
parallel execution and provides advanced signal processing
capabilities. Since LabVIEW is limited in the areas of scientific
programming including optimization, signal processing,
statistics, and machine learning it is commonly coupled with
Matlab.7 However, the ecosystem is considerably smaller than
Python’s, for example, which is a general-purpose program-
ming language and can be used to build sophisticated software

solutions for automation-enabled or “self-driving” laboratories.
Such solutions may combine chemical robotics with AI
planning, database-management systems but also chatbots
frameworks integrated in social media platforms for interaction
with the human researchers.22,97,98

Hardware drivers, a platform operating system (OS), and
bindings between this OS and the hardware-independent χDL
form the software stack needed to run a ChemPU (Figure 2).4

This layered approach allows for simultaneous low-level access
to the hardware for debugging and development purposes as
well as high-level scripting capabilities for synthetic chemists
with no programming experience using the χDL language.
Importantly, this also allows the χDL to be run on different
hardware for example using different drivers and OS, so long as
equivalent bindings are present linking the unit operations
detailed in the χDL to those performed by the hardware, see
Figure 4. A web application, ChemIDE, was also developed as
a human-friendly graphical user interface to allow chemists to
directly develop chemical programs with little or no
programming experience.

4. DATA COLLECTION

Rapid real-time analytics are fundamental to optimization and
a range of techniques have been developed to facilitate this
alongside hardware advances which allow their incorporation

Figure 7. Advances in enabling analytics for automated reaction optimization. The earliest automation system was devised for gas chromatography
(GC) with automatic flow rate and temperature control however automation really drove advances in science with the advent of autosamplers
which allowed for hundreds of samples to be analyzed with minimum labor, freeing up scientists for data analysis. The ability to conduct analysis in
flow has also been a strong driver of automation with diode array detectors (DAD) for UV−vis being among the first advances to facilitate this. In
situ analytics, such as Fourier transform infrared spectroscopy (FTIR) and Digital Glassware, also allow for rapid or continuous monitoring of
reactions in real time while UHPLC and benchtop NMR both cut the time and effort required for more advanced analytics. Currently method
development for chromatographic separations is still a key bottleneck but new automated method development systems are becoming available to
optimize separations autonomously.
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into automated systems (Figure 7).99 Perhaps even more so
than for synthesis, standardization of analytical hardware and
data formats is vital and improving data standards means,
increasingly, analytical data is available alongside publications,
however, the facile machine readability of this data and
interpretation in context of its source hardware still present
challenges in developing standards. Inline Raman and IR
spectrometers, in particular React-IR, have significantly
increased the impact of this low energy spectroscopic method
for real-time reaction monitoring and thus rapid feedback for
optimization.100−102 The short time scale of the IR experiment
means a vast number of data points can be collected for each
reaction and the ability to home-in on particular functional
groups of interest, to the absence of noise created by other
reagents, makes this a useful technique for use in autonomous
digital optimization. UV−vis methods also have the advantage
of allowing one to focus on a specific wavelength; however, the
resolution of UV−vis versus for example, IR makes analysis of
this data more challenging. These methods may thus find more
use in the optimization of inorganic compounds where a small
difference in coordination environment leads to significant
changes in the UV−vis spectrum.103

However, analyzing the shape of a time-dependent UV−vis
absorption plot at a fixed wavelength has been shown to be
useful for peptide synthesis.104 The inclusion of the time
dimension allows a range of additional parameters be
elucidated including reaction rate and reagent diffusion with
different deprotection reagents and thus optimized using deep
learning data analysis approaches. Gas and high-pressure liquid
chromatograph methods are both well suited for automation,
in-line analytics and subsequent reaction optimization and can
be easily paired with other analytic techniques (e.g., UV−vis,
MS).7 However, several key factors limit their use. Both
methods require long experiment times, preventing high-
throughput analysis, and they may require method develop-
ment to ensure valid data is achieved when varying reaction
parameters. In addition proprietary software and equipment
means that the experimental methods and hardware modules
are significantly less standardized across different systems than
for IR and UV−vis spectroscopies.105
Finally, the information content of chromatographic

methods alone can be low, particularly if they are not utilized
in combination with analytical standards. Ultrahigh pressure
(UHPLC) and techniques, such as flow injection analysis
(FIA-MS),106 multiple injections in a single experiment
(MISER),105 and 2D-LC analysis, have been developed to
reduce experiment times for HTE.107 Agilent have also
recently begun producing an automethod development system,
InfinityLab, incorporating up to 8 different columns and 15
mobile phases for rapid autonomous chromatographic method
development.108

Mass spectrometry for optimization is most often coupled
with a chromatographic method allowing for more accurate
quantification of relative yields and clearer identification of
byproducts. For MS alone the high sensitivity and low sample
mass requirements are a significant advantage, however, long
experiment times can also be a factor here. Mass spectrometry
has also been applied in flow systems for optimization of
reactions, which allows the incorporation of feedback loops in
the synthesis and, thus, more autonomy in the optimization
process.109 Benchtop APCI MS has been utilized to optimize
the formation of nicotinamide in such a system, using only 18

experiments, with yield calculated by normalization of the [M
+ H]+ adducts.110

Traditional NMR spectroscopy is based on batch analysis,
with autosamplers allowing for more rapid throughput of
samples; however, the recent inception of flow-NMR has truly
allowed the technique to proliferate for automated reaction
optimization.111 Flow NMR has the advantage of having highly
transferable data analysis, high information content, and
moderate acquisition times (∼0.5 s scan−1).112 The variety
of nuclei, techniques, and ongoing advances also makes this
method widely applicable to different chemistries, which may
not be suitable for MS or chromatography.113 For example,
insights gained from mechanistic analysis can inform reaction
optimization and flow NMR has been utilized for the in situ
study of reactive organometallics representing catalytic
intermediates.114 Even common challenges in NMR such as
overlapping peaks have been overcome utilizing state of the art
algorithms.115

A prerequisite for autonomous operation of any laboratory
equipment is dynamic feedback. While condition monitoring
and process control are routine tasks in chemical engineering,
it is much less common in academic chemistry research
laboratories.73 Tasks such as measuring the pH value or
ensuring a flask is empty are trivial for a human researcher but
challenging and crucial for the safe operation of automated
laboratory equipment. Data from “human monitoring oper-
ations”, such as the visual inspection of a reaction (e.g., to
determine if precipitation or a color change has occurred), are
not consistently captured. Emerging technologies enable
chemists to acquire, share, and analyze digital data sets of
their chemical experiments (Table 2).92,116,117 Recent

examples of this development are the “Smart Stirrer” capable
of measuring reaction conditions, such as temperature,
conductivity, visible spectrum, opaqueness, stirring rate, and
viscosity in situ, and the use of low-cost optical bubble sensors
to control a hydrogenation reaction. Also, the open-source
software package Heinsight, which uses webcams and
computer vision algorithms to monitor liquid levels, is being
used for diverse applications, such as continuous preferential
crystallization, slurry filtration, and solvent swap distilla-
tion.118−120

One important point which arises for all of these analytical
systems is the need for robust data sharing processes upon
publication.121 X-ray crystallography represents a case study in
best practice with regards to analytical data sharing. Currently,
an article containing an X-ray diffraction crystal structure must
include a crystallographic information file (cif) incorporating
all of the details of the equipment used, experimental
parameters, raw data and processed output.122 All crystallog-

Table 2. Sensors Which Can Contribute to Automation of
Standard Laboratory Procedures

sensor example use case

pH “Adjust the pH to 7.0 with NaOH (1 M).”
conductivity “The solution was extracted with ethyl acetate.”
bubble “Check if line is clogged.”
viscosity “Heat until gelation occurs.”
turbidity “Add hexane until a fine precipitate forms.”
liquid level “Notify if waste receptacle is full.”
temperature “Add dropwise, maintaining the temperature below 0 °C.”
color “Stir until the color changes from red to blue.”
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raphy software is unified in its ability to produce identical
output files and read identical input files and this data is stored
in the easily visualizable and searchable Cambridge Structural
Database as well as alongside the corresponding publica-
tions.123 At publication this file is subject to CheckCIF
standards checks, a report of which must be provided to
reviewers and editors.124 For other analytical data types, no
such requirement exists but universal data standards for other
methods, the quality of which can be validated, would be
beneficial to the whole community. FIDs from NMR
spectrometers,125 CSV files from spectrophotometers, mzML
files from mass spectrometers,126 and similar data from GC/
HPLC systems should all be a minimum requirement for
publication of results, which rely upon this data.
Only through the peer review system can we effectively

ensure data standards are maintained across the discipline. One
feasible example format for sharing data at publication could be
the JCAMP-DX format which has been demonstrated for use
in all these analytical techniques and more, with these files
detailing both spectral parameters and metadata.127 An
alternative format could be the Analytical Information Markup
Language (AnIML)a XML-based solution for storing
analytical data from a variety of instruments and techniques,
offering a validation process via strictly defined schema.128 Our
vision includes the sharing of analytical (e.g., in aforemen-
tioned format) and process (in tabular format, e.g., a csv file,
with the timestamps for each measurement) data alongside the
χDL process file. Thereby each “version” of data created by a
new experiment run includes all data for that run, including

any failed runs, and specifications/parameters on all the
hardware used to collect such data alongside the procedural
information contained in the χDL.

5. OPTIMIZATION

Process optimization is among the most tedious and labor-
intensive tasks within scientific and engineering disciplines, and
chemistry is no exception. Even achieving satisfactory reaction
conditions is nontrivial and can take weeks of experimentation
for a human researcher.20,23,129 Most recent developments in
reaction automation have been applied to facilitate optimal
parameters discovery, however the vast majority of the
published platforms are bespoke systems, capable of perform-
ing single reaction optimization in flow.130 These platforms,
despite demonstrating proof-of-concept results, are typically
limited to a specific task, while creating a universal, fully
automated framework remains challenging (Figure 8). In 2018,
a reconfigurable system was presented with modules to
perform flow chemistry, including temperature control and a
photoreactor, that can run closed-loop optimization in
conjunction with various analytical instruments.7 The same
year OpenFlowChema platform for flow chemistry
automation, providing communication protocols for analytical
instruments and control systemswas demonstrated to run
the process of self-optimization using a PID algorithm, as well
as predicting the optimal reaction conditions for a semi-
hydrogenation reaction.131 A significant disadvantage of this
approach is the usage of commercial software such as
LabVIEW for instruments control, and experiment manage-

Figure 8. Workflow for the automated chemical reaction optimization: the given procedure is automatically executed on an experimental platform
using a corresponding control system; the results of the process are evaluated using an analytical instrument with the resulting data processed and
analyzed to yield an outcome that can be understood by an optimization algorithm; the algorithm’s output is used to update the procedure
parameters and thus start the next iteration of the process.
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ment accompanied by tools for data processing and analysis,
most commonly Matlab.96,132 While this software suite can
create closed-loop experiments with analytical feedback and an
optimization algorithm generating new parameters, the setup is
not easily transferrable across automation platforms due to
proprietary licenses which are not widely accessible.
Recently two new approaches to chemical optimization were

reported, Summit133 and Olympus,134 benchmarking frame-
works offer a large set of optimization strategies together with
virtual benchmarks, and an experimental planning toolkit. In
contrast to the aforementioned software, these frameworks are
fully open-sourced and due to their open interface, it is
possible to plug in any given algorithm, and this could be
universally adapted to any typical automation platform.

5.1. Data Processing/Treatment

The foundation of a closed-loop reaction optimization system
needs to be the automated processing and analysis of the
analytical data in real time.99 Any reaction outcome (i.e.,
product spectrum) should be translated into distinct
descriptors (i.e., product yield) for the optimization algorithm
to process. Initial processing, for example, noise reduction or
baseline correction, could be performed within an automated
system by the instrument operating software through either
manually written macros or an application programming
interface (API). Given that the data format specification is
provided by the manufacturer, the resulting output may be
further analyzed using third party software which may be
included in the automation workflow. The LabVIEW/Matlab
suite is a common choice to process the analytical data and
utilize the output for the mathematical optimization.135 With
the necessary drivers provided to control the instruments, it
can create a robust environment for the reaction optimization,
although only available under a proprietary license. With the
emergence of open-source software, several packages were
developed to process data from a variety of analytical
instruments, including HPLC136 and NMR.137 Such programs
often include the graphical user interface (GUI) and a
programming interface for seamless integration into any
chemical automation platform. With the source code open to
the community, the software can be extended with the novel
processing algorithms and accommodate new instruments on
the market, if this is permitted by the license agreement for the
latter.
Manual product assignment is a common approach to

selecting the reaction outcome where the reference sample is
analyzed by the human expert, and the respective descriptors
are “hard coded” into the experiment workflow. However,
manual analysis is not suitable for a fully autonomous systems,
and full assignment of data on a novel compound or reaction
can be time-consuming for either those discovered exper-
imentally or predicted using a retrosynthetic analysis. Recently,
supervised and unsupervised machine learning techniques were
proposed to aid with identifying signals of interest from raw
spectra or direct assignment of 13C and 1H spectra to proposed
structure;138−141 however, these approaches were not applied
in context of reaction automation. This is, thus, a very
attractive direction in the creation of a fully autonomous
system for discovery of new materials and synthetic routes and
subsequent optimization within the same system.

5.2. Algorithms for Decision Making

An extremely important part of the reaction optimization is
minimizing the total number of time-consuming experiments

that often involve expensive reagents by maximizing the
information learned at each iteration. Design of experiments
(DoE) was one of the first techniques to formalize the
screening process and is used to build a model that describes
the relationship between experimental inputs (e.g., reaction
temperature or catalyst loading) and outputs (e.g., yield or
product purity).1,2 This approach can guide optimization by
mapping the optimal conditions or initiate exploration of a
search space for more sophisticated algorithms to exploit.
Traditional algorithms for a function optimization, such as

Nelder−Mead Simplex (and modifications thereof) or
gradient-based methods, were among the first used in chemical
self-optimization tasks.142 The significant disadvantage of these
local optimizers is their inability to tackle experimental noise
which can lead to the premature halting of the optimization far
from the true system optimum. Furthermore, the overall
growth the complexity of a given process, and an increase in
the amount of input parameters, may lead to multiple optima,
where such local optimization algorithms are not applicable,
despite their robustness and small computation times. The
SNOBFIT algorithm was one of the first techniques created to
target global optimization of noisy and expensive-to-evaluate
functions (i.e., experiments).143 Despite the limitation on
number of input parameters and their continuous nature, the
overall performance and availability made SNOBFIT the go-to
method for running self-optimization experiments, and a
reference for future single-objective optimizers. More recently,
a different category of algorithms has gained increased
attention in machine learning community. Bayesian optimiza-
tion utilizes a surrogate model as an approximation of an
experiment or simulation that is updated with more sample
data in conjunction with an acquisition function (Figure 9).144

These methods were designed for the global optimization of
noisy “black box” functions that are expensive to evaluate and
have been adapted for use within an experimental environ-
ment.145 It was also shown that this algorithm can guide an
automated flow system to find optimal conditions between
multiple competing outcomes.146 Discrete and categorical
parameters, such as solvent or catalyst choice, represent a
significant portion of the input variables for chemical processes
and are major challenge in developing optimization algorithms.
Previously only available using the DoE approach and the
response surface methodology,147 such variables can be easily
incorporated into Bayesian optimization due to flexibility of
surrogate models.148 Another advantage of this approach is
reduced number of iterations needed to achieve the best
outcome. It was reported that optimal conditions can be found
after exploring only tiny fraction of parameter space.5 It is
worth noting, that despite current trends and recent develop-
ments, one should not be biased when selecting a strategy to
solve the optimization task. Traditional machine learning
methods and classical mathematical algorithms for function
minimization should also be considered, if they can provide an
efficient solution. A more detailed description and general
overview of algorithms used in chemical optimization are
presented in reviews by Bourne and co-workers,149 Houben
and Lapkin,135 and Cronin et al.18

One major challenge for current chemical optimization is
incorporating chemical knowledge (e.g., reagent structure,
solvent, catalyst nature, etc.) into the overall workflow. Despite
significant advances in retrosynthetic planning,150 machine
learning methods that encode the chemical structure for
predictions have not found a wide application in optimization

JACS Au pubs.acs.org/jacsau Perspective

https://doi.org/10.1021/jacsau.1c00303
JACS Au 2021, 1, 1572−1587

1581

pubs.acs.org/jacsau?ref=pdf
https://doi.org/10.1021/jacsau.1c00303?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


tasks. Most algorithms treat the chemical reaction as a “black-
box function”, not only ignoring the physical principles of the
reaction, but disregarding data from previously published
results or chemical databases in the initial modeling. Previous
attempts to incorporate structural knowledge for predicting
reaction conditions were based on nearest-neighbor approach,
which recommended similar conditions for similar sub-
strates.151 The neural network model for encoding structure
information has however demonstrated in silico efficiency in
predicting suitable reaction conditions when trained on large
chemistry databases.152 When combined with Bayesian
optimization methodology, chemical encoding (achieved
using DFT-descriptors) shows excellent performance across
several chemical reactions, compared to traditional DoE
approach or human expertise, when applied to mixed
categorical-continuous parameter domains.6 Studies with
deep reinforcement learning have shown that a model trained
on a specific reaction can also be transferred to a similar or
different reaction class to improve the performance and reduce
the number of experiments to identify the best conditions.153

Overall, this paradigm for the chemical optimization opens a
new perspective for predicting the optimal parameters for
known reactions but also suggests the conditions for yet
unknown reactions, designed using algorithmic retrosynthetic
analysis.154

6. CONCLUSIONS
It is clear from the work described in this Perspective that
automation is already ubiquitous in the chemical lab
environment. From autosamplers to flow reactors, chemists
around the world are taking advantage of the labor-saving
benefits and increased reproducibility of robotic systems. Thus,
the digitization of chemistry should not merely be considered a
problem for the future but a challenge of the present. However,
there are still strides to be made to reach full automation of
chemical optimization or even fully autonomous laboratories,
which can discover, optimize the synthesis of and analyze the
mode of action of a new lead compound. Comparisons can be
drawn with other technological advances, such as cars: when
first steam prototypes were built, they were rejected by society
as noisy, dangerous and destructive to roadways. With early
developments of gasoline engines, cars were still considered to
be less practical than common horse wagons, because of

Figure 9. Workflow of the Bayesian reaction optimization: the
reaction code, predefined by the parameter space which may be
partially informed by prior knowledge and expertise, is executed to
result an outcome (illustrated as JCAMP-DX NMR spectrum
header); the outcome is then used to update the surrogate model,
built using the encoded chemical and conditions data, to predict the
next set of reaction conditions.

Table 3. Challenges and Potential Solutions for the Main Factors in Successful Automation of Optimization of Chemistry

topic challenge solution

optimization algorithm implementations not suited for laboratory use unified ask-and-tell interface
chemistry often treated as a black box big data analysis to gain new insights into reactivity
high experimental cost, optimization only out of necessity incorporate prior knowledge for optimizations with lower experimental budgets

execution transparency and reproducibility specify device capabilities and limitations
no plug-and-play automation establish an open standard
reliability control software with error correction
interoperability learn the “delta” between different platforms from empirical data

collaboration slow knowledge transfer share digital code so that optimized procedures can be directly used in a different
lab

scalability distributed clients working together via a central server
programming no code, GUI, webapps, slack integration
no platform fits all needs modular platforms, cross-platform code portability

data management disconnect between variables and actual actions record action sequences, map variables
different research cultures, formats, etc. human and machine-readable format, FAIR principles
missing values and procedural ambiguity reduce
reproducibility

synthetic chemistry experts needed to bridge the gap
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regular stalling and high demand in servicing. A significant
stream of technological advances (e.g., four-wheel brakes,
independent suspension and three-point seat belts), as well as
standardization of mass production led to cars that are robust,
cheap, and safe enough to dominate the field of private
transport. Several decades ago, car owners required basic
mechanical skills for everyday maintenance, while nowadays
cars can self-diagnose a range of internal faults. With the
current rate of development of self-driving cars, in few years
one might not even need a license to drive. Chemistry is poised
to undergo a similar “great leap forward” by drawing upon the
automation and computational advantages described above but
there are still several key hurdles to be overcome to transition
the remaining areas of manual input to fully autonomous
systems (Table 3). Integration and interoperability of hardware
is vital, including the presence of standardized hardware
interfaces for control and data transfer as well as open access
API to empower flexible use of hardware. Another major
hurdle for the more elaborate automated workflows is the
reliability of current systems, and here we expect real-time
monitoring for error detection and correction to play a vital
role in guaranteeing the quality of robotically generated
reaction data sets. We also urgently need data standards
integrated into our publication and output systems, whereby
data is open access, acquisition parameters are fully detailed,
and the data is in a simple machine-readable format, subject to
verification checks and easily searchable using nonproprietary
databases. Importantly, this data must include details of
automated hardware used for synthesis and the precise action
sequence followed in a universally readable format. Missing
values and ambiguities (e.g., vigorous stirring versus 1000 rpm)
in published data lead to unnecessary barriers when adopting
literature procedures to automated platforms. Sharing digital
code, such as χDL, is likely to enhance knowledge transfer and
scientific collaboration especially when these digital tools are
accessible for researchers without programming skills. This can
be facilitated by developing web applications and GUIs or
interfacing laboratory automation control software with
popular, existing workplace tools. Finally, since research is
ultimately a human endeavor researchers must have access to
training in digital skills and clear directions on how automation
tools are used in cutting edge research such that the barrier to
adoption of these tools is lowered. Only when the expertise of
chemists is combined with the advances allowed by digital
tools will the promise of the digital chemistry revolution be
fulfilled.
To fully leverage the time saving ability of digitization, in the

future chemical processes must be able to be optimized
autonomously by integration of closed-loop feedback processes
in concert with state-of-the-art algorithms. Given the expensive
and complex nature of chemical experiments, algorithms
should provide an interface that allows control over the
optimization loop and frameworks, such as Summit and
Olympus, are expected to prove highly useful for closed-loop
systems. When combined these advances will revolutionize
scientific collaboration and innovation not only within
chemistry but in a wide range of downstream applications
such as pharmacy, materials, food technology and energy
ultimately bringing the central science into the 21st century.
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