
Huang et al. Cancer Cell Int          (2021) 21:567  
https://doi.org/10.1186/s12935-021-02267-2

PRIMARY RESEARCH

Ferroptosis‑related gene AKR1C1 predicts 
the prognosis of non‑small cell lung cancer
Fangfang Huang1, Yushi Zheng2, Xiaoling Li3, Hui Luo4,5,6* and Lianxiang Luo4,5,6*   

Abstract 

Background:  Ferroptosis is a newly discovered mode of cell death distinct from apoptosis and necrosis, and its acti-
vation contributes to anticancer therapy in a variety of cancers. However, the prognostic value of ferroptosis-related 
genes in non-small cell lung cancer (NSCLC) remains to be further investigated.

Methods:  NSCLC transcriptome mRNA-seq data set and corresponding clinical data set were downloaded from the 
Cancer Genome Atlas (TCGA). Then, bioinformatics approaches were subsequently employed to identify potential 
prognostic markers. Finally, the effects of candidate markers on NSCLC cell proliferation, migration, and ferroptosis 
were assessed by CCK8, colony formation, wound-healing assay, and functional assays related to ferroptosis.

Results:  A total of 37 common differentially expressed genes were screened based TCGA database. Six overall 
survival associated genes (ENPP2, ULK1, CP, LURAP1L, HIC1, AKR1C1) were selected to build survival model, of which 
hub gene AKR1C1 was with high expression and low ferroptosis level in NSCLC tumor. Further research showed that 
AKR1C1 was related with many pathways involved in the process of ferroptosis and associated with diverse cancer-
infiltrating immune cells. Moreover, the results of in vitro experiments indicated that the expression of AKR1C1 was 
upregulated in NSCLC cell lines, and silencing AKR1C1 can inhibit the proliferation and migration of NSCLC cells and 
promote the occurrence of ferroptosis.

Conclusions:  Our study revealed the potential role of ferroptosis-related gene AKR1C1 in NSCLC, which can be used 
for prognostic prediction in NSCLC.
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Introduction
Lung cancer is one of the most common types of can-
cer in the world, accounting for approximately 14.3% 
and 8.4% of the total number of cancer cases in men and 
women, respectively, and is the leading cause of cancer 
death worldwide (18.0% of the total number of cancer 
deaths) [1, 2]. NSCLC is a major form of lung cancer, 
accounting for approximately 85% of all lung cancer cases 
[3, 4]. In recent years, significant progress has been made 
in targeted therapy for NSCLC, but the poor survival rate 

of patients with lung cancer has not improved [5]. There-
fore, more accurate biomarkers are urgently needed to 
develop new therapeutic strategies.

Recently, gene expression analysis by microarray 
technology has shown a great potential space in cancer 
research and been widely applied to molecular diag-
nosis, cancer classification, new drug targets discovery 
and tumor response prediction [6, 7]. It has been recog-
nized as a promising diagnostic and prognostic tool [6, 
7]. Through microarray analysis, many studies have con-
firmed differentially expressed genes (DEGs) in various 
types of cancer, thereby determining their unacknowl-
edged roles in biological processes, molecular func-
tions, and different pathways [8–10]. For example, Tang 
et al. utilize miRNA microarray technology to reveal that 
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miR-208a can affect the proliferation and radiosensitivity 
of NSCLC cells by targeting p21, which may be a poten-
tial therapeutic target for NSCLC patients [10]. There-
fore, some key genes and pathways in NSCLC can be 
identified by microarray technology.

As a newly discovered mode of cell death different from 
apoptosis and necrosis, ferroptosis was triggered by iron-
dependent peroxidation accumulation and first used to 
describe the form of cell death induced by small molecule 
erastin [11]. It is mainly characterized by cell volume 
contraction, increased mitochondrial membrane den-
sity, and no typical apoptotic and necrotic manifestations 
[11]. A variety of genes have been found to be involved in 
the regulation of ferroptosis [12, 13]. For example, stud-
ies have reported that glutathione peroxidase 4 (GPX4) 
is a key regulator of ferroptosis, which acts as a unique 
intracellular antioxidant enzyme that exerts phospho-
lipid peroxidase activity and directly reduces peroxidized 
phospholipids produced in cell membranes, and inactiva-
tion of GPX4 can lead to the accumulation of peroxides 
as well as the occurrence of ferroptosis [11, 12, 14]. In 
recent years, accumulating evidence has shown that acti-
vation of ferroptosis contributes to anticancer therapy in 
various types of cancer [15–17]. For example, erastin has 
been found to enhance the effect of cisplatin in NSCLC, 
providing a new strategy for the treatment of drug-resist-
ant tumors [18]. Therefore, investigating the ferroptosis-
related gene expression profile and its prognostic value in 
NSCLC may develop new strategies for the treatment of 
NSCLC.

In this study, the transcriptome dataset and corre-
sponding clinical dataset from the Cancer Genome Atlas 
(TCGA) were merged with the ferroptosis-related genes 
for systematically bioinformatics analysis. The aim of 
the study was to identify differentially expressed genes 
(DEGs) from these datasets in order to identify potential 
biomarkers by constructing protein‑protein interaction 
(PPI) networks, and to verify and investigate potential 
biomarkers in vitro.

Materials and methods
Data collection and preprocess
NSCLC transcriptome mRNA-seq data set and corre-
sponding clinical data set (including 999 tumor samples 
and 103 normal samples) were downloaded from TCGA 
(https://​cance​rgeno​me.​nih.​gov). Then we obtained 291 
ferroptosis-related genes from the human gene database 
(Gene Cards) with the keywords “Ferroptosis” (https://​
www.​genec​ards.​org/) [19] and FerrDb database (http://​
www.​zhoun​an.​org/​ferrdb) [20]. After filtering out low 
expression genes of the mRNA matrix, we merged 269 
ferroptosis related genes with the mRNA expression 
matrix from TCGA. Subsequently, R packages “edgeR” 

[21] and “DESeq2” [22] were applied to differential gene 
expression analysis. In order to improve the accuracy of 
our analysis, only genes identified by both analysis with 
an adjusted P-value > 0.05 and |log2 fold change (FC)| ≥ 
2 was considered as differentially expressed and defined 
as DEGs.

Functional enrichment analysis of DEGs
In order to further understand the biological func-
tions and significantly enriched metabolic pathways of 
the DEGs, we performed Gene Ontology (GO) and the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) [23] 
enrichment analysis. GO analysis classified the DEGs 
into three categories, including biological process (BP), 
cellular component (CC), and molecular function (MF). 
In this study, GO terms and KEGG pathways with an 
adjusted P-value < 0.05 were considered significantly 
enriched in DEGs. GO analysis and KEGG analysis were 
visually display through R software (version 4.0.3).

Gene Set Enrichment Analysis (GSEA) is a compu-
tational method that determines whether an a priori 
defined set of genes shows statistically significant, con-
cordant differences between two biological states via 
GSEA software version 4.0.3 [24]. We utilized it to ana-
lyze the function and potential pathway of signature 
genes. GSEA was used to further validate the functional 
enrichment of signature genes. The false discovery rate 
(FDR) < 25% and nominal P < 0.05 were regarded as the 
cut-off criteria. We set the cut-off criterion to a false dis-
covery rate (FDR) < 25% and nominal P < 0.05.

Protein–protein interaction network construction 
and module analysis
The STRING database was the online database resource 
search tool for the retrieval of interacting genes/proteins, 
which collected and reassessing available experimen-
tal data on protein–protein interactions [25]. We used 
STRING database to construct a protein–protein inter-
action (PPI) network for the 37 DEGs associated with 
ferroptosis. Then we imported results into Cytoscape 
software (version 3.8.2) and run a Cytoscape plugin, 
CytoHubba application, to select the hub genes [26].

Survival analysis
We sorted out complete 697 cases of clinical informa-
tion from 999 patients with NSCLC tumor. Univariate 
Cox was performed to select the ferroptosis-related 
genes whose parameter P-values less than 0.05 for 
subsequent analysis. The further selection of clinical 
prognosis-associated candidate genes was implemented 
with the R package “rbsurv” [27]. Next, the six selected 
genes were used to construct a risk model by multiple 
stepwise Cox regression analysis to predict prognosis 
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in NSCLC tumor patients. The risk score of hub genes 
was established as Risk score = (exprgene1 × coeffi-
cientgene1) + (exprgene2 × coefficientgene2) + ⋯ + 
(exprgene6 × coefficientgene6). To validate the gene 
risk signature in the internal validation data sets, we 
calculated the risk score for each patient in the com-
plete TCGA cohort. Then according to the correspond-
ing median risk score, we divided the NSCLC patients 
of TCGA cohorts into two groups (high and low risk). 
Kaplan–Meier analysis was applied to calculate the 
overall survival (OS) difference between two groups. 
For the survival analysis of each gene, R package “Sur-
vival” was used to conduct survival analysis and the 
R package “survminer” determined the optimal cut-
off expression value and generated the Kaplan–Meier 
plots. Additionally, multivariate Cox analysis was pre-
sented to testify whether the prognosis power of the 
risk assessment model was independent of other clini-
cal characteristics. Time-dependent ROC curve was 
used to analyze to evaluate the predictive power of 
the gene signature and prediction accuracy of this Cox 
risk model. The receiver operating characteristic curve 
(ROC) was constructed by predicting the probability 
of a diagnosis being of high or low integrated score of 
significant hub gene expression. The area under curve 
(AUC) analysis was used to evaluate the predictive 
power of the gene signature and prediction accuracy of 
this Cox risk model.

Signature gene validation and analysis
Oncomine database analysis
We analyzed the signature gene AKR1C1 expression 
level in various types of cancer, especially in lung can-
cer, on the Oncomine database (https://​www.​oncom​
ine.​org/). Oncomine database is an online cancer data-
base with powerful analytical capabilities for comput-
ing gene expression signatures, clusters and gene-set 
modules, automatically extracting biological insights 
from the data [28]. The mRNA expression difference 
between tumors and normal tissues were analyzed with 
thresholds as follows: P-value of 0.05, fold change of 2, 
gene ranking of Top 10 % and the data from mRNA.

The ferroptosis potential index (FPI) model
The ferroptosis potential index (FPI) is a model evalu-
ating the ferroptosis level and revealing the functional 
roles of ferroptosis. In most tumors, high FPI values 
were often associated with clinical features, and cancer 
metastasis, recurrence, outcome, and drug sensitivity 
[29]. Utilizing the model, we evaluated the FPI value of 

AKR1C1 in NSCLC tumor, revealing the its ferroptosis 
level AKR1C1 in NSCLC.

Kaplan‑Meier plotter database analysis
We verified the prognostic value of AKR1C1 again in 
Kaplan-Meier plotter database (http://​kmplot.​com/​
analy​sis/). Kaplan‐Meier plotter database is an online 
analysis tool containing microarray profiles and 
mRNA‐seq data with patients’ survival information, 
including OS and RFS [30]. The clinical relevance of 
AKR1C1 mRNA expression in NSCLC cancer patients 
was analyzed by Kaplan-Meier survival plots. The haz-
ard ratio (HR) with 95 % confidence interval and log-
rank P-values were calculated.

Immune Infiltrates and ferroptosis
We further evaluated the infiltrating scores of 5 immune 
cells and the activities of 4 immune-related pathways 
with the single-sample gene set enrichment analysis 
(ssGSEA) in the R package “GSEA” [31]. Additionally, the 
correlations between AKR1C1 expression and the abun-
dance of immune infiltrates were explored by the Gene 
module in the TIMER database (https://​cistr​ome.​shiny​
apps.​io/​timer/). TIMER database is a comprehensive tool 
established for systematically analyzing the abundance 
of tumor-infiltrating immune cells (TIICs) from gene 
expression profiles across diverse types of cancer [32]. 
We next quantified the number of 22 immune cells and 
the expression levels of AKR1C1 in human lung tumor 
tissue. The analysis was display on R software (version 
4.0.1). We used two-sided Fisher’s exact test and P<0.05 
was considered significant.

Immunohistochemical (IHC) staining
Paraffin-embedded sections were incubated at 60 °C 
for 1  h and subsequently deparaffinized with xylene 
and hydrated with graded ethanol. The slides were then 
boiled in citrate buffer for antigen retrieval, and 3% H2O2 
was used to block the activity of endogenous peroxidase. 
They were subsequently blocked with 5 % goat serum for 
0.5  h. Sections were incubated with rabbit anti-human 
AKR1C1 antibody (1:100; ABclonal, Wuhan, China) 
overnight at 4 °C, followed by incubation with HRP-con-
jugated secondary antibody for 0.5 h at 37 °C. The detec-
tion of immunohistochemistry was performed using 
the DAB substrate kit (Sangon, Shanghai, China), and 
the nucleus were counterstained with hematoxylin. IHC 
staining scores were evaluated using image J software. 
The Score has four grades, 4 = high positive, 3 = positive, 
2 = low positive and 1 = negative.

https://www.oncomine.org/
https://www.oncomine.org/
http://kmplot.com/analysis/
http://kmplot.com/analysis/
https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/


Page 4 of 16Huang et al. Cancer Cell Int          (2021) 21:567 

RNA extraction and reverse transcription–quantitative 
polymerase chain reaction (RT–qPCR)
Total RNA was extracted from cells using TRIzol® 
reagent (Invitrogen, Thermo Fisher Scientific, Inc., 
USA) according to the manufacturer’s protocol. One 
microgram of total RNA was reversed to cDNA using 
transcriptor first strand cDNA synthesis kit (Roche, 
Shanghai, China), followed by SYBR-Green real-time 
PCR (Roche, Shanghai, China). RT-PCR reactions were 
performed according to the manufacturer’s instruc-
tions. The 2 −ΔΔCt method was used to evaluate the 
mRNA expression. Relative expression was calculated 
and normalized to GAPDH. The sequences of oligonu-
cleotide primers were synthesized by Sangon (Shanghai, 
China) and the forward and reverse primer sequences 
were as follows: GAPDH forward, 5′-ATC​ATC​CCT​
GCC​TCT​ACT​GG-3′ and reverse, 5′-GTC​AGG​TCC​
ACC​ACT​GAC​AC-3′; AKR1C1 forward, 5′-CAT​GCC​
TGT​CCT​GGG​ATT​T-3′ and reverse, 5′-AGA​ATC​AAT​
ATG​GCG​GAA​GC-3′.

Cell culture and transfection
Human NSCLC cell lines (A549, PC-9, H1975) and 
human normal bronchial epithelial cells (BEAS-2B) 
were purchased from American Type Culture Collec-
tion (ATCC). All cells were maintained in RPMI-1640 
medium (Gibco, GrandIsland, USA) containing 10 % fetal 
bovine serum (FBS; Gibco, GrandIsland, USA) and 1% 
penicillin-streptomycin (Gibco, GrandIsland, USA) and 
were incubated under 37 °C and 5 % CO2 conditions.

AKR1C1-siRNA was obtained from Sangon Bio-
tech (Shanghai, China) for silencing the expression of 
AKR1C1. In this study, the AKR1C1-siRNA sequence 
was as follows: 5′-AAG​CTT​TAG​AGG​CCA​CCA​AAT-
3′. Cells were inoculated in 12-well plates at a density of 
8 × 104 cells/well until 60%–70% cell confluence for trans-
fection. And cells were transfected with AKR1C1-siRNA/
NC-siRNA using siRNA Transfection Reagent (Polyplus, 
France) to a final concentration of 5 nM. Finally, target 
protein expression level was analyzed in cells transfected 
for 48 h. Successfully transfected cells were used for sub-
sequent experiments.

Cell proliferation assay
Cell Counting Kit-8 (CCK8; Beyotime Biotechnology, 
Shanghai, China) was used to perform cell proliferation 
analysis. Cells were inoculated in 96-well plates at a den-
sity of 4 × 103 cells/well and cultured for 0, 24, 48, and 
72 h. CCK-8 solution was added and incubated in incu-
bator for 1.5 h. Then the absorbance value was measured 
at 450 nm to calculate the number of viable cells.

Colony formation assay
Colony formation assay was used to perform cell prolif-
eration analysis. Cells were inoculated in 12-well plates 
at a density of 2000 cells/well and incubated under 
37  °C and 5% CO2 conditions for 1 week. One week 
later, the cells were washed with phosphate-buffered 
saline (PBS), fixed in 1 mL/well 4% paraformaldehyde 
(Leagene Biotechnology, Beijing, China) for 20  min, 
and stained with 1% crystal violet staining solution 
(Solarbio, Beijing, China) for 10  min at room temper-
ature. Finally, the crystal violet staining solution was 
slowly washed off with running water and dried in air.

Wound‑healing assay
A typical wound-healing assay was performed to assess 
the migration ability of A549 and H1975 cells. Cells 
were inoculated in 12-well plates at a density of 1 × 105 
until the cells were completely confluent, and the con-
fluent monolayer was subsequently damaged with a yel-
low sterile pipette tip. Cells were washed three times 
with PBS to remove detached cells, and then cultured 
in serum-free medium for 24 h. Images were collected 
at 0 and 24 h. Experiments were repeated at least three 
times.

Iron assay
FerroOrange (1 µmol/L, Dojindo, Japan) was added to 
transfected A549 and H1975 cells and then incubated 
under 37 °C and 5% CO2 conditions for 30 min. Finally, 
cells were observed under a fluorescence microscope 
(BioTek Cytation 5, BioTek, USA).

Lipid peroxidation assay
C11-BODIPY 581/591 (10 µM; ABclonal, Wuhan, 
China) was added to transfected A549 and H1975 cells 
and incubated under 37 °C and 5% CO2 conditions for 
1 h. At the end of the incubation, the cells were washed 
twice with PBS and digested with trypsin, then the cells 
were resuspended in PBS containing 5% FBS and finally 
analyzed by flow cytometry.

Western Blot assay
Proteins were extracted from cells, and cell lysates were 
prepared with RIPA lysate (Solarbio, Beijing, China) 
added with PMSF, followed by protein quantifica-
tion using the BCA protein assay kit (Sangon Biotech, 
Shanghai, China). Proteins were subsequently sepa-
rated with 10 % SDS-PAGE and transferred to nitrocel-
lulose membranes. 5 % bovine serum albumin (BSA) 
was used to block the membranes and then the mem-
branes were incubated with primary antibodies over-
night at 4  °C. The next day, after the membranes were 
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washed three times with TBST, horseradish peroxi-
dase-labeled secondary antibodies (1:4000) were added 
for 1  h at room temperature, after which they were 
washed three times with TBST. Finally, color develop-
ment was performed using BeyoECL Moon (Beyotime 
Biotechnology, Shanghai, China).

Statistical analysis
Data are expressed as mean ± standard deviation (SD). 
Statistical analysis was performed by using GraphPad 
Prism analysis software. The t-test was used to assess the 
difference between the two groups and a value of P < 0.05 
indicates a statistically significant difference, * indicates P 
< 0.05; ** indicates P < 0.01; *** indicates P < 0.001.

Results
Identification of common differentially expressed genes 
(DEGs)
Sorting out the data of TCGA, we carried out differen-
tial expression analysis on the NSCLC gene expression 
matrix. Utilizing R packages “edgeR” filtering (log2FC > 
2 and FDR < 0.05), we screened out 41 DEGs, including 
32 up-regulated and 9 down-regulated gene (Fig.  1A). 
In the same way, we screened out 42 DEGs by R pack-
age “DESeq2”, including 28 up-regulated and 14 down-
regulated gene (Fig. 1B). Subsequently, these DEGs were 
subjected to Venn diagram analysis, 37 common DEGs 
in the intersection of both analysis results were identi-
fied and selected for further analysis (Fig. 1C). In order to 
make the results more intuitive, we visualized them on R 
software.

Analysis of biological properties and pathways related 
to the DEGs
Moreover, we conducted GO analysis and KEGG path-
way enrichment analysis of DEGs from differential 

analysis to explore their potential biological functions 
and pathways in NSCLC. The results of GO analysis 
in Fig. 2A showed that DEGs were significantly related 
to response to oxidative stress, cellular response to 
chemical stress, iron ion homeostasis, cellular oxidant 
detoxification, cellular detoxification, cellular response 
to oxidative stress, cellular response to toxic substance, 
cellular iron ion homeostasis, transition metal ion 
homeostasis, detoxification, basolateral plasma mem-
brane, blood microparticle, apical part of cell, microvil-
lus, membrane apical plasma membrane, pronucleus, 
microvillus, endoplasmic reticulum lumen, cell projec-
tion membrane, basal plasma membrane, oxidoreduc-
tase activity, acting on NAD(P)H, antioxidant activity, 
iron ion binding, oxidoreductase activity, acting on 
single donors with incorporation of molecular oxygen, 
aldo-keto reductase (NADP) activity, bile acid binding, 
ferrie iron binding, alditol: NADP + 1-oxidoreductase 
activity, steroid binding-organic acid binding. These 
biological oxidation functions are closely related to the 
main molecular function of these ferroptosis regula-
tion. The results of KEGG analysis in Fig. 2B suggested 
that DEGs were significantly associated with ferropto-
sis, cysteine and methionine metabolism, glutathione 
metabolism, steroid hormone biosynthesis, arachidonic 
acid metabolism, thyroid hormone synthesis. The fer-
roptosis pathway and glutathione metabolism pathway 
are important pathways regulating ferroptosis, so we 
displayed glutathione metabolism pathway in Fig.  2E 
based on KEGG analysis results. According to above 
analysis results, we confirmed that the 34 selected 
genes are related to ferroptosis and suggested the role 
of glutathione biosynthesis and metabolism in NSCLC.

Fig. 1   Verification of common differential genes in NSCLC. A, B The volcano plots visualize the DEGs by R package (A) “Edger” (B) and DeSeq2. 
|log2FC| > 2 and P < 0.05. The red nodes represent upregulated genes while the blue nodes represent downregulated genes. C Common DEGs
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Regulatory network analysis of DEGs associated 
with ferroptosis
As shown in Fig.  2C, there were 37 ferroptosis-related 
DEGs filtered into the PPI network complex includ-
ing 37 nodes and 66 edges based on the STRING data-
base. Average degree of the nodes was 3.57, and the 
PPI enrichment P-value was < 1.0e−16 (Fig.  2C). The 
top 10 hub genes identified in the PPI network by cyto-
Hubba plugin in Cytoscape software respectively were 
AKR1C2, AKR1C1, SRXN1, GCLC, TF, TFR2, SLC7A11, 
CDKN2A, AKR1C3, NQO1 (Fig. 2D).

Construction of prognostic signatures gene related 
to ferroptosis in NSCLC
Subsequently, we examined the prognostic role of fer-
roptosis-related genes in NSCLC. Among the NSCLC 
patients in the TCGA, we identified 37 genes associated 
with the prognosis of NSCLC through the univariate Cox 
regression analysis (P < 0.05). Next, the multivariate Cox 

regression analysis identified 6 overall survival associated 
genes (ENPP2, ULK1, CP, LURAP1L, HIC1, AKR1C1) in 
NSCLC patients (P < 0.05). Additionally, in order to pre-
dict prognosis in NSCLC patients, we used six selected 
genes associated with the NSCLC prognosis to construct 
a risk model by multiple stepwise Cox regression analy-
sis. Risk score = (0.219 * expression level of ENPP2) + 
(0.334 * expression level of ULK1) + (0.046 * expression 
level of CP) + (0.039* expression level of LURAP1L) + 
(− 0.153 * expression level of HIC1) + (− 0.074 * expres-
sion level of AKR1C1). As the survival curve based on 
TCGA shown in Fig. 3A, samples in low-risk group were 
associated with a significant increase in survival time 
compared with the high-risk group (P < 0.0001), suggest-
ing higher risk scores predicted worse prognosis. In addi-
tion, we also employed receiver operating characteristic 
(ROC) curves to evaluate the accuracy of the prediction 
models. And the AUC score was 0.680 (Fig. 3B), indicat-
ing a high survival prediction performance of model. As 

Fig. 2   Enrichment analysis and PPI network construction of different expressed ferroptosis-related genes. A Bar plot of GO enrichment in cellular 
component terms, biological process terms, and molecular function terms. B Bar plot of KEGG enriched terms. C A protein–protein interaction 
network was constructed from the STRING database online. D The hub genes were screened with cytoHubba on Cytoscape. E GSH pathway in 
which the GSE is involved
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the risk score increases, the patients’ death risk increases, 
and the survival time decreases (Fig. 3C, D). Besides, uni-
variate and multivariate Cox analyses were combined to 
analysis the independent predictive factor for NSCLC 
patients’ prognosis in our model, and it turns out that 
lasso risk value independently predicted survival expec-
tancy (Fig.  3E, F). Furthermore, Kaplan-Meier analysis 
was utilized to paint the survival curves and it was com-
pared by the log-rank test based on the threshold of P < 
0.05 (Fig. 4A–E). Shown in Fig. 4, the high expression of 
genes CP, LURAP1L and AKR1C1 is strongly associated 
with poor prognosis in NSCLC (P < 0.05), especially the 
gene AKR1C1 (P = 0.019) whose low expression dictated 
a prolonged survival time. Thus, we chose gene AKR1C1 
for further analysis.

Immune infiltrates analysis
To further explore the relationships between the risk 
scores and immune cells and related functions, we quan-
tified the enrichment scores of 5 immune cell subpopu-
lations and their related functions with the ssGSEA R 
package. As the results showed in Fig. 5A, immune cells 
Macrophages, TIL and Treg in the high-risk group were 

significantly higher than those in low-risk group. More-
over, the scores of the immune functions, including the 
CCR, check-point, parainflammation showed the same 
results, implying their immunological functions associ-
ated with ferroptosis were more muted in the low-risk 
group (Fig. 5B).

The validation of signature gene
The expression level of AKR1C1 in tumor and cor-
responding normal tissues in cancer was verified on 
Oncomine database. As shown in Fig.  6A, AKR1C1 
displayed a higher expression level in cervical can-
cer, esophageal cancer, kidney cancer, lung cancer and 
lymphoma, especially in lung cancer. Then we checked 
the impact of AKR1C1 on NSCLC tumor survival 
rates by the Kaplan-Mayer plotter database (Fig.  6C). 
The results demonstrated that lower expression level 
of AKR1C1 was correlated to longer survival time 
in patients with NSCLC. Besides, in order to further 
explore the biological function of AKR1C1, we per-
formed GSEA validation on AKR1C1 (Fig.  7A–I). The 
results in Fig.  7 showed that AKR1C1 were mainly 
concentrated in biological functions such as biological 

Fig. 3   Prognostic analysis of the 6-gene signature model in the TCGA cohort. A Kaplan-Meier curves for the OS of patients in the high-risk group 
and low-risk group. P = 1.78e−09. B AUC of time-dependent ROC curves in the TCGA cohort. AUC at 3 years = 0.680, AUC at 5 years = 0.667, AUC 
at 7 years = 0.663. C The dotted line indicates the individual inflection point of the risk score curve, by which the patients are categorized into 
low-risk (green) and high-risk (red) groups. D Red dots indicate the dead patients and green dots indicate the alive. With the increase of risk score, 
more patients died. E Univariate Cox regression analysis. Forest plot of associations between risk factors and the survival of NSCLC. F Multiple Cox 
regression analysis. The ferroptosis-related gene signature is an independent predictor of NSCLC
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REDOX, metabolism, metal ions, completing the 
biological role of AKR1C1 in ferroptosis. Moreover, 
exploring the ferroptosis level of AKR1C1 in NSCLC, 
we evaluate the FPI value of AKR1C1 in NSCLC and 
visualize the results in Fig.  6B which suggested that 
AKR1C1 was with low ferroptosis level in NSCLC (P = 
0.001). As shown in Fig.  6D, AKR1C1 mRNA expres-
sion level was significantly negatively correlated with 

infiltrating level of immune cells, including CD4+ T 
cells (r = − 0.2, P = 9.36e−06), neutrophils (r = − 0.19, 
P = 2.64e−05) and dendritic cells (DCs) (r = − 0.249, P 
=2.62e−08). Furthermore, we explored the correlation 
between the expression of AKR1C1 and the number of 
22 types of immune cells infiltrated in NSCLC. Accord-
ing to the results in supplementary Tables 1, we found 
AKR1C1 expression is associated with the number of 

Fig. 4   Kaplan–Meier analysis between two risk groups of six genes with prognostic value. A ENPP2, P = 0.091. B ULK1, P = 0.16. C CP, P = 0.02. D 
LURAP1L, P = 0.037. E HIC1, P = 0.34. F AKR1C1, P = 0.019

Fig. 5   Comparison of the ssGSEA scores between the high-risk and low-risk groups. The scores of 5 immune cells and 4 immune-related functions 
are displayed in boxplots: A Macrophages, Neutrophils, Th1 cells, TIL, Treg. B CCR, Check-point, Inflammation-promoting, Parainflammation. 
Adjusted P values were shown as: ns, not significant; *P < 0.05; **P < 0.01; ***P < 0.001



Page 9 of 16Huang et al. Cancer Cell Int          (2021) 21:567 	

various types of immune cells, including B cells naive, 
B cells memory, plasma cells, T cells CD8, T cells CD4 
naive, T cells CD4 memory resting, T cells regulatory 
(Tregs), T cells gamma delta, NK cells resting, mono-
cytes, dendritic cells resting, dendritic cells activated, 
mast cells resting and neutrophils (P < 0.05, cor > 0.3). 
Moreover, tumor tissues with higher infiltrating levels 
of T cells CD8, T cells CD4 naive, T cells CD4 mem-
ory resting, T cells regulatory (Tregs), T cells gamma 
delta, dendritic cells resting and neutrophils had lower 
level of AKR1C1 expression on cancer cells (Additional 
file 1: Fig. S1). On the contrary, lower infiltrating levels 
of B cells naive, B cells memory, plasma cells, NK cells 
resting, monocytes, dendritic cells resting, and mast 
cells resting is associated with the high expression level 
of AKR1C1 in NSCLC. These data suggested the com-
plexity between ferroptosis-related gene AKR1C1 and 
immunity.

AKR1C1 silencing inhibits the malignant phenotypes 
and promotes ferroptosis of NSCLC cells
To determine the clinical relevance of AKR1C1 expres-
sion level, we examined AKR1C1 expression in six pairs 
of clinical NSCLC and corresponding adjacent non-
tumor tissue samples. The immunohistochemical assay 
showed that the expression level of AKR1C1 protein 
in NSCLC tissues was significantly higher than in cor-
responding adjacent non-tumor tissues (Fig.  8A, B), 
which indicated that AKR1C1 was highly expressed in 
NSCLC. In addition, to further evaluate the expression 
of AKR1C1 in NSCLC, the protein level was examined in 
human bronchial epithelial cells and NSCLC cell lines. It 
was found that the protein level of AKR1C1 was signifi-
cantly higher in A549, PC-9, and H1975 cells, but almost 
undetectable in human bronchial epithelial cells BEAS-
2B (Fig. 8C, D). Notably, the AKR1C1 level was higher in 
A549 cells and H1975 cells than in PC-9 cells. Therefore, 

Fig. 6   Single gene validation of AKR1C1 in NSCLC. A The mRNA expression level of AKR1C1 in various cancer based on Oncomine database. 
Color images are available online. fold change = 2 and P-value = 0.01; B The ferroptosis potential index (FPI). AKR1C1 has an FPI < 0.001 in NSCLC. 
C Kaplan-Meier survival curves comparing the high and low expression of AKR1C1 in NSCLC in the Kaplan-Meier plotter database. D Correlation 
between AKR1C1 expression and immune cells infiltration of NSCLC. Tumor purity. AKR1C1 expression was negatively correlated with dendritic cells, 
CD4 + T cells and neutrophils
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A549 cells and H1975 cells were adopted for subsequent 
cell analyses.

To reveal the biological function of AKR1C1 in NSCLC 
cells, we transfected A549 cells and H1975 cells using 
siRNA. RT-qPCR and western blot results showed that 
AKR1C1 mRNA and protein expression was significantly 
down-regulated in A549 cells and H1975 cells after si-
AKR1C1 transfection, suggesting that AKR1C1 was 
successfully knocked down (Fig.  9A–C). Subsequently, 
we performed CCK8 assay and colony formation assay 

to observe the role of AKR1C1 in A549 cell and H1975 
cell proliferation. The results showed that A549 cell and 
H1975 cell proliferation was significantly decreased in 
the si-AKR1C1 group compared with the si-NC group 
(Fig.  9D, E). In addition, the results of wound healing 
assay showed that the migration ability of A549 cells 
and H1975 cells in the si-AKR1C1 group was attenuated 
compared with that in the si-NC group (Fig. 9F). There-
fore, our results illustrated that AKR1C1 was essential for 
the proliferation and migration ability of NSCLC cells.

Fig. 7   Gene Set Enrichment Analysis (GSEA) validation in NSCLC. A xidoreductase activity. B Oxidoreductase activity acting on NADPH. C Oxidation 
reduction process. D Steroid metabolic process. E Fatty acid derivative metabolic process. F Generation of precursor metabolites and energy. 
G Anion transport, H lipid binding. I Ion transmembrane transport
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Likewise, to further investigate the role of AKR1C1 
expression in ferroptosis, we examined key indicators 
related to ferroptosis [including ferrous ions (Fe2+), lipid 
peroxidation, GPX4, transferrin (TF) and prostaglan-
din-endoperoxide synthase 2 (PTGS2)] by interfering 
with AKR1C1 expression in A549 cells and H1975 cells. 
First, we examined the effect of AKR1C1 on changes in 
intracellular Fe2+ levels and found that the level of intra-
cellular Fe2+ rose in A549 cells and H1975 cells after 
knockdown of AKR1C1 (Fig. 10A). Moreover, lipid per-
oxidation plays a key role in the development and pro-
gression of ferroptosis. Therefore, we next examined the 
effect of AKR1C1 on the level of intracellular lipid per-
oxidation in A549 cells and H1975 cells and showed that 
inhibition of AKR1C1 expression increased the level of 
intracellular lipid peroxidation in A549 cells and H1975 
cells (Fig.  10B). Meanwhile, the results of western blot 
showed that GPX4 expression decreased and TF and 
PTGS2 expression increased in A549 cells and H1975 
cells after knockdown of AKR1C1 (Fig.  10C, D). Thus, 
our results indicated that silencing AKR1C1 promoted 
ferroptosis in NSCLC cells.

Discussion
As a newly discovered form of iron-dependent cell death, 
ferroptosis represents a new perspective for the treat-
ment of cancer and may develop new strategies for the 
treatment of NSCLC [11, 18]. However, the specific role 
of ferroptosis in NSCLC has not yet been clarified. In 
the present study, we found that high expression of the 

ferroptosis-related gene AKR1C1 was associated with a 
poor prognosis in NSCLC, and silencing AKR1C1 inhib-
ited proliferation and migration of NSCLC cells and pro-
moted the development of ferroptosis.

Previous studies have demonstrated that human 
aldo-keto reductase family plays an important role in 
the metabolism of steroid hormones, metabolism of 
conjugated steroids, biosynthesis of neurosteroids and 
bile acids, and synthesis of therapeutic steroids, and is 
closely associated with NAD(P)(H)-dependent reduc-
tion [33, 34]. Aldo-keto reductases can also protect 
metastatic melanoma from ER stress-dependent ferrop-
tosis [35]. AKR1C1, a member of the aldo-keto reduc-
tase family, has been reported to be highly expressed in 
various types of cancer, such as small cell lung cancer 
[33], endometrial cancer [36], prostate cancer [37]. It 
has been shown that high expression of AKR1C1 can 
promote proliferation and migration of small cell lung 
cancer cells, and it may represent an independent bio-
marker for assessing the main prognosis and treatment 
of small cell lung cancer [33]. Likewise, the results of 
another study also showed that the loss of AKR1C1 is a 
good prognostic factor in patients with advanced NPC 
and increases the chemosensitivity of NPC cells to cis-
platin [38]. However, the biological role of AKR1C1 in 
NSCLC has not been clarified. In the present study, we 
screened AKR1C1 from the signature genes of a prog-
nostic model and determined that its expression level 
was significantly upregulated in NSCLC cell lines. 
Furthermore, to explain the clinical significance of 

Fig. 8   AKR1C1 was upregulated in NSCLC tumor tissues and cell lines. A, B Representative images and scores of AKR1C1 immunohistochemical 
staining in six NSCLC and paired non-tumor tissues. C, D Expression level of AKR1C1 in NSCLC cell lines by western blot. Compared with BEAS-2B, *P 
< 0.05, **P < 0.01
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AKR1C1 in NSCLC, we confirmed that high expression 
of AKR1C1 was strongly associated with poor progno-
sis in NSCLC patients by Kaplan-Mayer plotter data-
base. And silencing AKR1C1 has been shown to inhibit 

the proliferation, migration, and increase ferrous ions 
and lipid peroxidation levels of NSCLC cells. Therefore, 
AKR1C1 can be used as a specific marker in NSCLC 
patients.

Fig. 9   AKR1C1 silencing inhibits the malignant phenotypes of NSCLC cells. A–C RT-qPCR and western blot results showed that AKR1C1 was 
successfully knocked out by siRNA in A549 cells and H1975 cells. *represents si-AKR1C1 vs. si-NC, *P < 0.05, **P < 0.01. D, E The effect of AKR1C1 
silencing on cell proliferation were measured by CCK8 assay and colony formation assay. *represents si-AKR1C1 vs. si-NC, *P < 0.05, **P < 0.01. F 
Measurement of wound healing ability. Cells under different treatments were examined for migration to the wound area and photographed
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Fig. 10   AKR1C1 silencing promotes ferroptosis of NSCLC cells. A, B Detection of ferrous ions and lipid peroxidation levels after silencing AKR1C1 in 
A549 cells and H1975 cells. C, D The expression levels of GPX4, PTGS2, and TF in A549 cells and H1975 cells with AKR1C1 silencing were detected by 
western blot. *si-AKR1C1 vs. si-NC, *P < 0.05, **P < 0.01
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Tumor progression and the efficacy of immunotherapy 
are strongly influenced by the composition and abun-
dance of immune cells in the tumor microenvironment 
[39]. As an important part of tumor microenvironment, 
tumor-infiltrating immune cells play an important role 
in NSCLC treatment efficacy and patient prognosis [40–
45]. In this study, we confirmed significantly negatively 
correlation between the expression level of AKR1C1 and 
the infiltrating levels of CD4+ T cells and dendritic cells 
on the TIMER database. T cells are an important cellular 
component of adaptive immunity, and cellular immune 
responses to prevent tumors are usually attributed to 
CD8+ T cells [46]. However, increasing evidences have 
demonstrated that CD4+ T cells play an important 
role in generating and maintaining anti-tumor immune 
responses [47–49]. In addition, dendritic cells also play 
an important role in immune response, and they are the 
most effective antigen-presenting cells to induce primary 
immune response in cancer [50]. Current studies have 
shown that high dendritic cells infiltration in lung cancer 
is associated with a good prognosis [51, 52], while immu-
notherapy using dendritic cells has shown good results 
in clinical trials of lung cancer patients [53, 54]. Consid-
ered together, these data suggest that high expression of 
AKR1C1 might be correlated with immunosuppression 
in NSCLC.

In summary, the results in this study suggest that 
AKR1C1 is an important prognostic biomarker that may 
predict long-term survival in NSCLC patients, which can 
regulate the proliferation and migration of NSCLC cells 
and promote the occurrence of ferroptosis. Therefore, 
AKR1C1 can serve as a potential biomarker of prognos-
tic value in NSCLC and the mechanisms underlying the 
prognostic value of AKR1C1 in NSCLC deserves further 
experimental exploration.
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