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Abstract

Using a previously described metagenomics dataset of 27 billion reads, we reconstructed over 50 000 metagenome-assembled 
genomes (MAGs) of organisms resident in the porcine gut, 46.5 % of which were classified as >70 % complete with a <10 % 
contamination rate, and 24.4 % were nearly complete genomes. Here, we describe the generation and analysis of those MAGs 
using time-series samples. The gut microbial communities of piglets appear to follow a highly structured developmental pro-
gramme in the weeks following weaning, and this development is robust to treatments including an intramuscular antibiotic 
treatment and two probiotic treatments. The high resolution we obtained allowed us to identify specific taxonomic ‘signatures’ 
that characterize the gut microbial development immediately after weaning. Additionally, we characterized the carbohydrate 
repertoire of the organisms resident in the porcine gut. We tracked the abundance shifts of 294 carbohydrate active enzymes, 
and identified the species and higher-level taxonomic groups carrying each of these enzymes in their MAGs. This knowledge 
can contribute to the design of probiotics and prebiotic interventions as a means to modify the piglet gut microbiome.

DATA SUMMARY
The data were deposited in the National Center for Biotech-
nology Information Sequence Read Archive under project 
accession number PRJNA526405. Workflows and code used 
for the preliminary data processing are available in the GitHub 
repository (https://​github.​com/​koadman/​metapigs). Code 
used for the data analysis and visualization are available in 
the GitHub repository (https://​github.​com/​GaioTransposon/​
metapigs_​dry).

INTRODUCTION
Advances in sequencing technology and computational anal-
ysis enable the study of whole microbial communities from a 
given environment in a high-throughput manner, bypassing 
the need to cultivate individual organisms. High-throughput 
microbial community profiling is generally approached in a 
targeted (e.g. 16S rRNA) or untargeted (shotgun) manner.

Only a tiny fraction of known bacterial species are repre-
sented in genome sequence databases and, in particular, 
difficult-to-culture and non-pathogenic organisms remain 
greatly underrepresented [1–3]. On the contrary, taxa of 
interest for their pathogenicity or potential in the biotech 
sector are more often sequenced and, therefore, tend to 
be better represented in public databases. Although an 
increasing diversity of reference genomes is becoming 
available, reference-based methods are not ideal for the 
discovery of new genomes, as they depend, directly or 
indirectly, on existing databases [4]. Moreover, proof of 
the nature of functional redundancy in the microbiome 
[5, 6], the early documented within-species genomic diver-
sity [7], coupled with its striking functional implications 
[6, 8, 9], should make us ever more aware that important 
compositional and functional features may be masked 
completely when the view of the microbiome is restricted 
to a small conserved gene fragment and the assumptions 
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on its conservation, as in the 16S rRNA amplicon profiling 
technique.

Shotgun metagenomic sequencing, however, allows a much 
more complete view of the microbial community. The tech-
nique uses assembly and binning for the reconstruction of 
genomes from metagenomic reads, but it comes with many 
technical challenges. Among the main challenges are the 
detection of less prevalent taxa within the sample [10], and 
the high sequence similarity among strains of the same 
species, making assembly a particularly challenging task 
[11, 12]. However, various techniques have been developed 
to overcome these obstacles. Previous work in computational 
metagenomics has established that repeated sampling from 
an environment or subject can facilitate the reconstruction of 
genomes from species [13, 14] and strains [15] in the microbial 
community. Two major steps are typically involved in the data 
analysis: assembly and binning. The joint assembly of samples 
from an individual host is called co-assembly, while binning 
consists in the grouping of co-assemblies into metagenome-
assembled genomes (MAGs) in the process of differential 
coverage binning [16]. The abundance per sample is then 
inferred from coverage depth and/or k-mer frequencies [17]. 
The rationale behind this type of binning method is based 
on the observation that the abundance of genetic material 
from the same organism changes in one subject or environ-
ment over time in a highly correlated manner [13, 14, 16, 18]. 
There are two reasons that time-series binning facilitates the 
resolution of genomes: (i) strains are known to persist for long 
periods of time (i.e. decades) [19], and as such the abundance 
of the same organism in a subject or environment changing 
over time in a highly correlated manner improves the infer-
ence of MAGs; (ii) at least in humans, over half of all species 
in the gut are represented by single strains [20]; therefore, 
co-assembly of time points boosts the per-genome coverage.

The present work builds upon a large collection of post-
weaning porcine gut samples for which we previously 
described the microbial community composition using an 
assembly-free phylogenetic profiling technique [21]. We 
reconstruct genomes from this large sample collection and 
analyse how those genomes change in abundance across time 
and treatment cohorts. To do so, we created co-assemblies 
for each individual host, pooling all the time point samples 
available from each subject, thereby increasing the power to 
reconstruct genomes from low-abundance microbes. In this 
study, we describe the associations we found between specific 
genomes and the post-weaning aging process in piglets, as 
well as the carbohydrate metabolism during the post-weaning 
period.

METHODS
Metagenomic samples
Below, we briefly summarize the origin of the samples, 
but we refer to our previous report [21] for a thorough 
description of the animal trial and the sample processing 
workflow. Subjects were post-weaning piglets (n=126) from 
which faecal samples were collected between 1 and 10 times 

during a 40 day period. Piglets were aged 22.5±2.5 days at 
the start of the trial. The piglets were distributed over six 
treatment cohorts: a placebo group (control n=29); two 
probiotic groups (D-Scour n=18; ColiGuard n=18); one 
antibiotic group (neomycin n=24); and two antibiotic-
then-probiotic treatment groups (neomycin+D-Scour 
n=18; neomycin+ColiGuard n=18). Additionally, 42 faecal 
samples derived from the piglets’ mothers, 18 samples 
derived from three distinct positive controls and 20 nega-
tive controls were included. All piglets were sampled 
weekly, while a subset of the piglets (8 per cohort; n=48) 
was sampled twice weekly. In total, mothers were sampled 
once, while piglets were sampled between 1 and 10 times 
(median=6.0; mean=6.11). As previously described [21], 
samples were homogenized immediately after collection 
and stored at −80 °C until thawed for further processing. 
Extraction of DNA was performed with the PowerMi-
crobiome DNA/RNA EP kit (Qiagen) and libraries were 
prepared from genomic DNA using the Hackflex method 
[22]. Libraries were normalized, pooled and sequenced on 
three Illumina NovaSeq S4 flow cells. The data were depos-
ited in the National Center for Biotechnology Information 
Sequence Read Archive under project accession number 
PRJNA526405.

Sequence data processing
A total of 911 samples were sequenced, generating a mean of 
7 581 656 (median=3 936 038) paired-end reads per sample 

Impact Statement

The aim of this work was to assemble a large amount 
of metagenomic data into metagenome-assembled 
genomes (MAGs), and to use the MAGs to describe the 
developing gut microbial composition of post-weaning 
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emission) taxa.
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for a total of 27.2 billion paired-end reads. BBDuk [23] 
(v38.22) was used for adapter trimming (parameters: k=23 
hdist=1 tpe tbo mink=11), PhiX DNA removal (parameters: 
k=31 hdist=1) and quality filtering (parameters: ftm=0 
qtrim=r trimq=20). Quality assessment was performed 
with fastqc [24] (v0.11.18) and multiqc [25] (v1.8).

Pooled assembly and binning
Adapter-trimmed and quality-filtered paired-end reads 
from all samples were grouped by subject and assem-
bled using megahit [26] (v1.1.3) (parameters: --min-
contig-len=5 --prune-level=3 --max-tip-len=280), yielding 
a combined total of 8 389 418 contigs. Reads were mapped 
back to assembly contigs using bwa-mem [27] (v0.7.17-
r1188). Format conversion to bam format was performed 
with SAMtools [28] (v1.9). Metagenome binning of the 
co-assemblies was performed for each subject (i.e. each pig, 
positive control and all negative controls were separately 
co-assembled) with MetaBAT2 [29] (v2.12.1) (parameters: 
--minContig 2500).

MAG quality assignment
Quality analysis of MAGs was performed with CheckM 
[30] (v1.0.13) following the lineage-specific workflow 
(lineage_set).

MAG taxonomic assignment
Taxonomic clustering of MAGs was performed with Kraken2 
[31, 32] (v2.0.8) using, in parallel: a prebuilt 8 Gb database 
(MiniKraken DB_8 GB) constructed from bacterial, viral 
and archaeal genomes from RefSeq version Oct. 18 2017, 
and the Genome Taxonomy Database (GTDB) [33] (release 
89.0). All MAGs were assigned a taxon at the species level. 
Higher taxonomic levels of the GTDB were retrieved from 
the latest release (release 89.0) of the bacterial and archaeal 
database publicly available at the GTDB website (https://​
gtdb.​ecogenomic.​org/). Phyla composition profiles were 
obtained from presence/absence counts of MAGs, ignoring 
their relative abundances in each sample, using MAGs that 
were taxonomically assigned with either GTDB or CheckM. 
We refer to these as GTDB clustered MAGs and CheckM 
clustered MAGs.

MAG dereplication
Because MAGs were constructed independently for each 
host, highly similar MAGs are expected to be present in 
the data, representing the same species or strain recovered 
from different hosts. To group the MAGs into collections 
that represent MAGs of the same species or strain we 
carried out bin dereplication using dRep (v2.3.2) [34]. All 
MAGs derived from pig samples were dereplicated with 
dRep [34] (parameters: --checkM_method=lineage_wf 
--length=500 000). All other parameters were set to default. 
The clusters of similar bins produced by dRep at 95 % 
identity (primary clusters) and at 99 % identity (secondary 
clusters) were used for further analysis as described below. 

We refer to these as 95 % average nucleotide identity (ANI) 
MAG clusters and 99 % ANI MAG clusters.

Data analysis
Analyses of MAGs were performed for the following sets of 
MAGs: (i) nearly complete genomes (≥90 % completeness and 
≤5 % contamination) as estimated and taxonomically catego-
rized by CheckM analysis (n=12.4×103); (ii) length filtered and 
ANI clustered MAGs from dRep analysis (n=22.4×103); (iii) 
all (unfiltered) MAGs taxonomically categorized by GTDB 
(n=51.2×103). Non-metric multidimensional scaling (NMDS) 
and network analysis were performed with PhyloSeq [35] 
using the median sequencing depth to normalize samples. 
Bray–Curtis value was used as a distance measure. Separately 
from the ordination analysis performed with PhyloSeq, we ran 
principal component analysis (PCA) with data normalized by 
proportions and transformed with the centred log-ratio. In 
the latter case, the data underwent the following transforma-
tions: (i) library size normalization by proportions; (ii) sum of 
counts from MAGs falling under the same MAG (taxonomic 
or ANI) group assignment; (iii) mean by sampling time point 
and cohort; (iv) centred log-ratio transformation.

Microbial diversity assessment and microbial abundance 
heatmaps were generated using GTDB clustered MAGs. 
After the exclusion of samples with low read counts (approxi-
mately <10 000) (prune_samples function), samples were 
rarefied (rarefy_even_depth function) (PhyloSeq v1.28.0). To 
compare microbial diversity scores of samples from different 
time points, t-tests were applied, and significance values were 
adjusted with the Bonferroni method. To generate the heat-
maps, taxa were filtered based on abundance, prevalence and 
within-samples variation, as indicated in the figure legends.

Age, breed, co-housing and piglet weight were tested for corre-
lation with microbiome composition. Samples were pruned 
and rarefied as described above and PCA was performed 
with PhyloSeq (v1.28.0). As breed and age were confounded 
factors, we additionally performed PCA on subsets of equal 
age or breed. The resulting eigenvectors were tested to assess 
the significance of the correlations. For the categorical vari-
ables age, breed and co-housing, Dunn tests were performed. 
For the continuous variable weight, the Spearman’s rank test 
was performed. Significance values were adjusted by Bonfer-
roni correction for multiple testing.

Differential abundance analysis
siamcat [36] was employed to determine differentially abun-
dant GTDB clustered MAGs between groups. The data were 
normalized by proportions prior to analysis with siamcat. 
Unsupervised abundance and prevalence filtering is run prior 
to the association testing. The abundance was normalized, 
and all GTDB clustered MAGs underwent analysis with 
siamcat. Associations of species with groups were found 
by running the siamcat check.associations function, which 
finds associations of single species with groups using the 
nonparametric Wilcoxon test and reporting associations 
and their strength using significance, prevalence shift and 
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generalized fold change (fc) metrics, the latter calculated as 
the geometric means of the differences between quantiles 
[37]. The Benjamini–Hochberg method was used to control 
the false discovery rate (i.e. the expected proportion of false 
discoveries amongst the rejected hypotheses).

Gene function analysis
Protein prediction from MAGs was performed with Prodigal 
[38] (v2.6.3). The predicted proteins were clustered with cd-
hit [39] (v4.6) using 90 and 100 % identity. Predicted proteins 
were mapped against a custom database of the UniRef90 
database (release June 2020) using diamond [40] (v0.9.31). 
Before mapping, the database was filtered to contain only 
error-corrected sequences matching the uniref90_ec_filtered 
list from HUMAnN2 [41] (/utility_mapping) (v2.8.1). To run 
the filtering, SeqTK [42] (v1.3-r106) was used.

Additionally, predicted proteins were mapped against the 
carbohydrate active enzyme (CAZy) database [43] with 
dbCAN2 [44] (v2.0.11), which utilizes diamond [40] and 
hmmer [45]. The proportion of species per enzyme ID was 
derived as follows: MAGs were grouped by subject, enzyme 
ID and GTDB-assigned species; distinct groups were selected 
and a count was obtained; the sum of distinct species falling 
within one enzyme ID was obtained and the proportion was 
derived.

Analysis workflow and scripts
In order to manage the processing of the data in the high 
performance computing environment (sequence data 
processing, pooled assembly, binning, MAGs quality assess-
ment), Nextflow [46] was used. For the installation and 
management of environments, conda [47] was used (v4.7.12). 
R [48] and the following R packages were used for the data 
analysis and visualization: ape [49], circlize [50], cluster [51], 
cowplot [52], ​data.​table [53], dplyr [54], EnvStats [55], facto-
extra [56], forcats [57], ggbiplot [58], ggplot2 [58], ggpubr 
[59], ggrepel [60], gplots [61], gridExtra [62], magrittr [63], 
matrixStats [64], microbiome [65], openxlsx [66], pheatmap 
[67], phyloseq [35], plyr [68], purr [69], RColorBrewer [70], 
readr [71], readxl [72], reshape [73], robCompositions [74], 
scales [75], seqinr [76], siamcat [36], splitstackshape [77], 
stringr [78], tidyr [79] and tidyverse [80].

A schematic workflow of the data processing and analysis is 
represented in Fig. S1 (available with the online version of this 
article). Workflows and scripts used for the data processing 
are available in the GitHub repository (https://​github.​com/​
koadman/​metapigs). Scripts used for the data analysis and 
visualization are available in the GitHub repository (https://​
github.​com/​GaioTransposon/​metapigs_​dry).

RESULTS
A total of 51 170 MAGs from 911 samples were generated in 
this study, 92.96 % (n=47 569) of which derived from samples 
of post-weaning piglets, 5.24 % (n=2680) from samples of 
the piglets’ mothers, and 1.81 % (n=926) from negative and 

positive control samples. Distribution of bins over subjects 
and cohorts are displayed in Fig. S2.

Completeness and contamination of MAGs
According to quality analysis with CheckM [30], 46.5 % 
(n=23 798) of the total MAGs (n=51 170) were classified 
as ≥70 % complete with a ≤10 % contamination rate, while 
24.4 % (n=12 486) were classified as nearly complete genomes 
as by the Bowers et al. [10] definition of MAGs with ≥90 % 
completeness and ≤5 % contamination (Fig. 1). Three hundred 
and thirty MAGs were ≥99 % complete and had a ≤0.1 % 
contamination rate. The MAGs with ≥60 % completeness and 
≤10 % contamination rate ranged in size from 442 kb to 6.4 
Mb (median=1.9 Mb), and their N50 values ranged from 4 to 
728 kb (median=16 kb).

MAG ANI clusters and taxonomic clusters
As a reference-free technique of MAG generation was 
adopted, we grouped the MAGs into clusters of similar 
genomes using two methods: (i) 95 and 99 % sequence 
similarity using the genome dereplication tool dRep [34]; 
and (ii) taxonomic clustering with Kraken2 [32] against 
the GTDB [33, 81]. Using the first method, nearly half of 
the MAGs (43.8 %) passed the established length-filtering 
threshold (500 000 nt) and were assigned a cluster ID based 
on ANI. A total of 1267 unique primary clusters (95 % 
ANI) and 4480 unique secondary clusters (99 % ANI) were 
obtained. Primary or secondary clusters that were found in 
only one subject were defined as unique, whereas clusters 
that were found in more than one subject were defined 
as common. Primary clusters (95 % ANI) were common 
among subjects at a higher rate than secondary clusters 
(99 % ANI): 98.6 and 86.2 % among piglets, and 91.4 and 
72.1 % among the mothers, respectively, delineating strain 
specificity within hosts (Fig. S3).

The second method applies clustering via taxonomic assign-
ment using the most comprehensive bacterial and archaeal 
taxonomic database that is currently available. Based on 
GTDB clustering of MAGs derived from positive control 
samples (three positive control types; eight replicates within 
each), MAG taxonomic assignments matched the expected 
profile and the profile obtained from analysis of the reads 
with MetaPhlAn2 [82] reported in our previous study [21] 
(Fig. S4).

High-level taxonomy of the piglet gut microbiome
According to taxonomic assignment of the nearly complete 
genomes with CheckM [30], the average post-weaning 
piglet gut microbiome is composed of the following phyla in 
the following proportions: Firmicutes (63.6 %), Bacteroidetes 
(13.2 %), Tenericutes (9.2 %), Actinobacteria (6.8 %), Proteo-
bacteria (2.2 %), Euryarchaeota (2.1 %), Spirochaetes (1.8 %), 
Chlamydiae (0.8 %) and Synergistetes (0.5 %). CheckM taxo-
nomic clustering resolved 91.28 % of the nearly complete 
MAGs to the order level, the most common taxonomic 
orders above 1 % being: Clostridiales (56.4 %), Bacteroidales 
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(12.9 %), Erysipelotrichales (8.2 %), Coriobacteriales (5.4 %), 
Lactobacillales (5.4 %), Selenomodales (3.4 %) and Methano-
bacteriales (1.8 %). According to taxonomic assessment of 
MAGs against the GTDB, the genus Prevotella took up the 
largest proportion, with 10.1 % of the total genera composi-
tion. The most common phyla, genera and species of the 
piglet microbiome are shown in Fig. S5.

Time trend
The predominant variation we observed in the piglet 
microbiomes is associated with the aging of the piglets. 
Both NMDS analysis and network analysis of samples with 
PhyloSeq [35] showed samples clustering by collection 
time point (Fig. S6). Samples were the most scattered in 
PCA at the start of the trial (t0 variance=0.1669, n=122) 
when piglets were aged between 3 and 4 weeks old, and 
samples clustered more closely at later time points (t2 
variance=0.0625, n=115; t4 variance=0.0405, n=105), 
shifting most prominently along the first NMDS axis (t-test; 
Bonferroni adjusted significance: t0–t2 P <0.0001; t2–t4 P 
<0.0001) (Fig. S6). The temporal shift was evident in the 
results from all of the various approaches we applied to filter 
and cluster MAGs into groups; hence, the final number of 
MAGs included in the analysis (CheckM 12.4×103; dRep 
22.4×103; GTDB 51.2×103) (Fig. S7).

Remarkable tightly regulated compositional shift
We found the aging-associated compositional shift 
throughout the length of the study to be consistent among 

hosts, independent of treatment, and marked by changes that 
were clearly associated with particular taxonomic groups 
(Figs 2 and S8).

Differential abundance between time points and statis-
tical analysis of the changes over time was obtained with 
siamcat [36]. Time points analysed were at consecutive 
weeks from the start (t0): t0, t2, t4, t6, t8 and t10. The top 
10 significantly shifting species in piglets between t0 and 
t4, and between t4 and t8, are shown in Fig. 3. Correlations 
with P <0.05 after false discovery rate correction (Benja-
mini–Hochberg method) were considered significant. 
Significance values, generalized fc and other metrics are 
provided in Table S1.

A total of 143 species were found to significantly shift in 
abundance (P <0.001; 84 % positive fc) in the piglet population 
between t0 and t2, (piglets aged 3–4 weeks and 4–5 weeks, respec-
tively) (Table S1), among which we found: Blautia_A wexlerae 
(fc=+1.4), CAG-83 sp003487665 (fc=−0.9), Lactobacillus amylo-
vorus (fc=+1.3), CAG-45 sp002299665 (fc=+1.7), CAG-110 
sp002437585 (fc=+1.7). Significant shifts in abundance were 
found for 90 species (P <0.001; 63 % positive fc) between t2 and 
t4 (Table S1), among which we found: Methanobrevibacter_A 
smithii (fc=−1.6), Phil1 sp001940855 (fc=−1.3), Prevotella copri 
(fc=+1.0), Prevotella sp000434515 (fc=+1.3), Lactobacillus 
amylovorus (fc=+0.7). Fifty-two species significantly shifted in 
abundance (P <0.001; 85 % positive fc) between t4 and t6 (Table 
S1), among which we found: Corynebacterium xerosis (fc=+1.4), 
Blautia_A obeum (fc=+1.1), Blautia_A sp000285855 (fc=+0.8), 

Fig. 1. Quality of MAGs. Distribution of contig counts (a), contig N50 lengths (b), and completeness and contamination rates over MAGs 
of partial quality (grey) and medium quality (pink), and nearly complete MAGs (blue) (c). Partial and medium quality MAGs have a 
level of completeness between 60 and 80 %, and between 80 and 90 %, respectively, and a rate of contamination of <10 % and ≤10 %, 
respectively. MAGs with a ≥90 % completeness and a ≤5 % contamination are considered nearly complete as by the Genomic Standards 
Consortium MIMAG standards [84].
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Clostridium sp000435835 (fc=+1.0), Clostridium_P ventriculi 
(fc=+1.4). The least significant shifts in abundance (n=4) were 
found between t6 and t8 (P<0.05; 50 % positive fc) (Table S1). 
These were: UBA7748 sp900314535 (fc=−0.9), Clostridium 
sp000435835 (fc=+0.8), Prevotella copri (fc=+0.3) and Bifido-
bacterium boum (fc=−0.8). The number of species significantly 
shifting in abundance (P <0.001; 32 % positive fc) was again 
higher (n=28) for the last time interval (t8–t10) when piglets 
were aged between 7–8 and 8–9 weeks. During this interval, 
the most significantly changing species were: Clostridium 
sp000435835 (fc=+1.4), Corynebacterium xerosis (fc=+1.2), 
Prevotella copri_A (fc=−0.7), Prevotella copri (fc=−0.5), Prevo-
tella sp000434515 (fc=−0.5) (Table S1). Notably, of all Prevotella 
species (n=16) significantly increased in abundance during the 
first or the second week, nearly all (n=13) decreased during the 
last time interval (false discovery rate adjusted P <0.05) (Fig. 
S9). All significance values and confidence intervals are given 
in Table S1.

Diversity
During the first week (t0–t2) (piglet age range: 3.5±0.5 to 
4.5±0.5 weeks) species richness increased (Shannon ∆ t2-

t0=0.53±0.12; Bonferroni adjusted P <0.00001) (Fig. S10, 
Table S1). Between t2 and t4 (piglets age range: 4.5±0.5 to 
5.5±0.5 weeks) a loss of species evenness was recorded 
(Simpson ∆ t4-t2=−0.04±0.02; Bonferroni adjusted P <0.00001). 
The following week (t4–t6) (piglets age range: 5.5±0.5 to 
6.5±0.5 weeks) an increment of species richness (Chao1 ∆ t6-

t4=37.20±15.13; Bonferroni adjusted P <0.00001) was observed 
(Fig. S10; Table S1).

Effects of age, breed, co-housing and weight
Age and breed were found to correlate with microbial composi-
tion (Fig. S11, Table S1). Piglets of the same breed (D×L) and 
two age groups (3 days difference between the two groups) 
separated by age at t0 in principal component 1 (PC1) (16.9 % 

Fig. 2. Microbial species abundance profile of the piglet gut over time. Panels represent time points from t0 (piglets aged 3 to 4 weeks 
old) to t10 (piglets aged 8 to 9 weeks old). Samples were pruned (exclusion of samples with approximately <10 000 read counts) and 
normalized by rarefaction. Prior to plotting, taxa were filtered to include the most abundant taxa present in at least 20 % of the piglet 
samples. Of these, the 35 taxa with the highest variance among samples were plotted. Analysis was performed with PhyloSeq.
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variation explained; Dunn test; Bonferroni adjusted P=0.001) 
and at t2 in PC1 (14.5 % variation explained; Dunn test; Bonfer-
roni adjusted P=0.002) and in PC2 (10.0 % variation explained; 
Dunn test; Bonferroni adjusted P=0.026) (Fig. S11, Table S1). 
These age groups were compared with siamcat [36] to discover 
taxa that exhibit an age association in their abundances. A list 
of taxa that were found to be mildly associated with age at each 
time point and the significance of these associations are reported 
in Table S1.

Breed was also found to significantly associate with micro-
biome composition when piglets of the same age and two 
breeds (D×L and D×LW) were compared. Significance was 
reached in PC2 (variation explained: 10.1 %) at t0 (Dunn 
test; Bonferroni adjusted P=0.001) and in PC1 (variation 
explained: 12.9 %) at t2 (Dunn test; Bonferroni adjusted 

P=0.024) (Fig. S11, Table S1). Piglets of the same age and 
two breed groups were compared with siamcat to find taxa 
for which abundances were associated with breed. Neither 
at 95 % confidence (alpha 0.05) nor 80 % confidence (alpha 
0.20) was the association of microbial composition with 
breed found to be attributable to specific taxa (Table S1). 
Weak correlations were found between taxon abundances 
and weight (variance explained <4.3 %; Spearman’s rank rho 
range −0.349–0.246; P values range 0.003–0.043) (Table S1).

Predicted proteome of the piglet
Gene prediction from all MAGs (n=51 170) yielded 70 696 284 
predicted ORFs. The predicted protein sequences fell into 
24.4 million clusters at 100 % amino acid identity and into 
6.9 million clusters at 90 % amino acid identity. Homology 

Fig. 3. Significantly changing GTDB species with time. Significant shifts (alpha=0.05) were determined from comparison of GTDB 
clustered MAGs abundance in samples from distinct time points with siamcat. The Benjamini–Hochberg method was used to control 
the false discovery rate. (a) Percentages of negative fc and positive fc shifts are reported on top of the bar plots for each time interval, 
where two consecutive time points were compared. (b) Shown are the top 10 significantly changing GTDB taxonomically clustered MAGs 
at the species level, between time points 0 and 4 (2 week interval); and (c) between time points 4 and 8 (2 week interval). Points show 
normalized and log-transformed abundance within each subject and GTDB-predicted species.
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searching of all the predicted proteins against the CAZy 
database with hmmer identified 2 049 008 predicted proteins 
that are potentially involved in carbohydrate metabolism (E 
value <1×10−15; coverage median=94.3, mean=87.0). Of these 
enzymes, 1 023 807 were glycoside hydrolases (GHs), 716 644 
glycosyl transferases (GTs), 26 544 carbohydrate binding 
modules (CBMs), 253 525 carbohydrate esterases (CEs), 16 636 
polysaccharide lyases (PLs), 8626 enzymes with auxiliary 
activity (AA), 3064 S-layer homology domain (SLH) enzymes 
and 162 were cohesins. We report the sequence identity against 
the CAZy database for each class of enzymes and the distribu-
tion of carbohydrate enzymes across phyla in Fig. S12.

CAZy species-specificity and distribution across 
the pig population
Two hundred and ninety-four unique CAZy enzymes were 
found in our dataset. As each enzyme prediction was associ-
ated with a MAG and each MAG was separately classified 
against the GTDB, the two sources of information were joined 
as described in Methods. We display the prevalence of each 
enzyme in the pig population (y-axis), while on the x-axis, we 
report the highest proportion a distinct species was found for 
each enzyme ID (Fig. S13). Below, we describe each enzyme 
class in terms of prevalence in the pig population and its 
distribution among species.

Enzymes of the CE class (n=16) frequently occurred among 
subjects, with >100 subjects carrying this class of enzymes 
(median=166; mean=148). These enzymes tend to be species 
generic (median=5.5; mean=14.2), as they fall on the left 
side of the plot, showing a broad distribution across multiple 
species. Out of all genera, Prevotella carried the most of these 
enzymes (11.5 %).

Similarly, of the PL enzyme class (n=26), nearly half formed 
a cluster in the centre left side of the plot, indicating a high 
prevalence among subjects (median=93; mean=81) and a 
broad distribution across species (median=20.8; mean=32.2). 
PL enzymes were carried mostly by the genus Prevotella 
(40.6%).

Enzymes of the GT class (n=63) are prevalent among the 
pig population (median=121; mean=107) and have a broad 
distribution across species (median=16.0; mean=25.6). The 
majority of these enzymes (n=47) were found among species 
of the genus Prevotella, 27 of which were also found in 
Gemmiger. Species of these genera had the highest variety of 
enzymes, as well as the highest number of genes (>200) per 
genome (Fig. S14).

GH enzymes (n=126) were the most represented enzymes 
in our dataset and over 70 % of these enzymes fell on the top 
left of the plot, showing a high frequency across subjects 
(median=154; mean=131) and a high distribution across 
species (median=11.2; median=20.4). One hundred and thir-
teen of the 126 GH enzymes are found in the genus Prevotella, 
96 of which were shared with the genus Blautia_A.

CBM enzymes (n=54) were moderately prevalent enzymes 
in the pig population (median=41; mean=65), and the most 

heterogeneous among the enzyme classes in terms of distri-
bution across different species (median=27.0; mean=37.9); 
therefore, they appeared as scattered across the plot. Also, 
for this class of enzymes, the majority (n=30) were found 
among species of the genus Prevotella, and partially shared 
with Gemmiger (n=8). The genus CAG-269 carries three 
CBM enzymes neither Prevotella nor Gemmiger carry in their 
MAGs.

Five of the AA enzymes (n=7) were prevalent in the pig 
population (>90 subjects). AA10 was majorly found in 
Enterococcus_B hirae (52.9 %), AA2, AA3 and AA6 were found 
mostly represented by 'Terrisporobacter othiniensis' (28.6%), 
Methanobrevibacter_A gottschalkii (20.1 %) and Escherichia 
flexneri (17.5 %), respectively.

Cohesin (n=1) and SLH (n=1) were found in 92 and 167 
subjects, respectively, and across multiple species. Cohesin 
was mostly found in Ruminococcus_C sp000433635 (15.4 %), 
while Ruminiclostridium_C sp000435295 carried the most 
SLH (13.0 %).

Seven enzymes, present in between 20 and all subjects 
(n=167, comprising piglets and mothers), were found to 
primarily derive from a single species (>70 %). These were: 
CBM44 (Clostridium_P perfringens), GT44 (Chlamydia suis), 
CBM75 (Ruminococcus_F champanellensis), CBM71 (An172 
sp002160515), GH44 (Ruminococcus_C sp000433635), GH54 
(RC9 sp000432655), CBM83 (Agathobacter sp900317585).

In order of number of genes per genome we found: GT 
(median=6.3; mean=30.0), CE (median=5.5; mean=25.3), GH 
(median=3.7; mean=16.2), SLH (median=2.0; mean=12.7), AA 
(median=2.0; mean=11.2), CBM (median=2.0; mean=6.3), PL 
(median=1.5; mean=5.7), cohesin (median=1.0; mean=3.5). 
Gene counts of enzymes per GTDB species are reported in 
Table S1.

Piglet carbohydrate proteome across time
Of the 294 CAZy enzymes in our dataset, 234 showed a 
significant change (Bonferroni adjusted P <0.05) (Table S1), 
when comparing the abundance between any time point 
by pairwise Wilcoxon test. The abundance shifts of these 
enzymes at different time points in the piglet population and 
their abundance in the mothers’ population are reported in 
Fig. 4 and Table S1.

A number of enzymes increased in abundance over time in 
the piglet population to reach similar abundance levels to 
the mothers’. Among these were: CE13, GH42, GH32, GT53, 
GT87, GH1, GT85, CBM25, CBM4, CE5, GT101, CBM26, 
GT103 and GT85. Other enzymes decreased in abundance 
over time in the piglet population and their abundance in the 
mothers’ population was as low or lower than the abundance 
recorded at the last time point for the piglets. Among these 
were: GH123, GH29, GH110, GH33, GH30, GH109, GH2, 
GH35, CBM35 and CBM9. A number of enzymes followed an 
upwards or downwards trend with time in the piglet popula-
tion while their abundance in the mothers population was 
lower or higher, respectively, than the abundance recorded 
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at the last time point in the piglet population. Among these 
were: GT66, CBM51, GH25, GH37, CBM13, CBM67, GH101, 
CBM44, GT46, GT22 and CBM6.

DISCUSSION
Previous efforts have applied metagenomics to survey the 
diversity of pig gut microbiota [83], but have not focused on 
the post-weaning microbial community nor have they used 
an approach that generates MAGs. Bowers et al. (in 2017) 
described genomes with a completeness of at least 90 % and 
a contamination rate lower than 5 % as nearly complete 
genomes [84]. In this study, we generated over 50 000 MAGs 
from a dataset of 27 billion read pairs, of which 12 486 MAGs 
are predicted to represent nearly complete genomes of bacte-
rial or archaeal organisms. While we previously reported the 
results obtained from an assembly-free analysis of community 
structure [21], here we report the composition and predicted 
carbohydrate proteome of the microbial community using 
MAGs constructed from the dataset. Using the MAGs and 
their abundance across the samples, we were able to track 

compositional and functional changes over a 5 week period 
in 126 post-weaning piglets.

As previously observed [21], we confirm the large time factor 
driving the compositional shift of post-weaning piglet gut 
microbiota samples. The temporal shift appears regardless of 
the approach-dependent grouping of MAGs (CheckM taxo-
nomic clustering, 99 % ANI clustering or GTDB taxonomic 
clustering), or of the filtering criteria (completeness and 
contamination, length filtering, no filtering, respectively) and, 
hence, the resulting number of MAGs taking part in the analysis 
(12.4×103, 22.4×103, 51.2×103, respectively). We also applied a 
number of normalization methods in parallel, among which we 
chose median sequencing depth, rarefaction and proportions. 
The temporal shift was evident when applying any of these 
normalization methods, although it must be noted that the use 
of proportions to normalize library size can lead to a higher 
discovery rate of false correlations (i.e. spurious correlations of 
ratios) [85–89]. Bias can also arise from the nature of organ-
isms in the sample as a consequence of distinct genomic G+C 
contents [90], causing preferential affinity of the polymerase, 
thereby influencing the representation of species in the sample.

Fig. 4. Time trend of several enzymes and their species representation. (a) log-transformed normalized abundance of enzymes over 
time is represented. Shifts in log-transformed abundance over time is visualized from time point 0 (t0; piglets aged 3–4 weeks) to time 
point 8 (t8; piglets aged 7–8 weeks) for several enzymes. tM represents the abundance of each enzyme in the mothers (single time point); 
the sample size for piglets and mothers carrying each enzyme is reported next to the boxplots within each panel. (b) Panels report the 
top three species carrying each enzyme in their MAGs (based on GTDB taxonomic clustering of MAGs). A significant change in abundance 
was recorded between different time points (Kruskal pairwise comparison with Bonferroni correction) for the enzymes shown. The full 
list of time trends and percentages of each species per enzyme are reported in Table S1.
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Factors such as host weight, breed and small differences in 
age correlate with microbial composition, as we found by 
our previous analysis with unassembled metagenomic reads 
[21] and in this study with the use of MAGs. To assess the 
correlation of microbial composition and small age differ-
ences among the hosts, the dataset was reduced to include 
only piglets of the same breed, thereby avoiding breed as a 
confounding factor. The temporal signal in our dataset was 
in fact sufficiently strong in the first 2 weeks of the trial that 
piglets differing by just 3 days of age separated cleanly in the 
first principal component, and a number of GTDB-assigned 
species were found to be associated with these small age 
differences.

Highly structured compositional changes over time were 
detected. Possible factors that underlie these compositional 
changes include the exposure to a new environment, the 
transition from breast-milk to solid food [91–93], which took 
place upon the start of the trial, and a higher tolerance for new 
species immediately after weaning [94–96]. Supporting the 
latter, it is known that during weaning, the immune system 
undergoes training to recognize pathogens by initially toler-
ating a large number of species, so as to develop the necessary 
antigens upon encounter [97, 98]. Thompson et al. [96] report 
that the microbiota of piglets of 3 weeks of age is particu-
larly dynamic and environmental factors start to be seen 
at this stage [96]. In fact, over 80 % of the GTDB clustered 
MAGs that showed significant abundance shifts during the 
first week of post-weaning were showing positive fc. This is 
also reflected by the major increase in microbial richness we 
measured by community composition analysis of the GTDB 
clustered MAGs, as well as by phylogenetic diversity analysis 
of the metagenomic reads in our previous study [21]. Nearly 
40 % of the species that increased during the first week of the 
trial (t0–t2) continued to increase during the following week 
(t2–t4), reflecting the fact that these species kept taking up a 
larger portion of the microbial community. This is confirmed 
by the increase of evenness (as measured by balance-weighted 
phylogenetic diversity) we recorded for this time interval in 
our previous study [21]. The third week of the trial was the last 
week in which the majority of the taxonomic shifts were posi-
tive fc (>80 %; piglets aged between 6 and 7 weeks), after which 
species richness stabilized. In summary, in this study, the first 
3 weeks (piglets aged between 3 and 7 weeks) represented the 
establishment of a new microbial community where a large 
number of species bloomed.

After a brief transition period (fourth week; piglets aged 
between 6 and 8 weeks) during which only a few species are 
lost and acquired, a microbial community consolidation 
phase starts, where species start to die off, and a smaller 
number of dominant taxa remain, reflective of an adult gut 
[99]. This statement is supported by Thompson et al. [96], 
who determined that at 6 weeks of age CD8+ T cells infiltrate 
the intestinal tissue and the mucosal lining resembles that of 
an adult pig [96]. In the human gut, Prevotella are known to 
be acquired post-weaning as a consequence of a substrate shift 
from breast-milk to solid food in infants [91]. Notably, in this 
study, 16 Prevotella species established during the first and the 

second week (piglets aged between 3 and 6), 12 of which were 
found to significantly drop in abundance during the last time 
interval. Previously associated with human milk consumption 
in infants [91], Bifidobacterium species dropped significantly 
in abundance during the last 2 weeks, between the third and 
the fourth week post-weaning, suggesting this shift to be due 
to the diet change from breast-milk to solid food.

Studies have reported the health promoting effects of Lacto-
bacillus amylovorus [100, 101], its survival through gastric 
pH, its ability to adhere to cells and the demonstrated effi-
cacy against the growth of certain pathogens [100, 101]. In 
this study, Lactobacillus amylovorus follows a specific trend, 
by gradually increasing in its abundance from piglets aged 
3–4 to 5–6 weeks, to then gradually decrease in the hosts, 
suggesting that the administration of probiotics containing 
this species, to 6-week-old piglets, may not lead to a successful 
colonization.

Mapping of predicted ORFs generated hits with a high 
sequence similarity against the CAZy database, spread across 
eight enzyme classes and containing 294 unique enzymes. 
Similarly to the rumen metagenome [102], half of the enzymes 
were of the GH class and over a third were of the GT class, the 
first known to break down sucrose, lactose and starch [103], 
the latter known to assemble complex carbohydrates from 
activated sugar donors [104]. The proportions of the most 
abundant enzymatic classes in this study (50 % GH; 35 % GT; 
12 % CE; 1 % PL) roughly matched the proportions suggested 
by El Kaoutari et al. [103] (57  % GH; 35 % GT; 6 % CE; 2 % PL), 
who generated a profile of the human carbohydrate repertoire 
by mapping 177 reference human gut microbial genomes 
against the CAZy database [103]. We reported the repre-
sentation of these CAZymes within each specific taxonomic 
group at lower (e.g. species) and higher levels (e.g. phylum) 
based on GTDB taxonomic clustering, and we reported on 
the carbohydrate enzymes abundance shifts over time in the 
post-weaning piglet.

A number of enzymes were found to change gradually in 
abundance over time, to reach levels that are similar to those 
found in the piglets’ mothers. As it could be expected due 
to the large difference in age between the piglets at the last 
sampling point and the mothers, the time trend for a minority 
of the total enzymes changed gradually in the piglets, but did 
not reach the lower or higher level measured in the mothers. 
A number of enzymes known to break down animal glycans 
that are present in milk (GH2, GH20, GH92, GH29, GH95, 
GH38, GH88) [103] decreased with time in the piglet popula-
tion, while, among others, enzymes reported to break down 
peptidoglycans (GH25, GH73), starch and glycogen (GH13), 
and sucrose and fructose (GH32) [103] followed an upward 
trend.

The data we report in this study address a knowledge gap in 
the association of carbohydrate active enzymes to microbial 
species. Similarly to the rumen metagenomic study [102], 
we found a larger proportion of GT enzymes in the phylum 
Euryarchaeota, and a larger proportion of CBM and PL 
enzymes in the phylum Fibrobacterota. However, it must be 
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noted that the method of annotating CAZymes by mapping 
genomes against a reference database, as for many other 
reference-based analyses in microbial metagenomics, may 
suffer bias due to the limited representation of diversity 
in the database. In the case of CAZymes, the approach 
may accurately represent the CAZyme profile of better-
represented genomes or better-studied enzyme families, 
while underestimating the CAZyme profile of genomes for 
which reference genomes are lacking.

We found enzymes to be either (i) common to many species 
and to higher level taxonomic assignments, indicating 
functional redundancy; or (ii) shared among species within 
the same genus; or (iii) specific to single species. Common 
enzymes restricted to closely related species were: AA10, 
found predominantly in the genus Enterococcus, CBM40 in 
Clostridium, PL31 in Ruminococcus, CE5, GT53, GT85 and 
GT87 in Corynebacterium, GT21 in Desulfovibrio, GT66 
and GT81 in Methanobrevibacter, GT6 in Gemmiger, GH68 
in Lactobacillus, PL21, GH54 and GH55 in RC9 genera. 
Members of the same genus also significantly differed in 
their enzymatic repertoire, both in the total number of genes 
encoding enzymes per genome, as well as in the number 
of different enzymes a genome bears, showing that closely 
related organisms have evolved to display large differences 
in behaviour [9, 105]. This was particularly evident among 
species of the genus Prevotella, potentially suggesting a 
high degree of specialization in preferred food sources 
among closely related species. The synthesis of knowledge 
of enzyme function and substrate-based activity coupled 
with knowledge of the species carrying these enzymes in 
their genome can be of high value to the design of probi-
otic and prebiotic formulations in the livestock setting 
(e.g. methane emission control; improvement of substrate 
energy efficiency), as well as in the human setting (e.g. diet).
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