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Abstract

Despite that obesity is associated with many metabolic diseases, a significant proportion (10–30 %) of obese individuals is 
recognized as ‘metabolically healthy obeses’ (MHOs). The aim of the current study is to characterize the gut microbiome 
for MHOs as compared to ‘metabolically unhealthy obeses’ (MUOs). We compared the gut microbiome of 172 MHO and 
138 MUO individuals from Chongqing (China) (inclined to eat red meat and food with a spicy taste), and performed vali-
dation with selected biomarkers in 40 MHOs and 33 MUOs from Quanzhou (China) (inclined to eat seafood and food with 
a light/bland taste). The genera Alistipes, Faecalibacterium and Odoribacter had increased abundance in both Chongqing 
and Quanzhou MHOs. We also observed different microbial functions in MUOs compared to MHOs, including an increased 
abundance of genes associated with glycan biosynthesis and metabolism. In addition, the microbial gene markers identi-
fied from the Chongqing cohort bear a moderate accuracy [AUC (area under the operating characteristic curve)=0.69] for 
classifying MHOs distinct from MUOs in the Quanzhou cohort. These findings indicate that gut microbiome is significantly 
distinct between MHOs and MUOs, implicating the potential of the gut microbiome in stratification and refined management 
of obesity.

DATA SUMMARY

Sequencing data are accessible in the National Center for 

Biotechnology Information (NCBI) database under BioProject 

accession number PRJNA539 850 (https://www.​ncbi.​nlm.​nih.​

gov/​bioproject/?​term=​539850).

INTRODUCTION
Obesity, which affects over 20–30 % of adults worldwide 
[1], has various metabolic co-morbidities including 
dyslipidaemia, hypertension and hyperglycaemia. The 
metabolic co-morbidities together define the metabolic 
syndrome that poses a high risk for type two diabetes 
and cardiovascular diseases [2]. Despite the common 
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metabolic syndrome identified in obesity, about 10–30 % 
of obese individuals present no metabolic abnormali-
ties [3, 4] (metabolically healthy obeses; MHOs). In 
comparison with obese individuals with metabolic 
syndrome (metabolically unhealthy obeses; MUOs), 
MHOs generally possess higher levels of insulin sensi-
tivity, normal blood pressure and lower inflammatory 
profiles. Although those metabolic differences could be 
partly determined by visceral fat content, early weight 
gain and the development of adipose cells, other factors 
associated with the favourable metabolic profiles of 
MHOs remain poorly explored.

Recent studies indicated that the balance of host metabolic 
interactions is largely associated with the gut microbiome 
[5]. Alterations in host biological status, such as body weight, 
correlated with many changes in the gut microbiome [6, 7]. In 
addition, the gut microbiome affects host energy consumption 
and storage, the gut barrier and the host immune system [8, 9]. 
Specifically, the gut microbiome produces vitamins and short-
chain fatty acids (SCFAs) that are essential to host metabo-
lism and the immune system [10]. MUOs generally display 
an increasing abundance of bacterial membrane-derived 
lipopolysaccharides (LPSs) [11], which impair intestinal barrier 
integrity; hence, triggering host inflammatory responses and 
endotoxaemia.

To date, although multiple studies have highlighted the 
role of the gut microbiome in the pathogenesis of obesity 
and metabolic disorders, there are still many discrepant 
findings on the gut-microbiome patterns in the obese indi-
viduals with various metabolic disorders [12]. For instance, 
two important indexes of the gut microbiome, microbial 
diversity and the ratio of Firmicutes/Bacteroidetes (F/B), 
both showed contrary results in different obese cohorts 
[13]. Furthermore, a systematic review concluded that 
the associations between obesity and microbiome diver-
sity were not found in studies with different populations 
characterized by weight or age [14]. The inconsistencies 
between different studies could be attributed to huge 
variability among individual gut microbiomes, which are 
sensitive to differences in environmental factors, dietary 
habits and even host genetics [7, 15]. Therefore, the asso-
ciation of the gut microbiome with health, identified in 
one cohort, requires further validation in another inde-
pendent cohort.

In the present study, we applied metagenomic sequencing to 
compare the gut microbiome of 172 MHOs and 138 MUOs 
from Chongqing (China) (inclined to eat red meat and food 
with a spicy taste) and validated the main findings in 40 
MHOs and 33 MUOs in Quanzhou (China) (inclined to eat 
seafood and food with a light/bland taste). The objectives of 
this study were to characterize the universal gut microbiome 
of these two groups, and identify microbial gene markers 
discriminating MHOs from MUOs in different popula-
tions. Our findings provide extensive insights into obesity 
management via gut-microbiome-targeted interventions.

METHODS
Recruitment and physical examination of 
individuals
Two cohorts with a divergent characteristic of diet (Chong-
qing and Quanzhou are inclined to eat a spicy and a bland 
diet, respectively) were included in the study. Individuals 
were randomly recruited in the 180th Hospital of the 
People’s Liberation Army of China (Quanzhou, China) and 
Southwest Hospital (Chongqing, China), with the following 
inclusion criteria: (i) older than 18 years of age and younger 
than 75 years of age; (ii) not exposed to antibiotics, probi-
otics or proton pump inhibitors within 1 month before 
physical examination; (iii) not suffering from diarrhoea, 
constipation, haematochezia or other gastrointestinal infec-
tious diseases within 1 month before physical examination; 
(iv) not undergoing an enema or other gastroenterology 
operation within 1 month before physical examination; (v) 
not suffering from mental disorders, autoimmune diseases 
or psychological imbalance; (vi) without a history of drug 
abuse; (vii) without regular usage of medicine, including 
anti-inflammatory and antidepressant drugs.

The recruited individuals were then subjected to physical 
measurements, including height, weight, waistline and 
blood pressure. Glucose, total cholesterol, triglyceride, 
low density lipoprotein, high density lipoprotein, uric acid 
(UA) and epidermal growth factor receptor (eGFR) were 
measured using a blood auto-analyser (Beckman Coulter 
AU5800).

Definition of MUO and MHO individuals
Considering the population in this study was Asian, a body 
mass index (BMI) of ≥25.0 kg m−2 was defined as a cut-off 
for obesity [16]. Among obese individuals, MUO individuals 
were selected based on the presence of both elevated level 
UAs (>400 μmol l−1) and metabolic syndrome [17]. Meta-
bolic syndrome was defined following the Joint Committee 
for Developing Chinese Guidelines on the Prevention and 

Impact Statement

A growing number of studies demonstrate the potential 
of gut microbiome interventions in obesity management, 
which needs optimization due to the different metabolic 
status in the obese population. Our study stratified the 
obese individuals to two groups: with (metabolically 
unhealthy obeses; MUOs) and without (metabolically 
healthy obeses; MHOs) metabolic dysbiosis, and identi-
fied a remarkably different gut microbiome between 
MUOs and MHOs. This suggests the necessity of strati-
fying obese individuals when applying the gut micro-
biome to manage obesity. Microbial genes, functions and 
markers in this study also provide additional clues for 
studies exploring distinct responses of obese subjects to 
gut-microbiome-targeted interventions.
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Treatment of Dyslipidemia (JCDCG 2007) in Adults (≥3 
of the 6 criteria): (i) waist >90 cm (male) or waist >85 cm 
(female), (ii) glucose ≥6.1 mmol l−1 (110 mg dl−1), (iii) 
triglyceride ≥1.7 mmol l−1 (150 mg dl−1), (iv) high density 
lipoprotein <1.04 mmol l−1 (40 mg dl−1), (v) blood pressure 
≥130/85 mmHg, and (vi) eGFR <90 ml min−1 per 1.73 m2 
[18]. In contrast, MHOs were defined as the obese indi-
viduals who presented normal level of UAs (≤400 μmol 
l−1) and did not meet at least four criteria of metabolic 
syndrome described above. Finally, 212 MHO (Chongqing 
n=172; Quanzhou n=40) and 171 MUO (Chongqing n=138; 
Quanzhou n=33) individuals were selected for the following 
analyses.

Stool sample collection
During physical examination, fresh stools were collected 
from individuals using sterile stool containers. Approxi-
mately 5 g stool from each individual was obtained using 
swabs (Huachenyang Technology). The stool samples were 
preserved in stool collection tubes (Axygen), and then trans-
ferred to a −80 °C refrigerator (DW-86L626; Haier) within 
half an hour.

Library construction and sequencing
DNA was extracted following the protocol of the QIAamp 
DNA stool mini kit (Qiagen) [19]. The quality and quantity of 
the extracted DNA were measured via both NanoDrop spec-
trophotometer (Thermo Scientific) and Qubit fluorometer 
(Life Technologies). The DNA fragment size was evaluated 
by agarose gel electrophoresis. The extracted DNA was used 
to construct short-insert libraries (350 bp), which were then 
paired-end sequenced on the Illumina HiSeq platform.

Quality control and taxonomic profiling
The sequenced paired-end reads were removed via FastQC 
when one read contained more than 10 % of ambiguous or 
50 % of low quality (Phred quality score <5) bases [20]. The 
filtered reads were then mapped to the human genome (hg19) 
to eliminate host genomic contamination using Burrows–
Wheeler Aligner (BWA) v. 0.7.13 with default parameters [21]. 
Species-level taxonomy and relative abundance were assessed 
using Metagenomic Phylogenetic Analysis (MetaPhlAn2) v. 
2.6 based on the read alignment against a reference database 
containing approximately one million clade-specific gene 
markers derived from ~17 000 reference genomes [22, 23].

Gene profiling
The high-quality reads were mapped to an updated Integrated 
Gene Catalog (IGC) using BWA v. 0.7.13 with default param-
eters [21, 24]. The number of mapped reads for each gene was 
calculated following three alignment scenarios: (i) if a gene 
was aligned by a pair of reads, the two mapped reads were 
both counted for the gene; (ii) if more than one gene were 
aligned by a pair of reads, the two mapped reads were only 
counted for the gene with the highest alignment confidence; 
or (iii) if a gene was aligned by only one of the paired-end 
reads, the one mapped read was counted for the gene.

Based on the number of mapped reads, the relative abundance 
[Ab(g)relative] of a gene (g) was calculated by measuring the 
proportion of the abundance [Ab(g)] of g over the sum of 
abundance of all the genes using the formula below:

Ab(g)relative=Ab(g)×100/Ab(G)

Ab(g)=U/L

The abundance of a gene [Ab(g)] was calculated by dividing 
the number of mapped reads in the gene (U) by the length the 
gene (L) [24]. The genes with zero abundance in more than 
20 % of individuals were then removed.

Functional annotation
The relative abundance of KEGG orthology (KO) was calcu-
lated by summing up the relative abundance of corresponding 
genes based on the annotated results in the IGC database. 
Differentially enriched KO modules were predicted using the 
Wilcoxon rank sum test with P values (P value <0.05) adjusted 
with the Benjamini–Hochberg method [22].

Co-abundance gene groups (CAGs)
To compare the gut microbiome in MUOs and MHOs, genes 
with significantly different relative abundance between the 
two groups were identified using the Wilcoxon rank sum test 
(Benjamini–Hochberg P value <0.05). These associated genes 
were then clustered according to their abundance correlation 
across all samples [25]. Clusters with more than ten genes 
were identified as CAGs and used for further analysis. The 
relative abundance of each CAG was determined by the 
median relative abundance of genes contained within that 
CAG, and the taxonomic classification of the CAG referred 
to previous research [26]. Briefly, the CAG was annotated at 

Fig. 1. PCoA of microbial taxonomic profiling in MHOs and MUOs from 
Chongqing. Green circles represent the 172 MHOs and the brown 
triangles represent the 138 MUOs.
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the species level if 90 % of the genes in the CAG belonged to 
the same species. If a CAG could not be assigned as a species, 
the CAG was annotated at genus level when 80 % of the genes 
contained in the CAG were assigned as the same genus.

Construction of random forest models and 
selection of microbial gene markers
To predict metabolic status based on gut microbiome, random 
forest classification was performed among individuals from 
the Chongqing cohort. Firstly, the individuals of the Chong-
qing cohort were randomized into a training set (80 % of the 
individuals) and a validation set (20 % of the individuals). 
Secondly, random forest models were constructed by the 
training sets using the randomForest package in R. The 
models were then used to classify the validation sets. Area 
under the operating characteristic curve (AUC) was meas-
ured and visualized using the R package pROC, to assess 
microbial gene biomarkers. Since the classification was 
repeated 50 times independently, candidate biomarkers that 
were present in more than 40 models were selected as final 
microbial biomarkers to discriminate the two groups.

Statistics
All statistical analyses were performed in R (version 3.4.1). 
The principal coordinate analysis (PCoA) based on R package 
vegan was applied to reduce dimensionality among the two 
cohorts. Shannon diversity, gene count, the abundances of 
microbial species and CAG were compared between MHOs 
and MUOs using the Wilcoxon rank sum test (​Wilcox.​test) in 
R. Spearman correlation was applied to evaluate the associa-
tion between microbial features and clinical indicators (using 
cor in R). P values were adjusted with the Benjamini–Hoch-
berg method (False Discovery Rate, FDR <0.05) using the 
function p.adjust, and were plotted using the package ggplot2 
in R [27]. The correlation of metabolic status with gut micro-
biome was assessed using the function adonis2 within the 

R package vegan. The dissimilarity distance among all indi-
viduals was calculated based on annotated microbial species 
and human metabolic status using Bray–Curtis and Euclidean 
dissimilarities, respectively.

RESULTS
Physical characteristics and sequencing data
To compare the gut microbial composition of MHOs and 
MUOs, we carried out metagenomic shotgun sequencing on 
the faecal samples of 310 individuals from Chongqing (172 
MHOs and 138 MUOs) and 73 from Quanzhou (40 MHOs 
and 33 MUOs) (Tables S1 and S2, available with the online 
version of this article). The high-quality sequencing reads 
(4.54 Gb per sample on average; Table S3) were mapped to 
microbial-taxonomy-specific marker genes for analysing 
taxonomic components in the gut microbiome.

Alterations of microbial composition
We firstly estimated the distribution of microbial samples 
in MHOs and MUOs from the Chongqing cohort based on 
microbial composition. Using PCoA, the two most significant 
coordinates of taxonomic profiling showed that the MHOs 
and MUOs formed two distinct clusters (Fig. 1). We then 
examined the gut microbial features, indicating that MHOs 
had a higher level of Shannon diversity and marginally lower 
ratio of F/B compared to MUOs (Fig. 2).

At the phylum level, MHOs had a lower proportion of Fuso-
bacteria (P <0.01) compared to MUOs (Table S4). At the genus 
level, Alistipes, Bifidobacterium, Eubacterium, Faecalibacte-
rium, Ruminococcus and Subdoligranulum showed higher 
relative abundance in MHOs compared to MUOs, while 
Escherichia, Clostridium, Fusobacterium and Megamonas were 
found with higher abundance in MUOs (Fig. 3).

Fig. 2. Comparison between the gut microbiome in MHO (n=172) and MUO individuals (n=138) from Chongqing. (a) Box plot of the gene 
count in MHO and MUO individuals; (b) Shannon diversity; and (c) F/B ratio. For (a–c), two-tailed Wilcoxon rank sum test was used to 
determine significance. Boxes represent the interquartile ranges (IQRs) between the first and third quartiles, and the line inside the box 
represents the median; whiskers represent the lowest or highest values within 1.5 times IQR from the first or third quartiles. *, **, *** 
represent the p-value < 0.05, < 0.01, < 0.001 respectively.
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Fig. 3. Differentiated bacterial genera between MHOs and MUOs from Chongqing. Green boxes and brown boxes represent the relative 
abundance of genus enriched in MHOs and MUOs, respectively.



6

Zeng et al., Microbial Genomics 2021;7:000639

Different microbial genes and functions in the gut 
microbiome between MHOs and MUOs
We mapped sequencing reads to the IGC and identified 
761 272 genes that were present in at least 20 % of the Chong-
qing cohort. Similar to the Shannon diversity, MHOs showed 
a higher gene count than the MUOs in the Chongqing cohort 
(Wilcoxon rank sum test, Benjamini–Hochberg P value 
<0.05) (Fig. 2a).

To understand the association of these different microbial 
genes with metabolic status, we analysed the differences 
of microbial functions as well as microbial gene markers 
between MHOs and MUOs. Genes associated with 
glycan biosynthesis and metabolism had a significantly 
different abundance between MHOs and MUOs (Fig. 4, 
Table S5). The overall abundance of KO groups involved 
in LPS biosynthesis, glycosphingolipid biosynthesis and 
other glycan degradation increased in MUOs, while the 
abundance of N-glycan biosynthesis increased in MHOs. 
In addition, MUOs had higher levels of microbial genes 
associated with carbohydrate metabolism, metabolism of 
cofactors and vitamins, and xenobiotics biodegradation and 
metabolism, when compared to MHOs.

Identification of microbial gene markers to 
discriminate MHOs from MUOs
We clustered microbial genes into 43 CAGs according to 
their abundance correlation among individuals (Table S6). 
To demonstrate the association of gut microbiome and 
metabolic status, we constructed random forest models to 
classify MHOs and MUOs using the abundance of CAGs in 
the Chongqing cohort (172 MHOs and 138 MUOs). Cross-
validation (ten repeats of fivefold cross validation) showed 

that the constructed models confidently classify (mean 
AUC=0.75) the Chongqing individuals into the correct 
category (Table S7). Overall, 17 CAGs showed sufficient 
classification in at least 40 iterations, including 10 CAGs 
enriched in MUOs and 7 in MHOs. Consistent with the 
genus level observations, the genera of CAGs enriched 
in MHOs include Alistipes, Bifidobacterium (Bifidobacte-
rium longum) and Eubacterium, whereas only Megamonas 
(Megamonas hypermegale) was found enriched in MUOs 
(Table 1).

Validation in an independent cohort
We further applied the model trained by the Chongqing 
data in the Quanzhou cohort (AUC=0.69). Similar to 
the Chongqing cohort, higher gene count (P <0.05) and 
Shannon microbial diversity were detected in the gut 
microbiome of MHOs in Quanzhou (Fig. S1). Nevertheless, 
the F/B ratio in the MHOs of Quanzhou is slightly higher 
than that in MUOs (Fig. S1). No CAGs showed significant 
differences between the two groups with adjusted P values.

DISCUSSION
Substantial evidence has shown that the gut microbiome 
is closely related to the development of obesity [28–30]. 
Nevertheless, the gut microbiome differences between 
obese individuals with and without abnormalities remains 
to be fully explored. This study observed higher gene 
count and microbial diversity in MHOs when compared 
with MUOs. Other studies upon obesity and metabolic 
syndrome also show a higher gut microbiome diversity 
in healthy individuals, suggesting a potential association 

Fig. 4. Differentiated metabolic functional categories between MHOs and MUOs from Chongqing. Green boxes and brown boxes represent 
the relative abundance of metabolic functional categories enriched in MHOs and MUOs, respectively. *, **, *** represent p-value < 0.05, < 
0.01, < 0.001 respectively.
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between microbial richness and the host metabolic status 
[26, 28, 31]. In contrast, individuals with lower microbial 
gene count are generally characterized by higher fat mass, 
insulin resistance and dyslipidaemia [32]. Interestingly, 
the obese individuals with higher microbial gene count 
generally gained more improvement in decreasing body 
weight, insulin resistance and inflammation level through 
the same dietary restriction [33]. Those microbial genes 
could be identified through the comparison between the 
gut microbiome of MHOs and MUOs, given the significant 
difference of microbial richness between the two groups.

We then identified several microbial species associated 
with metabolic health status in obese individuals. Most of 
the associated microbial taxa identified in the Chongqing 
cohort were highly consistent with the findings in previous 
studies on obesity, metabolic syndrome and diabetes. In 
particular, we confirmed higher abundances of the genera 
Alistipes [26], Bifidobacterium [31, 34], Eubacterium [35], 
Faecalibacterium [29] and Subdoligranulum [26] in MHOs, 
and lower abundances of the genera Fusobacterium [29] 
and Megamonas [29] in MUOs. Our findings suggest that 
many microbial taxa may have a similar association with 
host metabolism across studies. The taxonomic annotation 
of CAGs was consistent with the above-mentioned gut 
microbiome structure analysis results, showing a reliable 
taxonomic profiling. Gut microbiome differences between 

MUOs and MHOs were also detected and validated in the 
Quanzhou cohort with distinct dietary habits. In addition, 
we detected a higher abundance of Adlercreutzia equolifa-
ciens in Quanzhou MHOs. Recent evidence showed that A. 
equolifaciens is able to metabolize resveratrol and produce 
dihydroresveratrol, which exhibits significant antioxidant 
activity and, hence, could be involved in anti-inflammatory 
responses and protect the host from developing metabolic 
abnormalities [36]. These findings on microbial compo-
nents warrant further investigation of the interaction 
between microbial components and host metabolism.

Furthermore, the differentiated microbial functions between 
MHOs and MUOs suggest the functional alteration during 
development of metabolic abnormalities in the obese indi-
viduals. We found that MUOs had increased levels of genes 
associated with biosynthesis pathways of LPS, which is a 
common product of Gram-negative bacteria. This can be 
partly explained by demonstrated roles of LPS in causing 
inflammatory responses and obesity, such as triggering the 
secretion of proinflammatory cytokines via binding to Toll-
like receptor 4 of intestinal immune cells [37].

Though our findings suggest the potential of the gut micro-
biome in stratifying obese populations, classifying the obese 
individuals from Quanzhou with the model trained by the 
Chongqing data showed a reduced AUC. This is consistent 

Table 1. Co-abundance groups enriched in MHOs and MUOs

ID Genus Species Mean abundance in: Enriched group Adjusted P value Mean Gini 
value

MUOs MHOs

CAG004 – – 6.07E−06 5.43E−05 MHO 0.000009 3.76

CAG007 – – 8.18E−05 7.29E−05 MHO 0.000062 3.43

CAG008 Bifidobacterium Bifidobacterium longum 2.05E−05 7.48E−05 MHO 0.00018 3.17

CAG009 – – 0.0002 4.30E−05 MUO 0.000031 3.99

CAG012 – – 3.92E−05 6.84E−05 MUO 0.1813 3.14

CAG013 Megamonas Megamonas hypermegale 0.00015 9.16E−05 MUO 0.00083 4.14

CAG017 – – 0.00048 0.0004 MUO 0.00063 4.74

CAG018 – – 0.00015 7.47E−05 MUO 0.003154 3.38

CAG019 – – 0.00014 9.37E−05 MUO 0.001291 4.84

CAG023 – – 0.00023 0.0002 MUO 0.000031 4.78

CAG025 Eubacterium Eubacterium ventriosum 1.89E−05 7.51E−05 MHO 0.000031 3.51

CAG026 – – 0.00031 0.0003 MUO 0.000062 4.42

CAG027 Eggerthella Eggerthella lenta 2.77E−05 7.56E−05 MHO 0.000031 4.19

CAG033 – – 0.00025 0.0002 MUO 0.000105 4.28

CAG035 Eggerthella Eggerthella lenta 2.68E−05 7.97E−05 MHO 0.000031 3.55

CAG038 Eggerthella Eggerthella lenta 3.03E−05 8.74E−05 MHO 0.000171 3.38

CAG042 – – 0.00031 0.0003 MUO 0.000062 4.49
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with prior reports applying the gut microbiome to distin-
guish microbial samples in a validated cohort, and may be 
partly explained by differences in living environments and 
dietary habits that impact the gut microbiome significantly 
[38]. Our previous similar studies can also explain the 
contrary association between gut microbiome and obesity 
in different cohorts [14].

We acknowledge that there are some limitations in the 
present research. Firstly, the sample size of our study is 
relatively small. Secondly, although we used several meta-
bolic traits to characterize and define MHO and MUO 
individuals, a widely agreed definition of the MHO is still 
in debate [39]. In future, more phenotypes associated with 
host metabolism should be included to define MHOs and 
MUOs. Nonetheless, the gut microbial markers reported 
in the present research could also serve as biomarkers for 
those metabolic statuses, and findings in the present study 
should be validated in larger cohorts with more compre-
hensive clinical measurements.

Taken together, we have revealed different gut microbiomes 
between MUOs and MHOs based on two geographically 
distinct cohorts in China. Furthermore, we identified 
microbial components and genes associated with obese 
individuals without metabolic abnormalities. These find-
ings provide extensive insights into management of obesity 
via gut-microbiome-targeted interventions, and explora-
tion of host/microbe–microbe interactions in obesity with 
distinct metabolic status.
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