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In natural conversations, listeners must attend to what others are saying while ignoring extraneous background sounds.
Recent studies have used encoding models to predict electroencephalography (EEG) responses to speech in noise-free listening
situations, sometimes referred to as “speech tracking.” Researchers have analyzed how speech tracking changes with different
types of background noise. It is unclear, however, whether neural responses from acoustically rich, naturalistic environments
with and without background noise can be generalized to more controlled stimuli. If encoding models for acoustically rich, natu-
ralistic stimuli are generalizable to other tasks, this could aid in data collection from populations of individuals who may not toler-
ate listening to more controlled and less engaging stimuli for long periods of time. We recorded noninvasive scalp EEG while 17
human participants (8 male/9 female) listened to speech without noise and audiovisual speech stimuli containing overlapping
speakers and background sounds. We fit multivariate temporal receptive field encoding models to predict EEG responses to pitch,
the acoustic envelope, phonological features, and visual cues in both stimulus conditions. Our results suggested that neural
responses to naturalistic stimuli were generalizable to more controlled datasets. EEG responses to speech in isolation were pre-
dicted accurately using phonological features alone, while responses to speech in a rich acoustic background were more accurate
when including both phonological and acoustic features. Our findings suggest that naturalistic audiovisual stimuli can be used to
measure receptive fields that are comparable and generalizable to more controlled audio-only stimuli.
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Understanding spoken language in natural environments requires listeners to parse acoustic and linguistic information in the
presence of other distracting stimuli. However, most studies of auditory processing rely on highly controlled stimuli with no
background noise, or with background noise inserted at specific times. Here, we compare models where EEG data are pre-
dicted based on a combination of acoustic, phonetic, and visual features in highly disparate stimuli—sentences from a speech
corpus and speech embedded within movie trailers. We show that modeling neural responses to highly noisy, audiovisual
movies can uncover tuning for acoustic and phonetic information that generalizes to simpler stimuli typically used in sensory
neuroscience experiments. /

brain performs this task, many researchers have started incorpo-
rating naturalistic stimuli in their experimental paradigms
(Hamilton and Huth, 2018; Fiedler et al., 2019). Such work has
demonstrated comparable or even better results for responses
from more controlled paradigms (Lerner et al., 2011; Wehbe et
al., 2014; Huth et al., 2016; Hamilton and Huth, 2018) and are
more representative of our daily environment. What is consid-
ered “naturalistic” may vary: some studies use more naturalistic
continuous or full sentence stimuli, while others use consonant-
vowel syllables (Shankweiler and Studdert-Kennedy, 1966).

ignificance Statement

Introduction

Sound and speech perception rarely occur in isolation.
Understanding speech in natural environments involves the
detection and parsing of acoustic and linguistic cues within over-
lapping talkers and background noise. To understand how the
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Often the sentences used in these studies are presented in isola-
tion and are far less “natural” than those used in everyday com-
munication. Many studies have successfully used controlled
stimuli to understand speech perception, such as sentences from
the Texas Instruments Massachusetts Institute of Technology
(TIMIT) corpus (Chang et al., 2010; Mesgarani et al., 2014a,b;
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Tang et al, 2017; Hamilton et al., 2018; Akbari et al., 2019).
Others have used audiobooks (Broderick et al., 2019; Hausfeld et
al,, 2018), which arguably are more natural than TIMIT senten-
ces, but can lack the natural variation of pitch, timbre, and other
suprasegmental features of speech present in natural communi-
cation, and may often be read by only one talker. In addition,
sentences from speech corpora like TIMIT are often repetitive
and tedious to listen to for electroencephalography (EEG) tasks
>1 h. Part of our motivation for this study was to use stimuli
that were more engaging for participants and to investigate
whether neural responses can still be modeled robustly. A sec-
ondary aim was to investigate whether the observed receptive
fields were similar across different stimulus types.

Numerous electrophysiological studies have demon-
strated neural tracking of the acoustic envelope (Horton
and D’Zmura, 2011; Kubanek et al., 2013; Di Liberto et al.,
2015; Fuglsang et al., 2017; Vanthornhout et al., 2018), pho-
neme and phonological features (Ding and Simon, 2012; Di
Liberto et al., 2015; Khalighinejad et al., 2017; Brodbeck et
al., 2018; Di Liberto et al., 2019), pitch (Krishnan et al.,
2005; Teoh et al., 2019), and even semantic information
(Broderick et al., 2019) in speech. We expand on these stud-
ies by investigating acoustic and linguistic features encod-
ing in both controlled and noisy, naturalistic stimuli.

Part of the current study assesses whether and how responses
to audiovisual stimuli may generalize to dissimilar audio-only
contexts. Speech perception involves both auditory and visual
cues, especially when a listener must comprehend speech in
noisy environments. Integrating visual and auditory information
enables the deciphering of speech from noise, particularly for
those with hearing impairments (Altieri and Wenger, 2013;
Maglione et al., 2015; Manfredi et al., 2018; Hendrikse et al.,
2019; Puschmann et al., 2019). Visual information also has been
shown to modulate responses to auditory speech using electro-
corticography (ECoG) and fMRI (Ozker et al., 2018; Karas et al.,
2019), with stronger modulation when audiovisual speech is
clear compared with when one modality is corrupted. These and
other studies show that incorporating visual information, includ-
ing lipreading, can enhance speech perception.

Here we used EEG to model neural responses to speech to
two entirely different stimulus sets—controlled sentences from
the TIMIT corpus, and audiovisual stimuli from children’s movie
trailers (MTs). Our first goal was to determine whether acoustic
and phonological encoding in EEG are stimulus dependent. One
motivation was to quantitatively assess whether it is possible to
replace some of the more monotonous stimulus sets with more
engaging stimuli. In addition, by exploring how well encoding
models trained on one stimulus set can generalize to another, we
can determine the robustness of observed feature selectivity in
EEG. Finally, we demonstrate that visual and auditory informa-
tion may be encoded separately for some stimuli, and that the
influence of visual information on auditory input is likely stimu-
lus specific.

Materials and Methods

Participants. Seventeen participants with typical hearing (8 males;
age, 20-35 years; mean age, 25.5 & 4.5 years) were recruited from the
University of Texas at Austin community. The ethnicity of our partici-
pants are as follows: 68% white, 13% Asian, 13% Hispanic, and 6%
African American. All participants were native English speakers, but
88% of participants spoke one or more languages other than English.
Pure tone and speech-in-noise hearing tests were performed using
standard clinical procedures (American Speech-Language-Hearing
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Association, 2005) to ensure typical hearing ranges across all partici-
pants. Typical hearing responses for the pure tone test consisted of hear-
ing thresholds <25dB bilaterally for all frequency tones between 125
and 8000 Hz, tested separately for each ear. The QuickSIN test (Duncan
and Aarts, 2006) was administered to assess typical hearing in noise [not
>0-3 dB signal-to-noise (SNR) loss]. Participants provided their written
consent for all portions of the experiment and were compensated $15/h
for their participation. All experimental procedures were approved by
the Institutional Review Board at the University of Texas at Austin.

Experimental design and statistical analyses. Two contrasting stimu-
lus types were used in this study. The first set consisted of sentence stim-
uli from the TIMIT corpus, which included continuous sentences
spoken in English by multiple male and female talkers with no back-
ground noise or overlapping sounds [Garofolo et al., 1993.] These stim-
uli also included transcriptions of the precise timing of the onset and
offset of each phoneme and word. The second set of stimuli were child-
ren’s movie trailers, which contained overlapping speakers, music, and
background noise (https:/trailers.apple.com/). While these stimuli were
entirely unrelated to the TIMIT sentences, members of the laboratory
similarly transcribed the onset and offset of each word and phoneme,
alongside a high-level description of the auditory environment (e.g.,
speech, speech with background noise, or background noise only) using
ELAN transcription software followed by automatic alignment using
FAVE-align (https://zenodo.org/record/9846), a modified version of the
Penn Phonetics forced aligner. These timings were then manually cor-
rected using Praat software [https://uvafonhum.uva.nl/praat/ (Praat:
doing phonetics by computer, version 5.74)]. Each stimulus was tran-
scribed by two authors (J.H., C.V., N.C.) to verify the reliability of the
transcribed boundaries. Although TIMIT and movie trailer stimuli were
qualitatively very different in terms of the types of sounds present, we
verified that the distribution of phoneme counts was comparable across
TIMIT and movie trailers (two-sample Kolmogorov-Smirnov test:
d=0.1,p=099).

During the task, participants listened to 23 unique movie trailer stim-
uli alternated with TIMIT sentence stimuli in four blocks of 125 senten-
ces each, and a fifth block of 100 sentences. The first four TIMIT blocks
consisted of unique sentences with the exception of the final sentence.
The fifth block contained 10 unique sentences with 10 repeats of each in
a randomized order. The average length of each TIMIT sentence varied
between 1.5 and 2 s long with an interstimulus interval of 1 s between
each stimulus presentation. For the movie trailer stimuli, 23 unique
movie trailers were used, and each was presented once; however, two
unique stimuli (Inside Out and Paddington 2) were presented twice. The
TIMIT sentences and movie trailers were presented through an iPad
running custom software written in Swift (version 4; https://developer.
apple.com/swift/), presented via an external monitor (see Data acquisi-
tion). While the precise recording time for the EEG experience differed
across participants, participants heard an average of 1184 s of TIMIT
sentences and 3055.11 s of movie trailers. The average length of the EEG
recording time was 4856.27 s (~81 min).

During the task, participants were asked to watch and listen to the
movie trailers but were not asked to attend to any particular speaker. For
TIMIT, the participants were instructed to listen to the sentences while
staring at a fixation cross. The overall task alternated between presenting
five unique movie trailers and then one block of TIMIT sentences (125
sentences in the first four blocks and 100 in the fifth block). One partici-
pant (MT0007) was excluded because of the poor quality of the data, and
another participant (MT0017) was excluded for the TIMIT data analysis
only because of the poor quality of the data.

Data acquisition. Neural responses were continuously recorded from
a 64-electrode scalp EEG cap at a sampling rate of 25kHz using the
BrainVision actiChamp system (Brain Products). The impedance level
for the EEG signal was kept at <15 k(). Eye movements were measured
through electrooculography (EOG), with vertical EOG and horizontal
EOG measurements taken to aid in removing ocular artifacts from the
neural data. The auditory stimuli were directly synchronized with the
EEG data using a StimTrak stimulus processor (Brain Products). These
stimuli were controlled by the experimenters outside of the EEG suite,
with visual stimuli projected on a ViewPixx monitor inside the EEG
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suite. Audio levels were tested before the start of the task and were pre-
sented through insert earbuds (E-A-RTone Gold 10 Q, 3M) at a comfort-
able volume.

Preprocessing. EEG and EOG data were downsampled to 128 Hz
using BrainVision Analyzer software. The remaining neural preprocess-
ing steps were conducted using customized Python scripts and functions
from the MNE-python software package (Gramfort et al., 2013). First,
EEG data were rereferenced offline to the average of the mastoid electro-
des (TP9 and TP10) and notch filtered at 60 Hz to remove any electrical
artifact. Data were then bandpass filtered between 1 and 15Hz using a
zero-phase, noncausal bandpass FIR (finite impulse response) filter
(Hamming window, 0.0194; passband ripple with 53dB stopband
attenuation, —6 dB falloff). This filtering approach has been used in
previous studies of neural tracking of speech using EEG (Di Liberto
et al., 2015; O’Sullivan et al., 2015; Broderick et al., 2019). Raw data
were visually inspected, and specific time points were manually
rejected based on any nonbiological sources of movement, such as if
the participant moved or clenched their jaw and created electromyo-
graphic noise. Less than 10% of the data were manually rejected. An
independent component analysis was conducted to identify the
response of components for eye blinks and saccade artifacts as the
EOG responses were recorded in separate channels alongside the 64
channels of scalp EEG data. Components reflecting ocular move-
ments were subsequently removed from the data.

EEG data were epoched according to the onset and offset of acoustic
stimuli to analyze the EEG signals, which corresponded with the TIMIT
and movie trailer stimuli. The onset of each trial was identified through
a customized script using a match filter procedure (Turin, 1960), where
the sound waveform of individual stimuli was convolved with the audio
signal recorded to the EEG system, and the peak of the convolution was
used to determine the offset and onset of each trial. Once data were
epoched according to specific sentences or movie trailer stimuli, we then
used the stimulus transcription textgrids to identify the timing of specific
auditory and visual features.

Auditory and visual feature extraction. The auditory features
extracted from our stimuli included phonological features, the acoustic
envelope, and the pitch of each stimulus. For the phonological features,
we created a binary phoneme feature matrix to indicate the timing of
place and manner of articulation features for all phonemes for a given
TIMIT sentence or for the movie trailer. Each element of the matrix was
labeled with a 1, for the presence of a feature, and 0, for the absence of a
given feature (Hamilton et al.,, 2018). Previous work using ECoG has
demonstrated that speech-sensitive regions of the superior temporal
gyrus respond to phonological features as opposed to the phonemes
alone (Mesgarani et al., 2014a). Further research shows that these fea-
tures are well tracked in EEG data as well (Di Liberto et al, 2015;
Khalighinejad et al., 2017). Thus, we included the following place and
manner of articulation features into the binary feature matrix: sonorant,
voiced, obstruent, back, front, low, high, dorsal, coronal, labial, syllabic,
plosive, fricative, and nasal. For example, the feature matrix would
include a value of “1” at the onset of the “obstruent,” “fricative,” and
“voiced” categories to indicate the onset of hearing the phoneme, /v/’.

The acoustic envelope of each speech stimulus was extracted using
the Hilbert transform followed by a low-pass filter (third-order
Butterworth filter; cutoft frequency, 25 Hz). The envelope, which rep-
resents the dynamic temporal changes in speech (Raphael et al.,
2007), was extracted for each of the individual TIMIT and movie
trailer audio files. Prior research has also shown that the auditory cor-
tex tracks the pitch of a given sound (Chung and Bidelman, 2016;
Tang et al., 2017; Teoh et al., 2019; Hall and Planck, 2002). To fit
encoding models to predict neural responses to pitch, we first com-
puted the absolute pitch of each stimulus using the PraatIO package
in Python (Jadoul et al., 2018), which provides a Python-based inter-
face to Praat, the linguistics software. To ensure that the absolute
pitch (fundamental frequency) of each stimulus yielded better model
performance, we compared the fundamental frequency with binned
representations of the pitch, as in the study by Tang et al. (2017). The
binned pitches were calculated by extracting 10 log-spaced bins from
50 to 300 Hz. To determine whether a spectrogram representation
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might further improve model performance, we also fit a model incor-
porating the mel-band spectrogram with 15 frequencies spaced
between 75 Hz and 8 kHz.

A major difference between the TIMIT stimuli and movie trailer
stimuli is the presence of visual information in the movie clips. Since
concurrent visual information can also affect encoding of auditory fea-
tures (Grant and Seitz, 2000; Molholm et al., 2004; Beauchamp, 2005;
Holcomb et al., 2005; Kaiser et al., 2005; Schneider et al., 2008; Besle et
al., 2009; Chandrasekaran et al., 2009; Kayser et al., 2010; Bag kent and
Bazo, 2011; Crosse et al., 2015; Atilgan et al.,, 2018; Di Liberto et al.,
2019; Puschmann et al., 2019), we wanted to control for this potential
difference in modeling EEG responses to our auditory features. This
analysis also relates to our overall goal of understanding how generaliz-
able encoding models can be when derived from acoustically rich, audio-
visual, naturalistic stimulus sets compared with TIMIT. Visual features
were calculated for the movie trailer condition using a nonlinear Gabor
motion energy filter bank (Nishimoto et al., 2011). Briefly, each frame of
the movie was zero padded with black pixels at the top and bottom (to
convert a 720 x 1280 pixel frame into 1280 x 1280 pixels), and then
each image frame was downsampled to 96 x 96 pixels. These frames
were then converted to grayscale by first transforming RGB pixel values
into L*A*B* color space and retaining only the luminance channel.
Next, each grayscale movie was decomposed into 2139 3D Gabor wave-
let filters. These filters are created by multiplying a 3D spatiotemporal si-
nusoid by a 3D spatiotemporal Gaussian envelope. We used filters with
five spatial frequencies, log spaced from 1.5 to 24 cycles/image, three
temporal frequencies (0, 1.33, and 2.667 Hz), and eight directions (0-
315°in 45° steps). Velocities were calculated over 10 frames of the movie
at a time. We also included zero temporal frequency filters at 0°, 45°, 90°,
and 135° and one zero spatial frequency filter. The filters are posi-
tioned on each frame of the movie. Adjacent Gabor wavelets were
separated by 4 SDs of the spatial Gaussian envelope. Each filter was
also computed at two quadratic phases (0° and 90°), as in the study
by Nishimoto et al. (2011). The Gabor features were then log trans-
formed to scale down very large values. Finally, we took the first 10
principal components of this stimulus matrix to reduce the dimen-
sionality of the Gabor basis function matrix. Reducing the dimen-
sionality from 2139 to 10 principal components explained ~60% of
the variance in the data. This also corresponded to the point at
which the second derivative of the variance explained curve
approached zero (the “elbow” of the curve).

In addition to calculating the Gabor wavelet filters, we also identified
time segments with contained scene cuts in the movie trailers. We
wanted to assess whether these scene cuts contained comparable visual
information. Authors M.D. and B.H. watched all 23 unique movie
trailers and hand annotated the onset and offset timing information in
ELAN (version 6.0 2020) every time a scene changed in all of the trailers.
The neural data were epoched using the single-scene cut features. We
assessed model performance by comparing the wavelet filters and scene
cuts and found that the Gabor wavelets and scene cuts contained com-
plementary information, with the best model performance incorpo-
rating both [Wilcoxon signed-rank test, full visual model with scene
cut and Gabor wavelet versus Gabor only (W =22244.0, p=5.44 x
107'**) and full visual model versus scene cut (W =152030.0,
p=2.06 x 107°"). By incorporating these visual features into our
model, we were able to regress out any EEG activity related to both
static and moving aspects of the visual stimulus in the movie trailer
stimuli. This also allowed us to assess whether including visual fea-
ture information significantly changes the measured auditory fea-
ture encoding weights.

Encoding models for neural tracking of acoustic, linguistic, and visual
features. To model EEG responses to both audio and audiovisual
stimuli, we used a linear regression approach with different sets of
acoustic, linguistic, and/or visual features. This approach is some-
times referred to as an encoding model, a spectrotemporal receptive
field, a multivariate temporal response function, or simply a linear
model (Theunissen et al., 2000; Mesgarani et al., 2014a,b; Di Liberto
et al., 2015; Hamilton et al., 2018; Holdgraf et al., 2017). The goal of
the forward-modeling TRFs is to describe the statistical relationship
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Analysis schematic showing encoding model framework for predicting EEG responses to a given speech feature. We fit encoding models to neural data collected from participants

as they listened to sentences from the TIMIT corpus and as they watched movie trailers, which contained speech in the presence of background noise. Speech features included the acoustic en-
velope, phonological features, pitch, and a combined or full model consisting of all the aforementioned features. Forward modeling was used to compute the temporal receptive field (TRF),
which was then used to predict the neural response to a specific speech feature (pitch, acoustic envelope, phonological feature) or a combination of features from a given EEG channel in both
conditions from the EEG task (TIMIT and movie trailers). See Crosse et al., 2016 for a similar modeling paradigm.

between the input (auditory speech feature or visual feature) and out-
put (the predicted EEG response based on the stimulus features).

All 64 channels were used for all EEG participants, and separate
models were fit to predict the activity in each EEG channel. The equation
for the forward model TRF is shown as follows:

EEG(t,n) = Z Z w(f, m,n)s(f, t — 1)+ e(t,n).

This model calculates the instantaneous neural response EEG at time
t from electrode n and is expressed as a convolution between an input
speech stimulus property, s(f,t— 7), with the EEG TRF weights
w(f, 7, n). The TRF is thus the mathematical transformation of a stimu-
lus feature, f, into the EEG signal at different time lags 7. £(t,n) are the
residual values from the linear regression otherwise not accounted for
the input values. Figure 1 depicts all components of the forward model-
ing paradigm. The schematic for the predicted response from the TRF at
a specific channel can be seen for the three unique features (pitch, acous-
tic envelope, and phonological features) as well as the combined model,
which incorporates all three unique features as individual (f) values
into the TRF model. For our audiovisual analysis, we could also simulta-
neously model responses to auditory and visual features of the stimulus.

This framework allowed us to test different hypotheses about which fea-
tures (acoustic, linguistic, or visual) were represented in the EEG data,
and whether we could model how the brain tracks these features in a
stimulus that contains background noise, music, or overlapping speech,
with comparable fidelity to speech in isolation. For a schematic including
visual features, see Figure 7.

For all acoustic and linguistic feature models, we fit multivariate tem-
poral receptive fields (mTRFs) using time delays from 0 to 600 ms, which
encompasses the temporal integration times for such responses as found
in prior work (Hamilton et al., 2018). These analyses were performed in
Python using custom scripts that implement cross-validated ridge
regression. The weights (w) were fit using ridge regression on a subset of
the data (the training set), with the regularization parameter chosen by a
bootstrap procedure (n =100 bootstraps) and tested on a validation set
that was separate from our final test set. The ridge parameter was chosen
as the value that resulted in the highest average correlation performance
across all bootstraps and was set to the same value across electrodes. We
tested ridge parameters of 0 as well as from 102 to 108, in 20 log-spaced
steps. For TIMIT, the training set consisted of 489 of 499 sentences (the
TIMIT blocks 1-4, described above). The 10 unique sentences that were
heard in TIMIT block 5 and were also heard in blocks 1-4 were used as
the test set, so no identical sentences were used in training and testing.
For movie trailers, the training set consisted of 21 of the 23 movie
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trailers. The remaining two movie trailers were averaged and used as the
test set to evaluate the model performance was then used to evaluate the
model performance in which these repetitions were averaged and used as
the test set for the model for the clean speech condition. The performance
of the model was assessed by calculating the predicted EEG response for
held-out data using separate model features, and then calculating the cor-
relation between this predicted EEG and the actual held-out EEG. Noise-
ceiling correction was applied using methods detailed in the study by
Schoppe et al. (2016), where each of these correlations was divided by the
maximum possible correlation given the trial-to-trial noise in the EEG
data. In a separate analysis, we also tested the effect on model performance
when repeating the movie trailers in the test set up to 10 times.

To statistically evaluate the model performance in TIMIT, we conducted
a Friedman ANOVA, which is a nonparametric version of the repeated-
measures ANOVA test. This was used rather than a standard ANOVA
because our data violated the normality assumption. The dependent vari-
able was the model performance, while the independent variable was the
model type (all individual feature models and the full combined model).

To compare performance across models, we plotted the individual
model performance against the full model for each possible feature. To visu-
alize the general distribution of correlation values, we plotted each point
separately in addition to the convex hull surrounding those points (see Fig.
3). The significance of each model was determined by randomly shuffling
the stimulus labels in 2 s chunks and computing a model based on this
randomized data (using the ridge parameter from the true, unshuffled
data), calculating the correlation between the predicted and held-out data,
and comparing that correlation to the unshuffled data. This was performed
100 times, which corresponded to a bootstrap p value < 0.01.

Variance partitioning. A consequence of using natural speech is that
the stimulus features may be correlated with one another. For example, in
the absence of background noise, the acoustic envelope is correlated with
when phonological features occur in speech. To determine the shared versus
unique contributions of each feature set, we used a variance partition analy-
sis (de Heer et al., 2017). The unique variance for a given feature represents
the amount of additional variance that is added when including those fea-
tures in a model. The purpose of this analysis was to identify the individual
contribution of each feature, the variance shared by pairs of features, and
the variance explained by a combination of all features. R* values were cal-
culated directly from the mTREF linear models. A total of seven unique fea-
tures and intersections was used in this analysis.

The unique variance for a given feature was calculated by subtracting
the R for a paired model from the R? for a total model. For example, the
unique variance for pitch was calculated by fitting the full model (enve-
lope, phonological features, and pitch), and fitting a model with only en-
velope and phonological features. Taking the R value for the full model
and subtracting the R* value for the pairwise model would generate the
unique contribution that was explained by adding pitch to the model.
Unique individual features are as follows:

2 .
uniquepp ey - full pitch-+envelope

2 _ 2
runiqueem,e]npe = Ta rf)itch+phnfeal
2 _ 2

uniquepii, r?ull rphnfeat+envelope.

Equations for variation partitioning are shown below. In brief, we calcu-
lated model fits for each of the following features by using individual feature
sets or the union of all pairwise and triplet combinations, as follows:

Single models : Phonological feature (phnfeat), envelope, pitch
Pairwise models : phnfeat U envelope, envelope U
pitch, phnfeat U pitch Fullmodel : phnfeat U envelope U pitch.

We then obtained the shared variance for each pair of models from
the following equations:
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phnfeat N envelope = phnfeat 4 envelope — phnfeat U envelope
phnfeat N pitch = phnfeat + pitch — phnfeat U pitch
envelope N pitch = envelope + pitch — envelope U pitch.

We then use these values to determine the intersection of all three
models (the shared variance), as follows:

phn feat N envelope N pitch = phnfeat U envelope U

pitch + phnfeat + envelope + pitch — phnfeat U envelope
— phnfeat U pitch — envelope U pitch.

Finally, we could calculate the shared variance for each of the pairs of
models without including the intersection of the combination of all three
feature types:

(phn feat N envelope)\pitch = phn feat + envelope —

phnfeat N envelope — phnfeat N envelope
N pitch(phn feat N pitch)\envelope = phnfeat + pitch
— phnfeat U pitch — phnfeat N envelope
N pitch(envelope N pitch)\phn feat = envelope + pitch

— envelope U pitch — phnfeat N envelope N pitch.

For some of the variance partition estimates, a correction needed to
take place as certain models (single and pairwise) contained noise, some
of which could be attributed to overfitting. In such cases, the variance
partition calculations resulted in negative values where a post hoc correc-
tion was used to remove the biased values (de Heer et al., 2017).

In addition to the variance partitioning calculations, we conducted
an additional correlation analysis for both TIMIT and movie trailer
stimuli. For all acoustic features, we calculated the instantaneous correla-
tion between the different sound feature representations (Fig. 2). This
shows that the correlation structure for TIMIT and movie trailers is rela-
tively similar, with the strongest differences in the spectrogram correla-
tions, which are likely driven by the presence of multiple simultaneous
sound sources in movie trailers but not TIMIT.

mTRF generalization across stimulus types. We next wished to assess
the degree to which models trained on TIMIT sentences or movie
trailers could generalize to the other stimulus set. This analysis allowed
us to assess whether stimulus selectivity was similar across conditions, or
whether neural tracking measures were stimulus specific. We conducted
the same mTRF analysis for all speech features in both conditions from
the EEG experiment to generate our weights and correlation values. We
then used the weights calculated from using TIMIT as the training set to
predict the neural responses of the respective speech features in the
movie trailer EEG data. That is, using pretrained models from TIMIT,
we then assessed model performance using movie trailers as the test set.
We then compared the correlation between the new predicted and actual
EEG response to the correlation values generated by our original analy-
sis, where training and test data came from the same stimulus type. We
then performed the same analysis using pretrained models from the
movie trailer data, evaluated on the TIMIT test set. The purpose of this
analysis was to see whether responses from TIMIT were generalizable to
the responses from the movie trailers and vice versa. For example, to
predict the EEG in response to the movie trailers from mTRFs calculated
from TIMIT, as follows:

EEGpred Mt from Timir (£, 1) = E g wrner (f, 7, 1) sur (f, £ — 7)
f T
+ e(t,n).

And to calculate EEG in response to TIMIT from mTRFs calculated
from movie trailer stimuli:
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Speech feature correlation analysis for TIMIT and movie trailers. 4, Stimulus correlations within TIMIT show the co-occurrence of features within the TIMIT stimuli. For example, so-

norant phonemes are likely to be voiced and syllabic. The co-occurrence of specific phonological features with spectral and pitch features was low, since sentences were spoken by a variety of
speakers. B, Stimulus correlations within the movie trailers. Co-occurrence of phonological features was highly similar to TIMIT. The spectrogram features were more correlated with one
another, likely because of the presence of background noise, music, and other sounds in tandem with speech. €, The difference in stimulus correlation values between TIMIT and movie trailers.
Overall, phonological feature correlations were very similar, but differences were observed in the co-occurrence of low- and high-spectrotemporal information, with TIMIT showing separate
epochs with low- or high-frequency content (but not both), and movie trailers showing epochs with frequencies across the spectrum. D, Average stimulus correlations for acoustic and linguistic
features in TIMIT and movie trailers. Acoustic features were generally more correlated than the phonological features, but the degree of correlation across stimulus sets was relatively similar.

EEGpred TiMiT from m1(t, 1) = § E wyr (f, 7, n)STIMIT(fv t—1)
f T
+ e(t,n).

Finally, we determined whether there was a relationship between the
performance on the cross-stimulus models and the original models by
computing the linear correlation between the r values when the test set
was held constant. We also assessed the correlation between the weight
matrices themselves by calculating the linear correlation between wrprr
and wyt for each channel and participant.

Segmented correlation analysis. An additional difference between the
movie trailers and TIMIT stimuli is that the trailers contained more
acoustic information with multiple overlapping sound sources. While
the mTRF and the variance partition analysis demonstrated correlation
values between the predicted and actual EEG and the unique feature
contribution to model performance, respectively, they did not reveal
whether specific time points within the stimulus were more reliably pre-
dicted by our model. We thus implemented a segmented correlation
analysis to assess the correlation between the predicted and actual EEG
for given acoustic features based on whether the stimulus was speech

alone, speech with background noise, or background only (no speech).
The purpose of this analysis was to determine whether responses during
speech alone were better modeled than speech in background noise. We
segmented the data for one test set movie trailer (Inside Out) into inter-
vals with speech only, speech and background, or background only using
the software, Praat. We then calculated EEG predictions for only each
interval of interest and assessed the correlation between actual and pre-
dicted EEG using each of the individual models (envelope, phonological
features, pitch) or the full model.

The segmented correlations were then averaged within each of the
individual auditory environments for models using each speech feature
(phonological feature, pitch, and envelope) in isolation and in the full
model. For the “background sounds only” auditory environment, the
phonological feature model correlations were set to zero as there were
no linguistic features from which to predict. We hypothesized that the
phonological features during the clean speech only should generate
higher correlation values overall than speech with background noise or
background only.

Effect of number of repeats of test set on model evaluation perform-
ance. The purpose of this analysis was to identify whether increasing the
number of repetitions for the movie trailer test set stimuli improved the
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overall model performance through increased EEG SNR. Rather than
averaging all possible repetitions of the test set, we tested how the per-
formance of the model varied as a result of averaging between 1 and 10
repetitions of the test set. Since most participants heard 10 repeats of the
test set for TIMIT but only 2 repeats for movie trailers, we collected
additional movie trailer data from one participant. This participant
heard the two unique movie trailer test set stimuli a total of 10 times
each, in addition to the original training set trailers.

We performed the same mTRF analysis on the full model (contain-
ing all acoustic and linguistic features) and compared encoding model
performance between TIMIT and the movie trailers. To choose the repe-
tition subsets, we used a bootstrapping analysis such that different ran-
dom subsets of 1-10 repetitions were used in the test set, with a
maximum of 10 bootstraps. This analysis examined how the model per-
formance affected the average correlation value between the actual and
predicted EEG data for each increase in test set stimuli in the movie
trailer dataset.

Data availability. The code for reproducing the figures in this article
is available at https://github.com/HamiltonLabUT/generalizable EEG_
manuscript. The EEG data are available at https://osf.io/p7qy8/?view_
only=bd1ca019ba08411fac723d48097c231d.

Results

Acoustic and linguistic representations of speech

Speech occurs in many different environments in the real world.
People may listen to speech in a quiet environment (e.g., listen-
ing to an audiobook), in the presence of light background noise
(e.g., working at home with home appliance sounds, other indi-
viduals talking in common spaces), or even in highly noisy envi-
ronments with a variety of background sounds (e.g., attempting
to converse in a restaurant or at a music festival). Many encoding
model approaches rely on responses recorded in relatively
controlled stimuli in the absence of noise, or in specific con-
trolled noise conditions. While such models have been helpful
in improving our understanding of the neural representa-
tions of natural speech, it is unclear whether these findings
might generalize to a more naturalistic and acoustically rich
stimulus set, such as movie trailers. Here we investigated
whether the brain tracks similar acoustic and phonological
features in acoustically diverse stimuli (TIMIT sentences
and movie trailers). We also investigated whether compara-
ble model performance was observed across both condi-
tions, and whether this depended on the specific features
included in the model. We chose the acoustic envelope,
phonological features, pitch, and a combination of these
three models to encompass a broad range of features that
are involved in speech processing (Mesgarani et al., 2014a,
b; Di Liberto et al., 2018; Hamilton et al., 2018; Oganian
and Chang, 2019).

We trained on 64-channel EEG data responses using a full
model (combining the acoustic and phonological features of en-
velope, phonological features, and pitch into one model) and
individual speech features in both speech conditions (envelope
only, phonological features only, or pitch only). Model perform-
ance was assessed by correlating the EEG responses predicted by
our model and the actual EEG responses for held-out data. We
hypothesized that the combination of acoustic and linguistic fea-
tures would contribute to higher model performance for movie
trailers, since speech occurs in the presence of other unrelated
sounds, and modeling these features separately can effectively
lead to “denoising” of the data. In contrast, we expected that
models based on predicting EEG from individual features (e.g.,
pitch or acoustic envelope or phonological features) should still
perform relatively well when predicting responses to TIMIT.

Desai etal. @ EEG Encoding Models with Naturalistic Stimuli

We first compared the noise ceiling-corrected correlation val-
ues between the individual models against the full model (Fig.
3A,B). Model performance across all participants in TIMIT for
the individual features was more similar to the full model per-
formance (Fig. 3A). The average correlation value across all sub-
jects for TIMIT was highest for the full model (r=0.35) and
phonological features (r=0.34), with lower performance for the
acoustic envelope (r=0.26) and pitch (r=0.31). Despite rela-
tively similar performance, there was a significant effect of model
type for TIMIT (Friedman’s ANOVA )(2 test =17; df=3,
p=0.0005). Post hoc Wilcoxon signed-rank tests showed that
this effect was driven by significant differences between the
full model and pitch (W=6.0, p=0.0009), along with the
full model and the acoustic envelope (W =0.0, p=0.00006).
In contrast, the full model and phonological features mod-
els were not statistically different from each other for
TIMIT data (W=37.0, p=0.17). Performance differences
between the phonological features model and pitch were
not significant (W=27.0, p=0.06), but the phonological
feature model was significantly better than the acoustic en-
velope model (W=18.0, p=0.015). The envelope model
performed worse than the pitch model (W =19.0, p=0.02).
Overall, these results demonstrate that the linguistic con-
tent from the phonological features seems to drive model
performance.

We next performed the same comparisons for models fit
on the movie trailer stimulus set, which included overlapping
talkers and visual information (Fig. 3B). We found a signifi-
cant effect of model type across participants (Friedman’s
ANOVA, x*>=31.8,df=3, p=5.77 x 10~7). Post hoc Wilcoxon
signed-rank tests showed that the full model consistently out-
performed the pitch model (W =10.0, p=0.00003), the acoustic
envelope (W=1.0, p=0.000061), and the phonological feature
model (W=1.0, p=0.00001). Post hoc tests demonstrated that,
for movie trailers, correlations for the phonological feature
model were statistically higher than for the pitch model
(W=3.0, p=0.0002), the envelope model was statistically
higher than pitch (W=26.0, p=0.03), and performance did
not differ between the acoustic envelope and phonological fea-
ture models (W =43.0, p=0.21). Similar to TIMIT, the aver-
age correlation performance across all subjects for movie
trailers was highest for the full model (r=0.10) and phonolog-
ical features (r=0.08), with the acoustic envelope (r=0.07)
and pitch yielding lower average correlations (r=0.05).

This first analysis shows how individual feature models com-
pare to a joint model with acoustic and phonological features,
but it does not explain how individual features may uniquely
contribute to model performance. Thus, we used a variance par-
titioning analysis in which we computed the unique variance
explained by each individual feature, all pairwise combinations
of features, and the variance shared by all acoustic and phonolog-
ical features (Fig. 3C). Overall, we saw higher shared variance
across features for TIMIT and more unique variances contrib-
uted by each feature for movie trailers.

Individual features contributed relatively more unique infor-
mation to the overall model performance for movie trailers (Fig.
3D, Venn diagram). As with TIMIT, the phonological features
contributed the most unique variance across participants (Fig.
3D). Unlike TIMIT, the amount of shared information was lower
for the movie trailers compared with TIMIT, as indicated by a
smaller relative area for shared variance in the Venn diagram.

While these results showed strong tracking of acoustic and
phonological features, we also tested whether other feature
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Contributions of phonological and acoustic representations in predicting EEG. Comparing individual speech features (pitch, acoustic envelope, phonological features) with the full

model (combination of all auditory features). A, Prediction performance (noise ceiling-corrected correlation between predicted and actual EEG data) of significant electrodes for each condition
in models fit using TIMIT responses. Each individual dot is a single electrode. The shaded regions indicate the convex hull around the scatter points for each comparison, to indicate how the
points are distributed along, above, or below the unity line. B, Same as 4, for movie trailers. €, Variance partition analysis shows the unique variance explained by individual features (phono-
logical features, pitch, and envelope) for each participant separately (bar chart) and across all participants (pie chart) when fit on TIMIT data. D, Same as C, for movie trailers condition.

representations for pitch and acoustic information might yield
better model performance. For example, we previously used
binned pitch representations rather than the single fundamental
frequency (F0) value to uncover pitch tuning in intracranial EEG
(Tang et al,, 2017). In this study, however, the single FO model
outperformed the binned pitch model (single FO TIMIT, 7y, =
0.31; movie trailers, .5 = 0.05; binned pitch: TIMIT, 7, = 0.27;
movie trailers, 7., = 0.04). This was the case both for TIMIT
(Wilcoxon signed-rank test: W=17575.0, p=1.88 x 10~’) and
for movie trailers (Wilcoxon signed-rank test: W=199624.0,
p=3.32x10"""). Thus, for all subsequent analyses, we used the
single FO feature. In addition to testing different representations
for pitch, we tested whether spectrogram features would improve
the performance of the full model. This was not the case—the
overall correlations for both the full and individual models were
lower when using the spectrogram instead of the envelope, sug-
gesting that fine-grained spectrotemporal information is not as
strongly represented in the EEG (Fig. 4).

Altogether, our results suggest that neural tracking occurs in
response to multiple individual features. While the unique var-
iance was highest for phonological features, we were also able to

identify robust model performance for the acoustic envelope and
additional unique variance explained by this feature. This sug-
gests that the brain may not only track the envelope of speech,
but also of the background sounds and music from the movie
trailers. Overall, our results suggest that neural tracking for pho-
nological features occurs both in noise-free as well as more
uncontrolled, naturalistic settings despite the presence of varied
background noise.

Are receptive field models from each condition generalizable
to the other?

Our previous analysis showed that we were able to predict EEG
in noise-free continuous speech and in naturalistic, noisy condi-
tions using linear models that incorporated acoustic and linguis-
tic features. We next asked whether models fit on one stimulus
set would generalize so that they could predict neural responses
for another stimulus type. This would allow us to answer
whether naturalistic stimuli are a feasible replacement for recep-
tive field analyses. We used the weights from the individual fea-
ture models and the full model calculated from responses to
TIMIT to predict responses to untrained TIMIT and movie
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Figure 4. Model performance when incorporating spectrogram features in addition to phonological features and pitch. A, Prediction performance (correlation between predicted and actual
EEG data) of significant electrodes for each condition in models fit using TIMIT. Each individual dot is a single electrode. Electrode color indicates the individual model type. The shaded regions
indicate the convex hull around the scatter points for each comparison, to indicate how the points are distributed along, above, or below the unity line. The average correlation value for each
individual performance for TIMIT is as follows: phonological features, r=0.33; spectrogram, r=0.09; and pitch, r=0.29. B, Same as A, for movie trailers. The average correlation value for
each individual performance for movie trailers is as follows: phonological features, r = 0.07; spectrogram, r=0.02; and pitch, r=0.05. C, Variance partition analysis shows the average unique
variance explained by individual features (phonological features, pitch, and spectrogram) for each participant separately (bar chart) and across all participants (pie chart) when fit on TIMIT

data. D, Same as €, for movie trailers condition.

trailer neural data. For each of these cross-predictions, we com-
pared the performance of the model trained on one dataset and
tested on the same stimulus type (e.g., predict TIMIT responses
from TIMIT training data) or trained on a different stimulus
type (e.g., predict TIMIT responses from movie trailer training
data). This cross-prediction schematic is depicted in Figure 5A.
Results of this cross-prediction comparison are shown in
Figure 5, B and C. Noise ceiling-corrected correlation values
below the unity line indicate electrodes for which the
within-stimulus model performance was better, and those
above the unity line indicate better cross-stimulus perform-
ance. Overall, using the same stimulus type for training and
testing (e.g., predict TIMIT from TIMIT or predict MT
from MT) tends to result in better model performance. Still,
the response to one stimulus could be modeled from the
other, although with slightly worse performance. We saw a
statistically significant correlation between performance in
one condition (i.e., predict TIMIT from TIMIT or predict
MT from MT) to the generalization condition (i.e., predict

TIMIT from MT or predict MT from TIMIT; Fig. 5B,C, red
regression lines). This was the case across all feature condi-
tion types, whether this be the individual models or the full
model.

Finally, to determine whether models trained on TIMIT or
movie trailer stimuli yielded similar encoding model weights,
and thus inferred selectivity, we directly compared the TRF
weights derived from TIMIT or movie trailer training data (Fig.
5D-F). Figure 5, D and E, shows the weights for one example
channel using TIMIT (Fig. 5D) or movie trailers (Fig. 5E), which
are highly visually similar and show the same pattern of positive
and negative weights for each of the acoustic and phonological
features. When compared quantitatively, weights derived from
the different datasets were significantly correlated (with a maxi-
mum of up to 0.35 when averaged across 16 subjects; Fig. 5F).

Overall, we found that the model performance was better for
TIMIT (Fig. 5B) when we trained and tested on TIMIT stimuli.
While unsurprising, these responses were still able to be pre-
dicted from models using movie trailers as the training set,
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suggesting that feature encoding derived from neural responses
to highly uncontrolled, noisy stimuli, can generalize to a more
controlled stimulus set (and vice versa). The high model per-
formance for predicting held-out TIMIT EEG data from models
also trained on TIMIT data could partially be attributed to the
fact that listeners do not have to filter extraneous background
sounds while attending to the primary speech source, so the sig-
nal-to-noise ratio of responses is higher. In addition, the correla-
tion structure of the training/test stimuli may play a role (Fig. 2).
Prediction correlations were generally lower for the movie
trailers but were still significantly higher than chance (Fig. 5C).

Although models fit on the movie trailers generalized to pre-
dicting responses to TIMIT, the model performance correlations
for movie trailers were still lower on average. Thus, we next
examined whether these results were because of differences in
the amount of testing data for both TIMIT and movie trailers, or
whether this was because of inherent differences in the amount
of speech alone versus speech in background noise.

The effect of stimulus repetitions on model evaluation and
performance

We observed overall lower model performance for all feature
types in the movie trailer condition compared with TIMIT (Figs.
3-5). This led us to ask whether this discrepancy was because of
the different number of test set repeats for TIMIT and movie
trailers, or whether other factors were responsible. We hypothe-
sized that more repetitions of test set stimuli would improve the
average correlation performance of our encoding models,
because averaging more EEG repetitions should increase the
SNR of neural responses. We used the same TRF models in a sin-
gle participant who had two separate recording sessions. In the
first recording session, the participant listened to all blocks of
TIMIT and listened to and watched all of the movie trailers. In
this session, the participant watched and listened to two repeti-
tions of the test set (Paddington and Inside Out) stimuli. In the
second recording session, the same participant watched and lis-
tened to all of the movie trailers. However, during this session,
the participant also heard Paddington and Inside Out a total of
10 times each. No additional TIMIT sentences were played in
this second session. We assessed model performance for TIMIT
in session 1 (Fig. 6A) and the repeated movie trailers in session 2
(Fig. 6B).

We observed an increase in model performance with increas-
ing numbers of repeats for the TIMIT test set stimuli (Fig. 6A)
and movie trailer test set stimuli (Fig. 6B). However, the average
correlations for two repetitions of TIMIT were still greater than
those of the movie trailers, even with 10 repetitions. This sug-
gests that the overall signal-to-noise ratio was not the only factor
driving poorer model performance for movie trailers compared
with TIMIT. Including 10 repetitions of the movie trailer test set
stimuli significantly improved model performance (Fig. 6B;
W=1.0,p=3.79 x 10 "?).

As with TIMIT, adding more test set repetitions for the movie
trailer stimuli increased the observed model performance (Fig.

«—

Dashed black line, Unity line; red line, regression line. ¢, Same as B, but with model perform-
ance on movie trailer test set for movie trailer training (x-axis) or TIMIT training data (y-
axis). D, Weight matrix for the TIMIT full model in one example channel 27 (FC6) from one
participant (MT0008). E, Same as D for movie trailers. Note that the weights are highly simi-
lar to those in D despite training the model on separate stimuli. F, Average correlation
between TIMIT and movie trailer weights for all participants. Across all participants, correla-
tions among the receptive field weights were highest in central/temporal electrodes.
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6B,C). This improvement may be attributed to averaging over
more trials of EEG data, which decreases trial-specific noise in
the response. However, because the correlation performance
never reached that of TIMIT, other factors must also be at play.

As the TIMIT condition consisted of continuous speech with-
out any background noise, we hypothesized that prediction per-
formance for the movie trailer dataset might be higher for time
points where no background noise was present. Thus, we parsed
the movie trailer testing stimulus Inside Out into the following
three different auditory environments: speech (~34% of the
trailer presented), speech with background noise (~35%), and
background noise only (~18%). Of note, the remaining 13% of
Inside Out was silence, and the segmented analysis was con-
ducted on all participants except for MT0001, as this participant
did not hear this trailer as a part of the EEG experiment. We
then calculated EEG predictions for each of these environments
separately. We observed the highest correlations for speech with-
out background noise, followed by speech with background
noise, and finally background noise alone (Fig. 6D). The phono-
logical features models outperformed the other models in speech
alone and speech in background noise, but obviously could not
adequately predict activity during background noise only (when
no speech is present). While the magnitude of these correlations
across all auditory environments was still lower than TIMIT, this
suggests that the presence of background noise in the stimulus
can also lead to less robust tracking of acoustic and phonetic
features.

When comparing the performance of models within each
of these auditory conditions quantitatively, we found a signifi-
cant effect of model type for speech with noise (Friedman’s
ANOVA, y’test =18.92, df=3, p=0.0003), speech only
(Friedman’s ANOVA, /\/2 test=14.6, df=3, p=0.002), and
noise only (Friedman’s ANOVA, y”test=27.56, df=3, p<
0.0001). For speech only, post hoc Wilcoxon signed-rank tests
showed that this effect was driven by significant differences
between the full model and pitch model (W =2.0, p=0.0001),
the full model and phonological features model (W=10.0,
p=0.002), and the full model and acoustic envelope model
(W=8.0, p=0.002). In addition, the phonological features and
pitch models were significantly different (W =24.0, p=0.04),
but the acoustic envelope was not statistically different from
pitch (W=36.0, p=0.19), and phonological features were not
statistically different from the acoustic envelope (W =47.0,
p=0.49). Overall, this suggests that the joint information of
phonological features and acoustic information is helpful in
predicting EEG responses to clear speech without background
noise, but the phonological feature model still performs well.

When comparing model performance for speech in noise, the
full model was not significantly different from the phonological
features model (W=26.0, p=0.06). In contrast, the full model
significantly outperformed the envelope (W=0.0, p < 0.00006)
and pitch models (W=10.0, p=0.003). Phonological feature
models showed higher performance than the individual pitch
(W=15.0, p=0.008) and acoustic envelope models (W =25.0,
p=0.048). The acoustic envelope and pitch models did not show
statistically significant differences in performance (W =45.0,
p=0.42). Similar to the clear speech condition, the phonological
features model appears to drive performance even in the pres-
ence of background noise.

Finally, when assessing noise only, the full model and
acoustic envelope showed similar performance (W =26.0,
p=0.06), but the full model significantly outperformed the
phonological features (W =1.0, p=0.0001) and pitch models
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(W=1.0, p=0.0001). The poor performance of the model for
phonological features is to be expected here, as these features
are all zeros during “noise only” epochs. On the other hand,
the background sounds may have associated pitch, but this
did not appear to model responses well, and in fact the pitch
model performed similarly to phonological features (W =55.0,
p=0.80). We found that the acoustic envelope and pitch
(W=2.0, p<<0.0002) and phonological features and acoustic
envelope (W=0.0, p<<0.0001) were significantly different.
The similar performance of the envelope and full model indi-
cates that, in the presence of background sounds that do not
include speech, the envelope is adequate for modeling EEG
responses to auditory information.

Audiovisual components for speech tracking in a noisy
environment

Up to this point, we have examined tracking of specific acoustic
or phonological features in TIMIT and movie trailer stimuli.
However, one obvious difference between the two stimuli is that
the movie trailers also include visual information, which has
been shown to influence auditory perception (Beauchamp, 2005;
Holcomb et al., 2005; Schneider et al., 2008; Di Liberto et al.,
2018). If we wish to replace a more controlled stimulus like
TIMIT with an uncontrolled stimulus like movie trailers, we
must also examine to what extent the visual features influence
auditory feature selectivity. As a final analysis, we examined how
the visual components were involved in speech tracking of the
movie trailer stimuli. We built the same linear regression models,
which now included all of the audio features (pitch, phonological

features, and acoustic envelope) and added an additional set of
visual features. The visual features were calculated from a motion
energy model in which movie stimuli were decomposed into a
set of spatiotemporal Gabor wavelet basis functions (Nishimoto
etal, 2011) and manually annotated scene cuts.

The spatiotemporal Gabor wavelets allow us to investigate
visual feature selectivity using Gabor wavelets that capture both
static and moving visual aspects of the movie trailer. Figure 7A
illustrates some example spatiotemporal features, with each row
representing a feature, and each column representing the evolu-
tion of that feature over time. The relative weights for each of
these Gabor wavelets are used to construct a visual feature matrix
(Fig. 7B) that describes visual motion parameters over time. To
make the problem more tractable and to include a comparable
number of auditory and visual features, we reduced the dimen-
sionality of the Gabor feature matrix using a principal compo-
nent analysis (PCA). A final example of the features that are used
in the full audiovisual model is shown in Figure 7C, with some
video stills to illustrate the visual scene at four example time
points in our test set stimulus. We also used an additional “scene
cut” visual feature alongside the Gabor wavelets for the visual
and combined auditory and visual analysis, which improved
model performance over the Gabor filters alone (see Materials
and Methods).

Next, we determined whether including visual features in the
movie trailer model fitting influenced our ability to assess model
performance between audio- and visual-only responses (Fig.
7D). We used the noise ceiling-corrected correlation values and
found that the average performance scores across all subjects for
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Figure 7. Unique contribution of visual features for the noisy (movie trailer condition) to assess model performance. A, Visual stimuli in the movie trailers were decomposed into a set of
Gabor wavelet features using a motion energy model. These features are static or drifting gratings at different spatial and temporal frequencies. Ten example spatiotemporal Gabors are shown,
where each row represents one spatiotemporal feature set, and each column represents the evolution of that feature over time. In our experiment, we used a total of 2139 features, so these
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over time). For illustration purposes, only 15 s of data are shown. This reduced dimensionality matrix then serves as the visual input to our mTRF models. C, Example combined visual and
acoustic/linguistic features for 15 s of our test stimulus Inside Out. The acoustic features are identical to those used in the previous model fits, while the visual features include the Gabors
shown in A-C. Example frames are shown for four time points in the stimulus. D, Model performance for the audiovisual combined model versus visual-only or audio-only models. Each dot
represents an individual EEG channel. The topographic map shows the difference between the audiovisual correlations and visual-only correlations, averaged across all participants. Red indicates
increased variance explained when adding auditory information. E, Unique variance explained by visual, auditory, or combined audiovisual information. The visual features contribute a large
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tory weights for each analysis were then used to predict TIMIT responses. Overall, these models are highly correlated, showing that partialing out the visual information does not strongly affect

cross-prediction performance. Each dot represents an individual EEG channel.

the full auditory model was r=0.10, whereas adding the visual
information into the auditory model yielded a correlation value
of r=0.33, across all 64 EEG channels. Combining auditory and
visual information resulted in more robust model performance
than just having the auditory features alone (Wilcoxon signed-
rank statistical test, W=6201.0, p<0.0001; Fig. 7D, mauve
points). Surprisingly, the visual information alone (maximum,
r=0.35) had a better model performance compared with the
combined audiovisual model, and we found that that these two
models were not statistically significant from one another
(Wilcoxon signed-rank statistical test, W=255416.0, p=0.46).
However, this was mainly the case for EEG electrodes outside the
typical auditory ROI (Fig. 7D, inset, topographic map). We
found that the visual stimulus information contributed a signifi-
cant proportion of variance in the audiovisual speech condition
(maximum, r=0.8). In fact, the visual components occupied a
significantly larger subspace in the bar plot compared with the
audio-only or the joint audiovisual components (Fig. 7E).
Despite this large contribution of visual information to overall

explained variance, the shared region of the Venn diagram shows
that each of these features (audio vs audiovisual) can be modeled
separately, suggesting that this particular audiovisual stimulus
does not significantly alter how the auditory features of speech
are tracked in the movie trailers. To test this directly, we con-
ducted a cross-prediction analysis (Fig. 5) to predict neural
responses to TIMIT from models fit using movie trailer training
data with audio features only, and to predict TIMIT from models
fit using movie trailer data with the combined audiovisual fea-
tures (Fig. 7F). Notably, no visual information was presented
during TIMIT stimulus presentation, so the visual features are
set to zero in the TIMIT stimulus matrix used for the prediction.
We found that correlation values for both models were concen-
trated long the unity line, suggesting that the model performance
was comparable for both conditions, and that regressing out the
visual information did not significantly alter the predictability of
the response to auditory information. Finally, we demonstrated
that the auditory-related weights fit on audio-only and audiovi-
sual stimuli (including Gabor wavelet features plus scene cuts)
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were similar, suggesting that regressing out the visual informa-
tion does not alter auditory encoding information (Fig. 8).

Discussion

Understanding speech in real-world scenarios involves parsing
noisy mixtures of acoustic information that may include speech
and nonspeech sources. Natural environments are also inher-
ently multisensory. Much of our understanding of how the brain
processes speech relies on tightly controlled stimuli in the ab-
sence of noise or parametrically controlled noise added to con-
tinuous speech stimuli. While these endeavors have been highly
fruitful in uncovering acoustic and phonological tuning in the
brain, it is not clear to what extent models based on controlled
stimuli can generalize to more complex stimuli. Taken further,
in some experimental environments, it may be desirable to inves-
tigate speech processing using stimuli that are more enjoyable to
listen to, so more data could be acquired without participants
becoming bored or frustrated. This could include, for example,
clinical populations or research involving children. Still, absent is
an evaluation of how such models generalize to more controlled
datasets, where it is difficult to interpret whether models based
on naturalistic stimuli reflect the same processes involved in
parsing more controlled stimuli.

In this study, we addressed these questions by collecting neu-
ral responses to acoustic and linguistic features in clean speech
(TIMIT) and naturalistic noisy speech (movie trailers) condi-
tions using EEG. We were able to show that tracking of phono-
logical features, pitch, and the acoustic envelope were both
achievable and generalizable using a multisensory stimulus.

In our first analysis, we described how individual acoustic or
phonological features could predict brain data, and how that
compared with a full model incorporating all of these features.
Generally, the acoustic envelope and phonological features were
more predictive of EEG data than pitch, which contributed a
small but significant proportion of unique variance for both
TIMIT and movie trailers. A possible reason for lower correla-
tion values in the individual pitch models in both speech condi-
tions (TIMIT and movie trailers) could be attributed to the fact
that pitch tracking may be more robustly identified in higher fre-
quencies of the EEG, for example, the following response
(Krishnan, 1999; Galbraith et al., 2000; Zhu et al., 2013).

While our model performance correlation values were sub-
stantially lower in the movie trailers compared with TIMIT, it
may be that the background noise corrupted measurement of the
acoustic envelope from the individual sources. This effect on the
envelope may have been partially mitigated by including
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additional features for the pitch and phonological features in the
movie trailer dataset. The full model always outperformed any
one feature set alone, and the shared variance was relatively low
for this dataset (Fig. 2D). This suggests that including these addi-
tional features allows for more robust assessment of neural
tracking.

Perhaps most promising for moving toward more natural
stimulus experiments is our finding that encoding models for
TIMIT and movie trailers are generalizable and not stimulus spe-
cific. It was possible to use the weights fitted from the movie
trailer condition to predict responses to the TIMIT sentences
and vice versa. This indicates that using more naturalistic stimuli
is a valid approach for characterizing auditory receptive fields.
This corroborates findings by Jessen et al. (2019), who built
encoding models to analyze EEG responses to naturalistic audio-
visual stimuli in infants, and found robust encoding of both the
auditory envelope and visual motion features. Di Liberto et al.
(2018) also showed largely separable responses to auditory and
visual information in an EEG study on speech entrainment in
participants with dyslexia. In our dataset, the visual components
did not affect the auditory encoding model weights to any signif-
icant degree. While others have shown that visual information
can significantly affect encoding of auditory information, much
of the visual information in the movie trailers was not directly
related to the speech. For example, some scenes were narrated,
so the speaker was not visible, and in many scenes the action of
the characters went beyond speech-related mouth movements.
For a movie clip where much of the speech is accompanied by a
view of the person talking (and their mouth moving), we might
expect more overlap in the variance explained by auditory and
visual features (O’Sullivan et al., 2017, 2020; Ozker et al., 2018).
Future studies could investigate this directly by comparing mov-
ies where the auditory and visual information are either corre-
lated (as in a “talking head” interview) or decorrelated (narration
of a visual scene).

Finally, the segmentation analysis demonstrated that times in
the movie trailers where speech occurred without background
noise could be more robustly predicted than times where back-
ground noise was present. While the prediction performance
was still worse compared with using TIMIT as the input speech
feature, model performance improved with more test set averag-
ing. In future studies, it may be useful to separate the speech and
nonspeech stimuli and fit the same encoding models on multiple
tiers of speakers and nonspeech sounds to assess model perform-
ance. Others have demonstrated that multitalker separation is
possible with deep neural networks (Luo et al., 2018), but sepa-
rating music, speech, and sound effects present in movie trailers
is significantly more complex.

While we were able to predict EEG responses to phonological
and acoustic features in continuous speech, a caveat is that some
nonlinear effects may not be well modeled. For example, in tradi-
tional auditory “odd-ball” tasks, the response to the same stimu-
lus may differ based on prior expectations of its appearance
(Squires et al., 1975). This would not be captured by our mTRF
modeling, which assumes the same response to acoustic and
phonological features for every presentation. Future studies
could incorporate contextual sensitivity into these models to bet-
ter explain such nonlinearities.

Finally, an additional caveat of this study is that participants
were not asked about the semantic content of either stimulus;
nor was attention assessed directly. However, other studies
incorporating naturalistic stimuli with mixed noise have shown
strong entrainment to speech even in the presence of strong
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background noise (Ding and Simon, 2013), separable responses
to mixtures of music stimuli (Treder et al., 2014), and that the
degree of speech intelligibility can be predicted from envelope
entrainment (Vanthornhout et al., 2018).

Our study demonstrates that movie trailer stimuli can be used
to identify acoustic and phonological feature tuning that can still
predict responses to more controlled stimuli. This suggests that
researchers can use stimuli that may be both more representative
of our daily environment and more enjoyable to listen to or
watch. Our results also provide some intuition for how mTRF
model performance changes based on stimulus characteristics as
well as the amount of data and number of repetitions. Last,
while visual responses added significant variance to the
EEG responses to the movie trailers, this visual information
did not significantly change auditory tuning. Overall, our
results provide evidence that robust auditory and audiovi-
sual selectivity can be uncovered using more naturalistic,
multimodal stimuli. This is promising for clinical research
or research on populations who may not tolerate or become
fatigued by traditional psychoacoustics paradigms.
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