Skip to main content
. 2021 Oct 13;8:757510. doi: 10.3389/fmed.2021.757510

Table 5.

Predictors of COVID-19 mortality in patients with hemoglobinopathy.

Variables Simple logistic regression Binary logistic regression
Crude odds ratio 95% CI p -value Adjusted odds ratio 95% CI p -value
Gender 2.015 (0.741, 5.483) 0.170 1.225 (0.086, 17.391) 0.881
    (female vs. male)
Age 1.492 (0.328, 6.795) 0.605 0.171 (0.009, 3.179) 0.237
    (pediatric vs. adult)
Types of hemoglobinopathy 7.232 (2.278, 22.958) 0.001* 14.612 (0.425, 502.262) 0.137
    (Thal vs. SCD)
Respiratory comorbidity 1.902 (0.398, 9.103) 0.421 89.625 (2.514, 3195.537) 0.014*
    (no vs. yes)
Cardiovascular comorbidity 4.081 (1.396, 11.930) 0.010* 35.199 (1.291, 959.526) 0.035*
    (no vs. yes)
Splenectomy 3.442 (1.260, 9.403) 0.016* <0.001 0.998
    (no vs. yes)
Diabetes mellitus 2.511 (0.760, 8.296) 0.131 <0.001 0.998
    (no vs. yes)
Oxygen requirement 3.779 (0.614, 23.271) 0.152 8.912 (0.674, 117.824) 0.097
    (no vs. yes)

CI, confidence interval; Thal, thalassemia; SCD, sickle cell disease.

Simple logistic regression was performed for all comorbidities vs. mortality as an outcome. Comorbidities with p-value of <0.25 for simple logistic regression were included in the model for binary logistic regression.

*

Indicate statistically significant p < 0.05.