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Abstract

Researchers who collect multivariate time-series data across individuals must decide whether to 

model the dynamic processes at the individual level or at the group level. A recent innovation, 

group iterative multiple model estimation (GIMME), offers one solution to this dichotomy by 

identifying group-level time-series models in a data-driven manner while also reliably recovering 

individual-level patterns of dynamic effects. GIMME is unique in that it does not assume 

homogeneity in processes across individuals in terms of the patterns or weights of temporal 

effects. However, it can be difficult to make inferences from the nuances in varied individual-level 

patterns. The present article introduces an algorithm that arrives at subgroups of individuals that 

have similar dynamic models. Importantly, the researcher does not need to decide the number 

of subgroups. The final models contain reliable group-, subgroup-, and individual-level patterns 

that enable generalizable inferences, subgroups of individuals with shared model features, and 

individual-level patterns and estimates. We show that integrating community detection into the 

GIMME algorithm improves upon current standards in two important ways: (1) providing reliable 

classification and (2) increasing the reliability in the recovery of individual-level effects. We 

demonstrate this method on functional MRI from a sample of former American football players.
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Introduction

Researchers across varied domains of psychology widely acknowledge that individuals are 

heterogeneous in terms of their dynamic processes (e.g., Molenaar, 2004; Molenaar & 

Nesselroade, 2012). Functional MRI (fMRI) literature in particular highlights heterogeneity 

in brain processes as a major analytic hurdle that has yet to be reconciled (Ramsey et al., 

2010; Seigher & Price, 2016; Smith, 2012). Heterogeneity in brain processes surfaces even 

within specific diagnostic categories, such as major depressive (e.g., Price et al., 2016), 
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autism spectrum (e.g., Volkmar, Lord, Bailey, Schultz, & Klin, 2004), and attention-deficit 

(e.g., Fair et al., 2012; Gates, Molenaar, Iyer, Nigg, & Fair, 2014) disorders. Normative 

samples have also evidenced heterogeneity in fMRI research (e.g., Beltz, Beekman, 

Molenaar, & Buss, 2013; Finn et al., 2015; Laumann et al., 2015; Nichols, Gates, Molenaar, 

& Wilson, 2013). Analytically, ignoring heterogeneity can give rise to models that fail to 

explain any one individual in the sample (Molenaar, 2004), which severely hampers the 

utility of results for any research paradigm. Taken together, emerging research highlights 

the necessity of individual-level modeling with a specific need for approaches that can 

reliably model directed (i.e., not correlational) relations among brain regions. At present, 

the most promising class of approaches for arriving at directed temporal relations among 

brain regions of interest are Bayes net techniques that utilize some information from the 

sample (Mumford & Ramsey, 2014; Ramsey, Hanson, & Glymour, 2011; Ramsey, Sanchez

Romero, & Glymour, 2014), including the group iterative multiple model estimation 

(GIMME) algorithm (Gates & Molenaar, 2012). The present article improves upon the 

GIMME approach by clustering individuals into relatively homogeneous subsets based 

entirely on features of their temporal models. Most importantly, we show that this step 

further improves the already exceptional rate of reliable model building with GIMME. The 

final results enable generalizable inferences in addition to the identification of subgroups of 

individuals with shared model features and person-specific paths and parameter estimates.

The original GIMME has been shown to obtain highly reliable directed temporal patterns of 

effects at the individual level at rates superior to many methods (Gates & Molenaar, 2012; 

Mumford & Ramsey, 2014; see Smith et al., 2011). It is generally accepted that for any time

series analysis, model misspecification may occur when researchers attempt to arrive at one 

dynamic model to describe all participants by concatenating individuals (Gonzales & Ferrer, 

2014; Molenaar, 2004, 2007). When the analysis erroneously assumes homogeneity across 

individuals in this manner, the group-level model may fail to describe any of the individuals 

comprising the sample (Molenaar & Campbell, 2009). GIMME circumvents this issue by 

detecting signal from noise across individuals and conducting analysis for each individual 

separately to arrive at a group-level model. In this way, GIMME arrives at group-level 

paths that truly are valid for the majority of individuals without concatenating individuals 

or otherwise assuming homogeneity in their dynamic processes. This group-level pattern 

of effects is then used as a prior for building the individual-level models. Starting with 

the shared information obtained by looking across the sample (i.e., the group-level model) 

has been shown to greatly improve recovery of individual-level paths (Gates & Molenaar, 

2012). It follows that using shared information within subgroups of individuals who have 

similar temporal patterns can further increase the reliability of individual-level results. The 

present article describes an extension to the GIMME algorithm that clusters individuals 

during model building by using information available after the group-level search and before 

the individual-level searches.

Using parameters obtained from time series models represents one common approach in the 

clustering of time-series data of any type (Liao, 2005). Functional MRI researchers currently 

cluster individuals on the basis of parameters from final time-series models to arrive at 

relatively homogeneous subsets of individuals in terms of their brain processes (e.g., Gates 

et al., 2014; Yang et al., 2014). These inquiries offered support for previously argued notions 
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that varied biological markers can give rise to the same behaviors and symptoms (Gottesman 

& Gould, 2003). Thus, the current standard of placing individuals with the same diagnostic 

category into subgroups according to the assumption of within-category homogeneity may 

be ill advised. These lines of questions that seek to uncover subsets of individuals with 

similar dynamic processes further motivate the aim of arriving at reliable subgroups within 

GIMME. Directly following from the features scientists typically use to examine differences 

between a priori subgroups (e.g., Yang, Gates, Molenaar, & Li, 2015), we seek to organize 

individuals according to the presence and the sign (i.e., negative or positive) of relations 

estimated from time-series analysis. That is, individual-level nuances in the pattern of effects 

(as indicated with significance testing) as well as the sign of the effect will be utilized. We 

will investigate three candidate approaches for feature selection, which as explained in the 

following, utilize parameter estimates obtained during different stages of the model-building 

process. Finally, we apply a reliable clustering algorithm called Walktrap (Pons & Latapy, 

2006) to classify individuals according to these features.

One might argue that individuals would be best described along a multidimensional 

continuum rather than in discrete classes. However, clustering individuals on the basis 

of time-series parameters aids in arriving at parsimonious models (Ravishanker, Hosking, 

& Mukhopadhyay, 2010) and thus might be easier to interpret and immediately translate 

into practice. For example, Yang and colleagues (2014) clustered individuals according 

to patterns of brain connectivity and found subgroups of individuals diagnosed with early

onset schizophrenia. A specific pattern of effects that emerged in one subgroup related to 

negative symptoms. In this way, identifying discrete subgroups of individuals with similar 

temporal patterns may assist in a better understanding of the underlying biological markers 

relating to specific sets of symptoms or behaviors. Data-driven classification based on 

dynamic processes will thus help guide hypothesis formation, as well as the development of 

intervention, diagnostic, and treatment protocols, by revealing underlying patterns of effects 

for clusters of individuals that would not be revealed by using predefined subgroups (e.g., 

diagnostic category).

We present here a new approach that (a) arrives at subgroups of individuals (should 

they exist) entirely on the basis of their dynamic processes and (b) obtains reliable 

group-, subgroup-, and individual-level dynamic process patterns even in the presence of 

heterogeneity. All estimates are obtained separately for individuals with no assumptions 

regarding their distributions. The algorithm presented here, subgrouping within group 

iterative multiple model estimation (referred to as “S-GIMME”), works from within an 

SEM framework much like the existing GIMME algorithm (Gates & Molenaar, 2012). 

The present article is organized as follows. First, we provide information on an example 

of fMRI data obtained from a sample known to be heterogeneous in their functional 

neural processes: former collegiate American football and National Football League (NFL) 

athletes. This example will be used to illustrate aspects of the algorithm. Second, we offer 

a brief introduction of the original GIMME algorithm, followed by a technical description 

of the development of S-GIMME that enables classification of individuals according to 

temporal patterns. Third, Monte Carlo simulations are presented to evaluate S-GIMME and 

to examine conditions leading to optimal and suboptimal performance. Finally, we discuss 

the implications, current drawbacks, and future directions.
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Empirical data example

American football players are at high risk for head injuries, including concussion. The 

biomechanics of concussion are known to vary across individuals (Guskiewicz & Mihalik, 

2011). For this reason, individuals who have played American football are highly likely to 

be heterogeneous in their functional neural patterns and thus provide an ideal example with 

which to demonstrate empirical results obtained with S-GIMME. The data come from a 

larger study investigating the extent to which the degree of exposure to risk of concussion 

(i.e., years playing football) related to changes in brain processing. As such, participants 

in this study were recruited according to the level of exposure to risk of concussion from 

playing. The final sample contained 31 former professional NFL players who played a 

minimum of two seasons of professional football (high-exposure sample) and 32 former 

college football players from Division 1 schools on east-coast United States (low exposure). 

The football players were matched on demographics, number of concussions sustained, and 

position played (age in years: M = 58.46, SD = 0.47; all male). Data used in the present 

project were gathered while participants engaged in a 1-back task, a task often used to assess 

working memory (Kirchner, 1958). The total number of timepoints for each individuals was 

158. Eleven brain regions of interest from the frontal parietal network were used in the 

present analyses. The frontal parietal network is implicated in adaptive task-level control 

(Dosenbach, Fair, Cohen, Schlaggar, & Petersen, 2008; Silk et al., 2005). Individuals in 

other samples experiencing head trauma have been found to be heterogeneous in terms of 

their brain processes across these regions as assessed with fMRI (Hillary et al., 2011). Full 

details regarding data acquisition and task can be found in the Supplemental Material. These 

data will be used throughout the explanation of the S-GIMME algorithm as an illustrative 

example.

Original GIMME

The original GIMME algorithm (Gates & Molenaar, 2012) provides the basis of the current 

extension. GIMME obtains reliable group- and individual-level patterns of temporal effects 

with all effects being estimated uniquely for each individual. GIMME works from within 

a unified SEM (uSEM; Gates, Molenaar, Hillary, Ram, & Rovine 2010; Kim, Zhu, Chang, 

Bentler, & Ernst, 2007) framework. Broadly, uSEM is a technique for conducting time-series 

analysis with SEM. It has been used across various fields in the social sciences, including 

neuroimaging (e.g., Karunanayaka et al., 2014; Nichols et al., 2013), economics (e.g., 

Dungey & Pagan, 2000), and social behaviors (e.g., Beltz, Beekman, Molenaar, & Buss, 

2013). Two types of effects of interest are simultaneously estimated. First, uSEMs can 

contain effects representing the influence that the available variables have on each given 

variable at the next timepoint, much like traditional multivariate or vector autoregression 

(VAR). Second, uSEMs arrive at the directed (i.e., not correlational) contemporaneous 

effects of how one variable statistically predicts another variable at the same time, 

controlling for any lagged or contemporaneous effects.

Three immediate benefits arise from simultaneously arriving at the lagged and 

contemporaneous effects (Gates et al., 2010). First, including lagged effects prevents 

spurious effects that often occur if only contemporaneous relations are modeled in the 
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presence of unmodeled lagged relations in the generative model. Second, including the 

autoregressive (AR) effects enables inference into which of two given variables statistically 

predicts the other from within a Granger causality framework. In this framework, a variable 

η1 is said to Granger-cause a different variable η2 if η1 explains variance in η2 beyond the 

variance explained in η2 by its AR term. Granger causality can be tested in this way for 

lagged or contemporaneous (or “instantaneous”) relations (Granger, 1969). Third, including 

the contemporaneous effects in the model prevents these effects from erroneously being 

captured as correlations among errors or as inflated lagged effects. As described by Granger 

(1969), when data are under-sampled such that observations are collected at a rate slower 

than the construct under examination, the relations among variables may best be modeled 

contemporaneously. In fMRI, data are collected on the order of seconds whereas the neural 

activity they seek to capture occurs on the order of milliseconds. As such, contemporaneous 

relations generally contain the information regarding underlying neural processes (Smith et 

al., 2011). It is important to note that nothing is lost when allowing for the possibility of both 

lagged and contemporaneous effects when using a reliable search procedure.

The uSEM is formally defined as follows:

ηt = Aηt + Φηt − 1 + ζt, (1)

where A is the p × p matrix of contemporaneous effects for p variables and contains a 

zero diagonal; Φ is the matrix of lagged effects with AR effects along the diagonal; η 
is the manifest time series (either for a group or individual in this general formula); and 

ζ is the residual for each point in time t. Please note that while observed variables are 

used throughout the present implementation, extension to latent variables is feasible. The 

subscript t-1 indicates the values at the prior timepoint. Henceforth, “effects” will be used as 

a general term to indicate these lagged and contemporaneous effects (also termed “paths,” 

“edges,” or “connections” in other literature). Figure 1 presents a graphical depiction of 

uSEMs using a traditional SEM path diagram and introduces a conceptually equivalent yet 

simpler depiction that will be used for the remainder of the article. Note that the total 

number of variables is twice the number of original variables, representing the p original 

variables and the p variables at a lag of one.

As written in Equation (1), the uSEM can be applied at the individuals’ level or at the 

group level by vertically concatenating individuals person-centered multivariate time series. 

Since it is highly implausible to expect individuals to have identical models, concatenating 

across individuals to arrive at one group model is not a recommended approach (Molenaar, 

2004). For this reason, the GIMME algorithm estimates all models at the individual 

level throughout a model search procedure that culminates in individual-level models and 

estimates. However, an important first step utilizes information for all individuals in the 

sample to find effects that replicate across individuals. Prior work has demonstrated that 

using effects that exist consistently across individuals helps to detect signal from noise and 

that using group-level effects as a prior greatly improves the recovery of the directionality 

of effects at the individual level. As described briefly in the following, GIMME arrives at 

a group-level structure, or pattern of effects, that describes the majority of individuals in 

the sample; this process is done in a manner that is not subject to outliers as seen in other 
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aggregating approaches. Full details can be found in Gates and Molenaar (2012); we also 

provide additional information regarding estimation of uSEMs in the Supplemental Material 

of the present article.

The group-level search is guided by the use of modification indices (MIs), related to 

Lagrange multipliers (Engle, 1984), which are scores that indicate the extent to which the 

addition of a potential effect will improve the overall model fit (Sörbom, 1989). As MIs are 

asymptotically chi-square distributed, significance can be directly tested for each MI. It has 

previously been suggested that models built using MIs need to be replicated to demonstrate 

consistency of effects (MacCallum, 1986). As such, GIMME only includes effects at the 

group level that exist across individuals. The GIMME algorithm begins by counting, for 

each effect, the number of individuals whose models would significantly improve should 

that effect be freely estimated. This results in a count matrix, and the element from the 

constrained set that has the highest count is selected. Due to the testing of MIs across 

all individuals, the criterion for significance uses a strict Bonferroni correction of .05/N, 

where N = the number of individuals. This starkly contrasts methods that identify effects to 

include in the group model by looking at the average of effects, as the GIMME approach 

cannot be influenced by outlier cases and is impervious to sign differences (such as large 

absolute values for all individuals that are negative for some individuals and positive for 

others). In fact, information regarding the sign of the weight is not used in the group-level 

search—here, only the absolute magnitude is considered (although the sign is used in the 

following for subgrouping). Should there be a tie in the count of significant MIs then the 

algorithm selects the element with the highest sum of MIs taken across all individuals.

This brings us to another important point that differentiates model searches conducted 

from within the uSEM framework from other search procedures that have been previously 

conducted using MIs. The MIs for candidate paths in the A matrix will be equivalent across 

the diagonal if no other effects have been estimated. As an example, it is well understood 

that the simple regression η1 = Bη2 + ζ will have the same standardized B weight as 

η2 = Bη1 + ζ. This equivalence will be seen in the MI matrix with the MIs relating to 

the prediction of η1 from η2 having the same value as the MI for the matrix element 

corresponding to η2 being predicted by η1 if there are no other predictors of either variable. 

However, when the AR effects are freed for estimation in the Φ matrix prior to conducting 

the model search, the equivalences across the diagonal of the A matrix disappear and thus 

do not encumber the model search procedure. Controlling for these AR effects, the estimate 

of any element in the A matrix will now be unique. An additional benefit is that Granger 

causality testing, described in the preceding, can immediately proceed by including the AR 

effects. By starting the model search with the AR effects freed for estimation (which is often 

appropriate in many lines of research), one can capitalize on the fact that MIs take into 

account the relations that already explain variance in a given variable when arriving at the 

expected change in the model fit should a given effect be freed (see Gates et al., 2010 for 

further details).

The algorithm iteratively continues until there are no effects that would significantly 

improve the majority of individuals’ models. What constitutes the majority in a meaningful 

sense can vary from researcher to researcher. While 51% would technically be the majority, 
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here we use a stricter cutoff of 75%. This stricter cutoff serves two purposes. First, prior 

work has shown that this percentage provides an optimal trade-off for arriving at group-level 

models that truly describe the majority of individuals in the presence of noise (Gates & 

Molenaar, 2012; Smith et al., 2011), and this percentage is a common threshold used when 

attempting to identify an effect that exists for the “majority” from individual-level results 

in fMRI studies (e.g., van den Heuvel & Sporns, 2011). Second, for the present goal 

of classification, having a strict denotation of what constitutes the majority will provide 

a greater number of candidate individual-level effects upon which to cluster individuals. 

Specifically, a meaningful subgroup could be a large portion of the sample (e.g., 50%) 

and could erroneously drive the group-level search if we employed a looser criterion for 

group-level selection of effects. One could also argue in favor of obtaining a set of parameter 

values that are valid for 100% of the subjects (e.g., Meinshausen & Bühlmann, 2015). As 

described in the preceding, there might not be one model that is valid for all individuals. 

Still, one might argue in favor of using this strict criterion during this stage of the model 

building, knowing that individual-level paths will be added later. This likely would not be 

useful since the ability to detect effects in the presence of the expected noise in fMRI studies 

has been shown to be less than 100% even for the best methods (Smith et al., 2011). Hence, 

a criterion of 100% seems too strict and would likely result in numerous missed effects at 

the group level, thus reducing the potential benefits from this approach.

The bold black lines in Figure 2 depict the group-level results obtained on our empirical 

example. There were 12 group-level paths in addition to the AR effects. All of the paths 

were contemporaneous, which is expected given the low temporal resolution of the fMRI 

signal (Granger, 1969) and is consistent with previous findings from data simulated to 

emulate fMRI data (Smith et al., 2011). These group-level paths indicate a temporal pattern 

of relations that describe this sample and thus may be generalizable to the greater population 

of former U.S. football players.

Using the group-level paths as a prior, the original GIMME then conducts individual-level 

searches. The individual-level searches are also guided by MIs with effects being iteratively 

selected until an excellent-fitting model is obtained as indicated by commonly used fit 

indices: RMSEA, SRMR, NNFI, and CFI. Two of the four must be excellent to meet the 

criteria to stop searching for additional paths, with “excellent” being ≤ .05 for the RMSEA 

and SRMR and ≥ .95 for the NNFI and CFI (Brown, 2006). It should be noted that these fit 

indices assume independence of observations, an assumption that is violated here since each 

row is sequentially dependent on the previous timepoint. Violation of this assumption does 

not render these fit indices useless for these data. Prior work has demonstrated that these fit 

indices are able to consistently identify excellent uSEM model fits when the models are in 

fact the generative model (Gates & Molenaar, 2012; Gates et al., 2010). Stopping the search 

according to fit indices rather than continuing even if MIs are still significant produces more 

parsimonious models. More important, it prevents the modification search from capitalizing 

on chance, a risk that increases the longer the search continues (MacCallum, Roznowski, & 

Necowitz, 1992).

The grey lines in Figure 2 depict the individual-level paths obtained from using the original 

GIMME algorithm on the data example from the former U.S. football players. Despite the 
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presence of a number of group-level paths, additional paths were needed at the individual 

level in order to explain variability in brain regions using other brain regions for each 

person. This highlights the high degree of heterogeneity and need for person-specific models 

that allow for unique effects in addition to the individual-level weight estimates of group

level effects.

Subgroups within GIMME

As mentioned in the preceding, starting with some known priors (in this case, the group

level paths) greatly decreases errors in detection of true effects at the individual level of 

analysis. It follows that if group-level information can help guide individual-level searches, 

then subgroup-level information can further refine the search for individuals’ effects. We 

thus extend the approach of the data-driven group-level pattern selection to subgroups prior 

to arriving at individual-level models. First, we must identify the subgroups of individuals 

that have similarities in their temporal patterns. This requires using (a) the features that are 

useful and meaningful as well as (b) an optimal approach for classification.

Feature selection

Feature selection represents a critical decision point for any cluster analysis approach. As 

such, much work has been done to investigate optimal features for clustering of time-series 

analysis (Liao, 2005). Since we aim to cluster individuals on the basis of dynamic processes, 

we must identify the most relevant and useful features with which to do so. A few pieces 

of work point us in the direction of features that may satisfy this. First, the temporal 

features used would have to be reliable and accurately reflect the process under study. For 

fMRI research, it has been shown that relations among brain regions are best captured with 

contemporaneous effects, with lag-0 correlation estimates reliably recovering true effects 

(Smith et al., 2011). The first approach uses these lag-0 correlation matrices as features with 

which to identify the degree of similarity among individuals. Since lagged information has 

been shown to also exist in fMRI literature (Gates et al., 2010; Goebel, Roebroeck, Kim, 

& Formisano, 2003), our second feature-selection approach utilizes a combined lag-1 and 

lag-0 correlation matrix. A final and highly reliable set of features that describe individuals’ 

temporal processes is obtained from GIMME during model selection. We hypothesize that 

using features available within the search procedure could provide more reliable subgroups 

than using features available prior to subgrouping.

We explore here three methods for arriving on model features with which to subgroup 

individuals: lag-0 cross-correlation matrices; block-Toeplitz (lag-1 and lag-0) correlation 

matrices; and clustering using information during the GIMME model search procedure 

(S-GIMME). As noted in the introduction, two groups have previously clustered individuals 

using features obtained from analysis of fMRI data (Gates et al., 2014; Yang et al., 2014). 

The features used for these approaches are not appropriate here. Gates and colleagues 

used the results from GIMME and conducted a community-detection algorithm on a 

dichotomized matrix depicting similarity in temporal patterns among individuals. That 

article introduced a novel approach for arriving at the optimal threshold with which to 

dichotomize the relations. The present approach will take advantage of developments in 

Gates et al. Page 8

Multivariate Behav Res. Author manuscript; available in PMC 2021 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



community detection that improve upon the reliability of results for weighted matrices. Thus 

we do not include Gates and colleagues’ (2014) approach here since the use of unweighted 

graphs is already vastly improved upon with the use of weighted algorithms. Yang and 

colleagues (2014) clustered individuals according to the lag-0 component scores found in 

ICA. Since there is no analogue between this and the GIMME approach, we do not include 

ICA for feature selection.

Feature selection approaches tested for comparison—The lag-0 approach is 

commonly referred to as “functional connectivity” in fMRI literatures (Friston, 2011). The 

cross-correlation matrix rwithin at a lag of zero represents the contemporaneous relations 

among the variables (brain regions) for a given person, with each element in rwithin 

indicating the correlation estimate for two given variables. These lag-zero rwithin matrices 

are a predominant method used in fMRI research, with graph theory measures that describe 

brain processes often derived from these types of matrices (Rubinov & Sporns, 2010). While 

a lag-0 correlation matrix presents an appropriate comparison as it is the current standard, 

we also wished to test a cross-correlation matrix that includes information regarding a lag of 

one (i.e., a lag-1 approach). In addition to including information known to exist in an fMRI 

signal, this approach better aligns with the information used in S-GIMME, which is both 

lagged and contemporaneous. Here, the rwithin matrix described in the preceding contains 

not only the contemporaneous lag-0 correlations, but also the lag-1 correlations. This is in 

a block-Toeplitz framework, which is a block-diagonal matrix with contemporaneous effects 

on the diagonal and lagged effects on the off-diagonal.

For these correlation-based approaches, we first generate N correlation matrices of the 

variables (rwithin,i) for each i from i = 1…N individuals. These are then used to generate 

a similarity matrix (rbetween) with each element indicating how similar each individual is 

to each other individual. To arrive at this rbetween, each individual’s correlation matrix is 

vectorized and only the unique m = [(p − 1)(p)]/2 elements are retained (i.e., those in 

the strictly lower triangle matrix for the lag-0 matrices and the unique lag-1 and lag-0 

correlations of the block-Toeplitz matrices). These vectors are then Fisher transformed 

and used to arrive at correlation coefficients for how each individual’s transformed cross

correlations relate to every other individual’s transformed cross-correlations. This results 

in the N × N similarity matrix rbetween separately for both of the cross-correlation feature 

selection approaches described here. While an intuitive approach, using cross-correlation 

matrices may not provide a satisfactory signal-to-noise ratio since it does not take into 

account indirect effects or third-variable arguments (Marrelec et al., 2006; Zalesky, Fornito, 

& Bullmore, 2012). Hence, it is expected that the S-GIMME approach will outperform these 

commonly used methods for quantifying dynamic processes.

Feature selection used in S-GIMME—We introduce an approach for feature selection, 

referred to as the S-GIMME approach here, that is based on information available following 

the initial group-level search. This leads to an algorithm where the classification is integrated 

within the data-driven model selection procedures at the group and individual levels, thereby 

controlling for indirect effects that have surfaced as well as individual-level effects that may 

arise. Here, the features that are of the greatest utility in describing individuals’ processes 
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drive subgroup identification. Specifically, as noted in the preceding, both the patterns of 

effects and the sign of effects have been shown to vary meaningfully across individuals. 

Hence, we utilize estimates at the individual level of the expected parameter change (EPC) 

associated with each modification index and the B weights obtained for each individual’s 

group-level paths. The value of the EPC indicates the expected weight for a given parameter 

should it be estimated in the current model, and it has been promoted as a useful measure for 

model modification (Kaplan, 1991). EPC and B estimates for effects have two characteristics 

that make them particularly useful for classifying individuals on the basis of their temporal 

processes. One, the EPC and B weights are normally distributed and are provided along 

with standard error estimates, enabling straightforward identification of significance. Two, 

while MIs are always positive, EPC and B values take negative and positive values. Thus, 

we can utilize this information to take into account differences in sign between two given 

individuals in addition to the significance of effects.

To arrive at the similarity matrix using EPC and B estimates, we first identify which 

effects are significant for each individual according to both the corresponding EPC for each 

candidate effect (i.e., possible effect after the group-level model) and B weight for each 

group-level path in the uSEM. The level of significance for the EPC elements is Bonferroni 

corrected using a strict criterion of .05 divided by the number of unique lagged and 

contemporaneous elements in the block-Toeplitz correlation matrix. The rationale behind 

the strict criteria for EPC elements is that the resulting similarity matrix is simultaneously 

utilizing information across all candidate paths, and some of these paths will be significant 

for that individual simply by chance. Next, the signs of the significant EPCs and B are noted. 

The similarity matrix is generated by counting, for each pair of individuals, the number of 

candidate effects (EPCs) and estimated effects (Bs) that are both significant and in the same 

direction (i.e., positive or negative). This results in an N × N similarity matrix (s) where si j 

indicates a count of the number of candidate and estimated paths that are significant and in 

the same direction for each unique pair of individuals i and j. The lowest number in this 

matrix is then subtracted from all elements to induce sparsity.

Classification approach

Hierarchical cluster analysis has long been used in the social sciences to cluster individuals 

into subgroups according to similarities. The difficulty with cluster analysis is that 

oftentimes an arbitrary decision must be made regarding the optimal cut-point, or place 

on the dendrogram to stop splitting clusters (or combining, when using agglomerative 

approaches that iteratively combine smaller subgroups into larger ones). Without a stopping 

point, all individuals might be placed into a cluster by themselves (or everyone in one 

group). This would result in the same number of clusters as individuals, which is not the 

intended goal.

A stopping mechanism called “modularity” has been introduced within graph theoretic 

literatures (Newman, 2004). Modularity is a score that indicates the degree to which 

similarity with others within a cluster is high relative to the degree of similarity between 

clusters. The optimal cut-point in hierarchical clustering is the one with the maximum 

modularity. Using a quantitative approach for arriving at a cut-point obviates the need for the 
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researcher to decide how many clusters to allow. Community detection, a class of algorithms 

for clustering, often uses modularity, and a proliferation of algorithms has emerged in 

the years since modularity was first introduced (see Fortunato, 2010 and Porter, Onnela, 

& Mucha, 2009 for extensive reviews). From the numerous community-detection options 

available, we must identify which algorithm to utilize on the two correlation similarity 

matrices described in the preceding for feature selection (i.e., cross-correlation matrices 

obtained prior to model search) and the sparse count similarity matrix from the third method 

(i.e., during the model selection procedure). Walktrap has emerged as a community detection 

approach that uniquely performs optimally for both correlation and count matrices (Gates, 

Henry, Steinley, & Fair, in press; Orman & Labatut, 2009). Additional details regarding 

Walktrap can be found in the Supplemental Material.

Model building within S-GIMME

While we test two other approaches for clustering of time-series data (i.e., the cross

correlation matrices obtained prior to model building), the final S-GIMME algorithm utilizes 

the third feature-selection approach described. Having arrived at subgroups following the 

group-level search, S-GIMME searches for subgroup-level effects in a similar manner to 

the group-level search (see Figure 3). While the significance and sign of the group-level 

estimates are used to inform subgroup classification, these paths are always considered 

to be group-level paths (i.e., they do not become subgroup-level paths on the basis of 

sign). Beginning with the group-level effects as a prior, S-GIMME identifies the effect 

that, if estimated for everyone in the subgroup, would improve the greatest number of 

individuals’ models. It must also improve the majority of individuals’ models. This effect is 

then estimated for everyone in the subgroup, with each effect estimated uniquely for each 

individual and not influenced by others in the group or subgroup. As with the group-level 

search, the procedure stops adding effects to the models once there are none that will 

improve the model for the majority of individuals in that subgroup, which is 51% here 

since the subgroups might be small. Finally, using the group-and subgroup-level paths as 

priors, S-GIMME searches for any additional paths that are needed to best explain each 

individual’s temporal process. Formally, S-GIMME identifies the relations among the p 
observed variables of length T (with t = 1, 2, … T ranging across the ordered sequence of 

observations):

ηi, t = Ai + Ai, k
s + Ai

g ηi, t + Φi + Φi, k
s + Φi

g ηi, t − 1 + ζi, t, (2)

where, as before, A is the p × p matrix of contemporaneous effects among the p variables 

(with a zero diagonal), Φ is the p × p matrix of lagged effects where AR effects are found 

on the diagonal, and ζ is the p-variate matrix of errors for the prediction of each variable’s 

activity across time. The superscripts s and g for the parameters indicate that the matrix 

has the structure of effects consistent across the kth subgroup and entire group, respectively. 

Note that subgroup identification k does not change across time but does differ across 

individuals, with the possibility of all individuals being in the same subgroup (i.e., there are 

no subgroups). Subscript i indicates individual, which in the case of the parameters indicates 

individual-level estimates. All parameters are estimated for each individual separately.
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Figure 4 visually conceptualizes the modeling approach used on fMRI data. In Figure 4, 

part (c), the black lines indicate group-level effects that are identified in S-GIMME and 

are estimated for all individuals. Please note that paths can emerge during the subgroup 

level that exist for all subgroups. Since everyone in the sample has the path estimated, it 

is considered a group-level path. Next, the subgroups are obtained using the EPC and B 
estimates to arrive at an N × N similarity matrix (Figure 4, part (d)) that is then subjected to 

the community-detection algorithm Walktrap. Two subgroups were found in this empirical 

example, with one containing 36 individuals and the other having 25. The models for 

two individuals in the entire sample did not achieve convergence and are removed from 

this count. Following subgroup identification, subgroup-level paths are obtained uniquely 

for each subgroup (Figure 4, part (e)). One subgroup found seven subgroup-specific paths 

whereas the other obtained three. Using the group-and subgroup-level paths as priors, a 

semiconfirmatory search is then conducted to arrive at individual-level paths that are needed 

to improve that individual’s model fit (Figure 4, part (f)). As can be seen by the grey 

lines depicting individual-level paths, there was a high amount of heterogeneity. Finally, 

confirmatory models are run separately for each individual to arrive at individual-level 

estimates for the group-, subgroup-, and individual-level effects.

Monte Carlo simulation and evaluation criteria

We conduct a series of simulations to evaluate the ability of the approaches to recover 

the subgroups and the data-generating model. First, we provide a description of the data 

simulations and conditions. Next, we describe the analyses and criteria that will be used to 

test performance.

Data simulations

Data simulations align with parameters seen in empirical fMRI data. As such, the S-GIMME 

algorithm is evaluated here along three criteria commonly of interest in fMRI studies: (a) 

sample sizes of 25, 75, and 150 in terms of number of individuals (N); (b) number of 

subgroups (K) ranging from 2 to 4; and (c) inequality of the subgroup sizes (h). While the 

former two conditions may seem rather intuitive, the third one, inequality of cluster size, 

is motivated by the inability of some unsupervised classification algorithms to identify the 

appropriate number of subgroups when the subgroup sizes differ (Lancichinetti & Fortunato, 

2011; Milligan, Soon, & Sokol, 1983). Here, h is defined as the percentage of the total 

sample that is composed of the largest group minus the percentage of the sample that is the 

smallest group. We used two levels: equally sized groups (h = 0) and one group comprising 

50% of the sample (not applicable for K = 2; h = .25 for K = 3, and h = .34 for K = 4).

The pattern of group- and subgroup-level effects across the three levels of K are depicted in 

Figure 5. In line with our empirical example, the number of variables (or brain regions) 

here is 10 across all simulations. This number also aligns with simulations of fMRI 

data generated by Smith and colleagues (2011). Prior work that placed participants into 

subgroups a priori has found that the average number of individual-level paths ranged from 

one to five across four subgroups (Nichols et al., 2013). This same study, which used 

seven brain regions, found that some subgroups had up to four subgroup-level paths in 
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addition to those found in the group level. The present empirical example used herein found 

three subgroup-level paths for one subgroup and seven for the other (see Figure 4, part 

(e)). Individuals here had, on average, six paths in addition to paths found for the group 

and their subgroup (SD = 1.5). This is a higher level of heterogeneity than sometimes 

observed in fMRI studies but is expected given the heterogeneity seen in symptoms and 

biomechanics underlying brain processes for those repeatedly exposed to risk for concussion 

(Guskiewicz & Mihalik, 2011). Following from this information, we generated data to have 

10 group-level paths, six subgroup-level paths, and four individual-level paths (see Figure 

5).

Algebraic manipulation of Equation (2) provides the data-generative model:

ηi, t, k = Ip − Ai + Ai, k
s + Ai

g −1 Φi + Φi, k
s + Φi

g ηi, t − 1

+ Ip − Ai + Ai, k
s + Ai

g −1ζi, t .
(3)

Using results seen in fMRI literature (e.g., Hillary et al., 2011) and values used in prior 

fMRI simulations (e.g., Gates et al., 2014), the values for the AR effects (i.e., the diagonal of 

the Φg matrices) were set to be .6 for all individuals. Path weights for off-diagonal elements 

in Φ the matrix were −.5, with the contemporaneous values being .5. While variability in 

estimates would be expected in a sample of individuals, prior work has demonstrated that 

GIMME is robust to fluctuations in simulation parameters that have a standard deviation as 

large as .3 in the parameters (Gates & Molenaar, 2012). Since we utilize only significant 

values here to cluster and arrive at final models, these fluctuations are presently not a point 

of interest. In addition to the group and subgroup paths, four paths were randomly added to 

the Φ and A matrices for each individual that followed this pattern of weights. This offers 

a high level of individual-level paths. The random paths were selected from the remaining 

paths that were not used in the group or subgroup-level paths. Model errors were generated 

to be white noise (N(0, 1)). A total of 250 observations were simulated for each individual, 

of which the first 50 were discarded to remove deviations due to initialization. This number 

of observations is at the lower end of the range of observations expected in fMRI studies 

(typically from 150 to 600 observations per person).

The data and results can be found here: https://gateslab.web.unc.edu/simulated-data/

heterogeneous-time-series/.

Omitted variable analysis

The present article focuses on uSEM conducted with observed variables and does not allow 

for correlations or bidirectional relations among variables. This inherently presupposes that 

all variables needed to appropriately model the data are contained in the data provided. 

In many cases, this assumption may not be met. The topic of omitted causal variables is 

widely discussed in fMRI-related texts (e.g., Pourahmadi & Noorbaloochi, 2016) as well as 

literature on other causal graph search approaches (Spirtes, Glymour, & Scheines, 2000) and 

Granger causality (Eichler, 2005, 2010; Lütkepohl, 1982), which, as noted in the preceding, 

is the approach used here to evaluate temporal effects.
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One option to circumvent the possibility of omitted causal variables would be to allow 

for latent variables that reflect underlying constructs (in the case of brain data, neural 

networks) or common causes. Complicating this option, it is well known that individuals 

likely differ in their dynamic processes as described using latent factors for many temporal 

processes (Molenaar & Nesselroade, 2012) including the functional organization of brain 

regions into networks (Wang et al., 2015). The idiographic filter introduced by Nesselroade 

and colleagues (Nesselroade, Gerstorf, Hardy, & Ram, 2007) circumvents this by allowing 

for individuals to have different estimates relating observed variables to latent constructs. 

Unfortunately, it is recommended that researchers hold the temporal effects among the latent 

variables constant (Molenaar & Nesselroade, 2012), which undermines the focus of the 

present algorithm, which seeks to arrive at individual-level directed temporal patterns and 

estimates among (latent or observed) variables.

Ancestral graphs (Richardson & Spirtes, 2002) also circumvent the spurious relations that 

can surface due to unmodeled common causes without the use of latent variables. This 

is done by marginalizing and conditioning on the original causal model. It is important 

to note that in this transformed model the absence of a relation between two variables 

indicates independence. Path diagrams that (a) only allow for one directed or bidirected 

(correlational) relation for a given pair of variables and (b) do not allow for “backward” 

directions (i.e., no feedback loops) could be considered ancestral graphs. While a promising 

approach to circumvent spurious results due to omitted variables, these properties prevent 

further exploration of ancestral graphs in the present modeling approach because the current 

GIMME search would always favor correlation over directed arrows since more variance is 

explained. In addition, feedback loops are expected in brain imaging data (even among the 

contemporaneous relations), and thus ancestral graphs may not always depict the underlying 

biophysiological process being examined.

Given the importance of the topic of omitted variables, we conducted auxiliary analyses to 

identify the extent to which variable omission may have a deleterious effect on the recovery 

of paths. One might expect an increase of false positives since the lack of a common cause 

variable for two given variables may induce a spurious directed connection that is not in 

the generative model. Given space constraints, we selected one optimal condition for these 

analyses: the condition with 150 individuals, 2 subgroups, and equal subgroup sizes. The 

rationale for choosing the condition for which methods will likely perform optimally is to 

be able to immediately identify the effect of omitted variables on S-GIMME without other 

confounds. Of course, any decrease in recovery in this optimal setting would perpetuate 

down to the other conditions. For this analysis, we iteratively removed one variable at a 

time and ran S-GIMME across the 100 repetitions in this condition. Since each variable 

has differing degrees of relations with other variables in the system, running the analysis 

with each variable removed allows for examination of the average expected decrease in 

performance taken across all possible omissions of one variable.

Hubert-Arabie adjusted Rand index to evaluate reliability in subgroup detection

The Hubert-Arabie adjusted Rand index (ARIHA; Hubert & Arabie, 1985) has been 

presented as an optimal metric with which to evaluate the accuracy of the subgroup 
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detection. In particular, a Monte Carlo simulation study demonstrated that the ARIHA is 

fairly consistent across conditions that varied in terms of the density of similarity among 

individuals, the number of individuals, and the number of clusters (Steinley, 2004). The 

ARIHA provides a strict assessment of correct placement of individuals into their subgroup 

by accounting for chance placement of individuals. Formally,

ARIHA =

N
2 (a + d) − [(a + b)(a + c) + (c + d)(b + d)]

N
2

2
− [(a + b)(a + c) + (c + d)(b + d)]

, (4)

where each pair of individuals contributes to the count for either a, b, c, or d. The value a 
indicates the number of pairs correctly placed in the same community when they were in 

the same community for the “true” generative algorithm. Both b and c indicate pairs placed 

in the wrong communities, with the former indicating individuals that are truly in the same 

subgroup but were placed in different ones and the latter a count of the number of pairs 

placed in the same community but truly belonging in different ones. Finally, d indicates the 

count of pairs that were correctly placed in different communities. ARIHA has an upper limit 

of 1, which indicates perfect recovery of the true subgroup structure. Values at or greater 

than 0.90 can be considered an indication of excellent recovery, with values at or over 0.80 

being good recovery, values equal to or over 0.65 being moderate, and under 0.65 indicating 

poor recovery (Steinley, 2004).

Ramsey indices to evaluate recovery of temporal patterns of effects

The Ramsey indices are outcome measures used to evaluate accurate path recovery. They 

rely on counts of the number of (a) paths and (b) directions of paths in the true and 

fitted models. The four indices are termed here, “Path Recall,” “Path Precision,” “Direction 

Recall,” and “Direction Precision” (Ramsey et al., 2011). “Recall” indicates the proportion 

of paths or directions recovered in the fitted model that exist in the true model. This measure 

assesses the algorithm’s ability to find relations that do exist, but does not take into account 

the presence of false positives, or phantom paths that were recovered but do not exist in the 

true generative model. For this reason we also use “precision,” which indicates the ratio of 

true paths (directions) recovered in the results to the total number of paths (directions) that 

exist in the recovered model. With these indices, we assess the recovery rates of true and 

false relations.

Effect sizes

Cohen’s d is used to quantify the effect sizes for comparisons between the methods and the 

conditions, which is preferred over significance testing due to the multiple tests as well as 

the high power. Conventional interpretations of effect sizes are followed, with values of 0.20, 

0.50, and 0.80 indicating small, medium, and large effect sizes, respectively (Cohen, 1988).
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Monte Carlo results

Subgroup recovery

Across all conditions, classifying individuals during model selection (i.e., S-GIMME) 

arrived at the true subgroup classification at higher rates (94%) than classification prior 

to model selection with either the lag-0 (66%) or lag-1 (65%), with effect sizes for the 

difference aggregated across conditions being large when compared against the lag-0 (d 
= 1.30) and lag-1 approach (d = 1.32). All approaches did share some similar features. 

Specifically, the recovery rates decreased as sample size decreased, as the number of 

subgroups increased, and as the subgroup allocation became unequal. However, throughout 

all conditions, the S-GIMME algorithm outperformed the cross-correlation feature selection 

approaches.

Looking across sample size for equally sized groups (top panel of Figure 6), the S-GIMME 

method for feature selection nearly perfectly recovered the true subgroup pattern across 

all sample sizes and number of subgroups tested. As N decreased, S-GIMME markedly 

outperformed the correlation-based methods, with d = 1.42 for the aggregate difference 

between the cross-correlation and S-GIMME approaches for N = 25 with equally sized 

subgroups. In fact, the S-GIMME method performed excellently at each level of N when 

equal subgroup sizes were present, with ARIHA averaging 0.94 across the conditions (see 

Supplemental materials for average ARIHA and standard deviations for each condition).

The largest difference in performance for the correlation-based versus S-GIMME methods 

occurred for equal subgroup sizes in the N = 25 and k = 4 condition, which had a very 

low average ARIHA of .36 for lag-0 and .33 for the lag-1 correlation-based methods. This 

highlights a problem of much interest in the community-detection literature: techniques for 

unsupervised classification often fail to recover small subgroups (Lancichinetti & Fortunato, 

2011). Walktrap, however, has been found to be uniquely able to recover small subgroups 

(Gates et al., in press) and was used for all clustering in the present article. Here, the 

S-GIMME method had an average ARIHA of 0.80, which is considered good by standard 

cutoff values (Steinley, 2004). There was a large effect size of d = 2.28 for the difference 

between the approaches for this specific condition. This suggests that a combination of 

appropriate feature detection and clustering method must be used to appropriately recover 

subgroup assignments.

S-GIMME also performed excellently across most of the unequal subgroup size conditions 

(i.e., one subgroup comprises 50% of individuals) with an average ARIHA of .93. The 

correlation-based methods performed notably worse as the subgroup sizes became unequal 

(average ARIHA = .67). This further highlights the difficulty in arriving at the true subgroup 

structures in nuanced data that contain smaller subgroup sizes using the features available 

prior to model selection. Neither of the cross-correlation feature-selection methods could 

recover four disproportionately sized subgroups even with a moderate sample size of N 
= 150 (average ARIHA = .56 and .61 for lag-0 and lag-1, respectively). By contrast, the 

S-GIMME method recovered the true subgroup structure at a far higher rate (average ARIHA 

= .90), with a large effect size of d = 2.61 for the difference in the two approaches for this 

condition.
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The S-GIMME method did evidence decreased recovery rates with smaller sample sizes and 

greater number of subgroups in the unequal subgroup condition. For example, with N = 75 

and N = 25 with subgroups of four, average ARIHA decreased to .83 and .73, respectively. 

While still acceptable, these rates do not match the rate seen in N = 150. When there were 

two subgroups at these sample sizes, S-GIMME performed excellently (average ARIHA of 

.99 and .89, respectively). In summary, our results demonstrate that the S-GIMME method 

that detects subgroups during GIMME’s data-driven model discovery is a better option 

for researchers than classifying individuals by using the raw correlation matrices depicting 

temporal processes.

Modularity as an indication of accurate subgroup recovery—The results indicate 

that utilizing the Walktrap approach can return subgroup classifications consistent with the 

generation of the simulated data. As described in the preceding, modularity can be used to 

indicate how well the individuals (“nodes” or “vertices”) in our similarity matrices were 

partitioned (Porter et al., 2009). While useful for detecting the best partition within a set 

obtained for the same sample, using modularity on its own to evaluate the appropriateness 

of a solution when looking across studies may not be appropriate (Karrer, Levina, & 

Newman, 2008). The present results further suggest that caution must be used when relying 

on modularity as a measure of accurate subgroup recovery. Recall from the preceding 

that modularity has an upper limit of one. Despite near-perfect classification across all 

conditions, the S-GIMME method averaged a rather low modularity of .15 (SD = .08). 

Furthermore, the relation between modularity and ARIHA returned a small effect with a 

Pearson’s correlation coefficient of .105. Thus, while modularity appears to work well as a 

stopping mechanism for arriving at final solutions in some community-detection algorithms 

by rank ordering partitions according to this score, fluctuations in modularity did not 

indicate better or worse recovery of subgroups in these data when looking across data sets. 

Thus, modularity may not be an appropriate mechanism for assessing absolute (as opposed 

to relative) quality of subgroup partitions.

Path recovery

GIMME recovered the true underlying paths, including the direction of paths, in the 

models at an exceptionally high rate with or without using the classification procedures. 

As expected, using S-GIMME improved upon the recall of the recovery of both the 

presence and directions of paths when looking across all of the conditions (see Figure 7 

and Supplemental Tables 2 and 3). GIMME and S-GIMME both performed nearly perfectly 

in terms of recovering the group-level paths (Table 1). However, the accuracy in path 

recall for the subgroup- and individual-level paths differed between the two approaches 

with S-GIMME performing better on these (d = 4.78). Both of these methods performed 

slightly worse in the presence of disproportionate subgroup sizes. Otherwise, the approaches 

consistently returned reliable results despite the number of subgroups or the number of 

individuals.

Overall, false positives are not a problem for any of the GIMME approaches tested, with 

averages for path precision being well above 80% for both the original GIMME and 

S-GIMME approaches. Across all conditions the precision was higher than recall for each 
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approach, indicating that the GIMME algorithms did not recover all the true paths in some 

conditions because the search procedure stopped too early rather than running the risk of 

adding paths that do not truly exist. This appears to be the cost for ensuring that false 

paths are not selected, and this favoring of parsimony is common in these types of model 

searches (e.g., Ramsey et al., 2010). Still, a smaller but still noteworthy difference was 

seen in the precision of the recall of paths in favor of S-GIMME (d = 0.70), but both 

approaches performed exceptionally well in terms of precision even when only considering 

the subgroup- and individual-level paths. Thus, the improvements in recovery rates for 

S-GIMME did not come at the expense of increased false positive rates.

Omitted variable analysis

Overall, subgroup recovery was not greatly influenced by an omitted variable with an 

average ARIHA = .98 (SD = .03), which is comparable to results on S-GIMME (ARIHA = 

1.00, SD = .02) run on the full set of variables with a small to moderate Cohen’s d of .39 

for the difference. Path recall was similarly somewhat robust to the presence of an omitted 

variable. Recall of paths actually increased when a variable was omitted, which is likely due 

to there being fewer paths to recover. As anticipated, precision was slightly lower but still in 

the acceptable range with the average across all variable omissions being 94%. This suggests 

that a greater number of false positives were obtained when compared to the original, which 

had very few false positives as revealed by an average path precision of 100%. Thus while 

favoring parsimony generally assists in the prevention of false negatives, the omission of 

even one variable will likely increase the likelihood of false positives even in the most 

optimal conditions. This is particularly true if the data-generative model for omitted variable 

has a higher number of paths relating it to other variables. Additional details on these results 

are found in the Supplemental Materials and in Supplemental Table 4.

Discussion

The present article introduces an approach, subgrouping within GIMME (S-GIMME), for 

unsupervised classification of individuals according to their dynamic processes. Specifically, 

S-GIMME conducts the community-detection algorithm Walktrap (Pons & Latapy, 2006) 

on temporal features available during GIMME model building. After arriving at the group

level effects (i.e., dynamic relations that can be considered nomothetic or present for the 

majority), S-GIMME identifies effects that may be specific to each subgroup. Finally, as 

with the original GIMME algorithm, S-GIMME conducts individual-level searches. All 

weights are estimated at the individual level—even for those temporal relations found to 

exist at the group or subgroup levels. S-GIMME is freely available within an R package 

(Lane, Gates, & Molenaar, 2016). By providing these three patterns of effects, researchers 

are able to make generalizable inferences, identify effects that are specific to subgroups of 

individuals, and control for and discover individual-level effects.

We demonstrated that classifying individuals in this manner provides two benefits. First, 

individuals are placed in subgroups with other individuals who share some of their patterns 

of dynamic effects. The success rate for recovering the true subgroup structure by utilizing 

S-GIMME, which classifies individuals during model selection, was higher than classifying 
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individuals according to features available prior to the beginning of the model-selection 

process (i.e., cross-correlation matrices). S-GIMME demonstrated robustness for sample 

sizes as small as 25. Results were robust at this sample size even when subgroups were small 

and when the subgroup sizes were unequal. These last two issues are commonly discussed 

in the field of community detection since they are difficult to circumvent (Lancichinetti 

& Fortunato, 2011). While there still is room for improvement in these conditions, using 

Walktrap in addition to our refined feature-selection approach appears to accommodate this 

issue. In the end, S-GIMME provides reliable subgroup assignments based on temporal 

patterns of effects.

As a second benefit, S-GIMME slightly improves recovery of the presence and direction 

of effects when compared to the original GIMME. It has been established previously that 

GIMME is one of the few data-driven approaches that can robustly detect both the presence 

and direction of effects in individuals that exhibit heterogeneous processes across time 

(Gates & Molenaar, 2012; Mumford & Ramsey, 2014; see Smith et al., 2011 for competing 

approaches). One reason GIMME performs so well is that it begins the individual-level 

searches with prior information obtained by detecting signal from noise across the entire 

sample. It has been demonstrated previously that using these priors (which are considered 

the “group-level” patterns of effects) vastly improves the correct detection of model recovery 

as compared to conducting individual-level model searches with no prior information (Gates 

& Molenaar, 2012). S-GIMME builds from this knowledge by conducting a subgroup-level 

search to further improve upon the precision and recall of effects at the individual level. 

By adding additional prior information to the individual-level search informed by other 

individuals with similar patterns of effects, S-GIMME is even better able to arrive at reliable 

results.

In the end, the present set of simulations found that (a) S-GIMME appropriately clusters 

individuals into subgroups according to their temporal models and (b) reliable group-, 

subgroup-, and individual-level patterns of dynamic effects were returned. This was tested 

across various conditions typical in fMRI research: varying number of individuals (with 

the number being smaller than typical in other psychology research); varying number of 

subgroups; varying subgroup sizes; and omission of a variable. Decreased performance was 

seen for small sample size and numerous subgroups, but indices reflecting the quality of 

results were still in acceptable ranges and outperformed the correlational approaches. While 

performing robustly in the optimal setting when one variable was omitted, S-GIMME could 

likely be improved upon by enabling the inclusion of latent variables to capture omitted 

common causes. From a statistical standpoint, S-GIMME can immediately be extended 

to include latent factors from within a dynamic factor analytic framework (Molenaar, 

1985). However, heterogeneity in the latent structures across individuals poses a hurdle that 

requires more testing. In particular, more work needs to be done to examine the robustness 

of S-GIMME in the presence of latent variables and the conditions in which commonalities 

across individuals must be retained.

While development of statistical methods for individual-level analysis of humans has long 

been under way (e.g., Cattell, Cattell, & Rhymer, 1947; Molenaar, 1985), widespread 

application is in its early stages. The work presented here marks one of many intermediate 
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points. Daily diary or momentary assessments will likely present a number of obstacles 

not considered here or seen in neuroscience applications. One potential problem for the 

proposed technique would be low variability for some individuals on some variables, which 

may occur when an individual reports the same response across all timepoints. Two, it is 

highly likely that the time series will be shorter than what is presented here or anticipated 

in fMRI research, thus reducing the power with which to detect effects and the number of 

variables than can be included. A third issue is that some processes may best be captured 

solely with contemporaneous effects, which likely poses problems for an algorithm that 

only includes the directionality of effects (MacCallum, Wegener, Uchino, & Fabrigar, 1993). 

Allowing for bidirectional or correlational effects is done in other directed search procedures 

(as discussed in Spirtes et al., 2000) and could inform this development in S-GIMME. In 

terms of correctly identifying the direction of an effect, including even weak autoregressive 

effects may still enable the algorithm’s ability to recover directionality from within a 

Granger causality framework. As another option, Beltz and Molenaar (2016) introduced 

an algorithm for arriving at multiple solutions for GIMME to circumvent this issue. More 

work is needed to integrate these developments into S-GIMME to enable robust recovery of 

contemporaneous effects.

A fourth issue is that, at the other end of the spectrum, perhaps other forms of data require 

lags greater than one. As the S-GIMME operates from within a block-Toeplitz framework, 

the addition of additional lags greatly increases the number of variable but may be necessary 

in some cases (see Beltz & Molenaar, 2015). This might cause problems for estimation 

if the number of variables becomes large relative to the number of observations (Bollen, 

1989). It might also introduce issues with the use of fit indices in this context. Future work 

could arrive at fit indices by adapting the approach used in the DyFA program for arriving 

at model likelihood. Here, only the unique correlation matrices (i.e., contemporaneous and 

lagged in the uSEM case) would be used to arrive at the residual sum of squares (Browne 

& Zhang, 2005). A fifth noteworthy property of ecological momentary assessments that is 

not seen in psychophysiological observations is that of unequal intervals. While this poses 

a problem for the current approach, models of continuous time (e.g., Boker & Bisconti, 

2006; Chow, Ram, Boker, Fujita, & Clore, 2005; Deboeck, 2013) can overcome this issue. 

In this case, perhaps S-GIMME could be used to identify the model on data that have 

been interpolated to provide equally distant timepoints. Following arrival at the structure of 

effects, continuous time-series models can be fit using R packages such as dynr (Ou, Hunter, 

& Chow, 2016) or ctsem (Voelkle, Oud, & Driver, 2016). Finally, the procedure used here is 

an unsupervised classification approach. Some researchers may wish to have static features, 

such as diagnostic category, help drive the subgroup search or allow for continuous class 

assignments. These issues and more can help guide development of S-GIMME and other 

methods used for the study of individual-level processes.

The developments presented here are timely and could be helpful across varied domains 

of inquiry within psychological sciences given the high degree of heterogeneity seen in 

humans’ temporal patterns. The field of neuroscience has already embraced this reality, 

with individual-level temporal processes highlighted as a golden standard that researchers 

should aim for (Finn et al., 2015; Laumann et al., 2015) and much work being done to 

identify statistical methods for doing so. Using functional MRI data, researchers have been 
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able to identify clusters of individuals within a clinical sample who have shared brain 

features (Gates et al., 2014; Yang et al., 2014), indicating the utility of such approaches 

in refining the field’s diagnostic process. Psychophysiological data have long provided 

ample timepoints for individuals, making time-series analysis historically more applicable 

to neuroscientists than other researchers. However, with the increasing use of wearable data 

technologies, ecological momentary assessments, and encoding of observed behavioral data, 

researchers across varied domains of the social sciences are primed to conduct time-series 

analysis. Indeed, one application has utilized cluster analysis to find meaningful subgroups 

of individuals on behavioral time series (Babbin, Velicer, Aloia, & Kushida, 2015), 

suggesting the utility of this type of approach on behavioral data in addition to neuroscience 

applications. S-GIMME provides one solution for researchers with multivariate time series. 

By identifying clusters of individuals with shared temporal features, S-GIMME may help 

guide prevention, intervention, diagnostic criteria, and treatment protocols as well as inform 

basic science regarding human processes.
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Figure 1. 
Depiction of unified SEM model. (A) Detailed and (B) succinct depictions of identical 

uSEM models. In (A), ε indicates measurement errors, λ the factor loadings, η the variables 

to be modeled in the structural equation, and ζ the regression errors. Values next to the 

parameters ϕ and A indicate the weights for the respective lagged and contemporaneous 

effects included in the model. In (B), the path width reflects weights, the measurement 

model is omitted, “Var”replaces η to reflect “Variable,”and lagged effects are dashed lines 

rather than including the lagged variables explicitly.
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Figure 2. 
Original GIMME results obtained from the empirical example. Black lines indicate 

group-level effects; gray lines indicate individual-level effects. Line width corresponds 

to proportion of individuals having the effect. Dashed lines are lagged; solid lines are 

contemporaneous relations.
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Figure 3. 
Schema for subgrouping within GIMME (S-GIMME).
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Figure 4. 
Steps for obtaining S-GIMME models with empirical fMRI data. (A) and (B) depict the data 

processing steps to extract time series for each brain region of interest. Steps (C) through (F) 

automatically occur within the S-GIMME algorithm: (C) illustrates identification of group

level effects; (D) presents the similarity matrix that was applied to Walktrap for clustering 

individuals into subgroups; (E) presents the subgroup-level effects; and (F) depicts the final 

models containing group-, subgroup-, and individual-level effects.
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Figure 5. 
Temporal patterns of effects for Monte Carlo simulations. K above each graph indicates 

the number of subgroups in the data simulation. Line width corresponds with proportion of 

individuals in that condition who have a given path.
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Figure 6. 
Accuracy in classification. Depiction of accuracy in correct subgroup designations across 

the conditions as assessed by the Hubert-Arabi adjusted Rand index (ARIHA). N indicates 

total number of individuals simulated in condition; “Lag0 Correlation” and “Lag0-Lag1 

Correlation”refer to classification prior to GIMME cross-correlation matrices at lag-0 and 

lag-1, respectively; “S-GIMME”refers to classification occurring during GIMME model 

search procedure (S-GIMME) using expected parameter change and B estimates. S-GIMME 

outperformed classifying prior to model search using cross-correlation matrices.
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Figure 7. 
Heat map depicting the accuracy in recovery of presence and directions of paths. N indicates 

total number of individuals simulated in condition; K indicates the number of subgroups 

in the data simulation; Path Rec. = path recall (proportion of true paths recovered); Path 

Prec. = path precision (proportion of paths recovered that are true); Direct. Rec. = direction 

recall (proportion of true path directions recovered); Direct. Prec. = direction precision 

(proportion of path directions recovered that are true). Classification with EPC (expected 

parameter change [EPC-Based] during GIMME model selection; S-GIMME) recovered the 

true presence and direction of paths at the highest rates at high precision.
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Table 1.

Average Ramsey indices for group-level and other paths separately.

Path type Index Original GIMME S-GIMME

Group-level Path Recall 98.38 (1.89) 100.00 (0.07)

Path Precision 100.00 (0.00) 100.00 (0.00)

Dir. Recall 97.92 (2.11) 99.55 (0.40)

Dir. Precision 99.59 (1.14) 99.70 (0.75)

Other Path Recall 67.63 (3.04) 80.26 (2.28)

Path Precision 87.56 (7.60) 93.06 (8.01)

Dir. Recall 63.85 (3.069) 76.77 (3.12)

Dir. Precision 84.41 (8.12) 91.23 (9.96)

Note. “Other” refers to both subgroup- and individual-level paths; Dir. = direction.
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