Skip to main content
. Author manuscript; available in PMC: 2021 Oct 27.
Published in final edited form as: Diversity (Basel). 2019 Jun 3;11(6):1–87. doi: 10.3390/d11060087

Table 2.

Goodness of fit statistics and improvements in AIC for 90% quantile regression models demonstrate a higher predictive value of deposition with climate compared to climate alone. Smaller AICs indicate better fit (ΔAIC must be >25). The larger the ΔAIC, the more improvement in the model compared to other models for that metric. R1 measures absolute model fit whereas AIC measures the relative fit of nested models (i.e., models in the same row). Model predictor variables: Dep = deposition only, Clim = all climate variables only, Dep + Clim = deposition and all climate variables.

Dep 1 Clim Dep + Clim 2 (Dep + Clim) − Clim

Lichen Metric R1 AIC R1 AIC R1 AIC Δ AIC2
Nitrogen Models

Species richness 0.11 33265 0.09 33425 0.16 32807 619
Oligotroph 0.19 28672 0.11 29520 0.26 27887 1633
Cyanolichens 0.19 29465 0.21 29202 0.28 28419 783
Forage lichens 0.26 31982 0.14 33291 0.29 31626 1665

Sulfur Models

Species richness 0.07 40123 0.07 39997 0.13 39308 689
Sensitive 0.23 32588 0.02 35055 0.25 32340 2715
Cyanolichens 0.08 37265 0.16 36297 0.22 35560 737
Forage lichens 0.19 39312 0.11 39562 0.23 38026 1536
1

Models used to assess risk.

2

Models used to explore the behavior of the metric under variable (instead of optimized) climate.