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Abstract
Many compelling examples have recently been provided in which people can achieve
impressive epistemic success, e.g. draw highly accurate inferences, by using simple
heuristics and very little information. This is possible by taking advantage of the fea-
tures of the environment. The examples suggest an easy and appealing naturalization
of rationality: on the one hand, people clearly can apply simple heuristics, and on the
other hand, they intuitively ought do so when this brings them high accuracy at little
cost.. The ‘ought-can’ principle is satisfied, and rationality is meaningfully normative.
We show, however, that this naturalization program is endangered by a computational
wrinkle in the adaptation process taken to be responsible for this heuristics-based (‘eco-
logical’) rationality: for the adaptation process to guarantee even minimal rationality,
it requires astronomical computational resources, making the problem intractable. We
consider various plausible auxiliary assumptions in attempt to remove this obstacle,
and show that they do not succeed; intractability is a robust property of adaptation.
We discuss the implications of our findings for the project of naturalizing rationality.

Keywords Epistemic rationality · Ecological rationality · Adaptive toolbox theory ·
Intractability · NP-hard · Evolution · Heuristics · Naturalism · Instrumentalism

B Iris van Rooij
i.vanrooij@donders.ru.nl

1 Department of Philosophy, University Hamburg, Hamburg, Germany

2 Department of Philosophy, University Bayreuth, Bayreuth, Germany

3 Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen,
Nijmegen, The Netherlands

4 Institute for Logic, Language and Computation, University of Amsterdam, Amsterdam, The
Netherlands

5 Department of Artificial Intelligence, Radboud University Nijmegen, Nijmegen,
The Netherlands

6 Department of Computer Science, Memorial University of Newfoundland, St. John’s, Canada

7 Donders Institute for Brain, Cognition, and Behaviour, Centre for Cognition, Radboud University
Nijmegen, Montessorilaan 3, 6525 HR Nijmegen, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11229-019-02431-2&domain=pdf
http://orcid.org/0000-0001-6520-4635


5750 Synthese (2021) 198:5749–5784

1 Introduction

Naturalists argue that we need theories of rationality that apply to actual people, and
this means grounding our theories in empirical facts, for example about the cognitive
capacities of humans. Kitcher contrasts the naturalist standard with the traditional one:

What grounds the claim that our favored logical principles are prescriptions
for thought? What are the sources of these principles? Do such idealized rec-
ommendations really apply to us? A traditional response is to propose that they
present conceptual truths about rationality, thereby formulating an ideal at which
we aim. For naturalists, however, such prescriptions must be grounded in facts
about how systems like us could attain our epistemic goals in a world like ours.
Simply asserting that prescriptions unfold our concept of rationality will be
beside the crucial point (Kitcher 1992, p. 63, emphasis ours).

We can break the naturalist’s task into two components, then: The empirical compo-
nent involves identifying real-world strategies and defining real-world success.1 The
normative component is to show how they are connected.2

Psychologists appear to have developed a research program—Ecological Ratio
nality—which does exactly this; it studies how people achieve practical success in
inference, choice, and beyond (see Gigerenzer and Selten 1999; and Gigerenzer et al.
2011, for overviews and many papers). Human goals are summarized in the slogan
“fast, frugal, and accurate”: we want to correctly guess who will win and trust those
who are trustworthy, but we also want to do so with minimal time and effort. This
often means drawing a conclusion based on the available evidence—and often only a
small subset thereof—rather than gathering more. Empirically, therefore, Ecological
Rationality explains people’s everyday cognition in terms of “fast and frugal” heuris-
tics. Here and throughout, we are concerned with cognitive inference heuristics as
characterized by Chow (2014, p. 1009), i.e., cognitive procedures that need not be
exact or optimal and can be expressed as computational steps or rules (not merely
informal ‘rules of thumb’). These heuristics are said to be fast when they require little
cognitive resources for their execution, and frugal when they use only a limited part
of the available information for their execution. Examples of such easy-to-use strate-
gies include expecting the famous player to win the tennis match (Scheibehenne and
Bröder 2011 and trusting those who smile at us.

Normatively, Ecological Rationality uncovers the connection between simple
heuristics and our goals; it doesn’t just explain what we do, but why we are largely
successful. Our success has a lot to do with our ability to match heuristics to the envi-
ronments in which they perform well, and it would not be ecologically rational to use

1 The term ‘realworld’ is of course notmeant to rule out the good kind of abstraction away fromunnecessary
details, but rather the bad kind in which nothing concrete is actually abstracted from.
2 There aremany epistemological positions that could be considered naturalistic to some degree, andwe are
not in anyway aiming to reflect all of them in this task description. Our position is deeply naturalistic without
giving up on normativity; this version of naturalismmatches especiallywell with Ecological Rationality (our
target psychological research program). A similar position is defended by Stich (1993), who sees thework of
Herbert Simon—Ecological Rationality’s intellectual father—as particularly promising. More mainstream
process reliabilism (as set forth inGoldman 1986, part I) is also structurally similar to Ecological Rationality,
though importantly different in its insistence on truth as the primary good (a feature also discussed by Stich).
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the ‘wrong’ heuristic for the context. In fact, we are usually right when we assume
that Serena Williams will beat Jane Doe and that the person happily offering help is
no con artist. We are therefore rational, despite drawing quick conclusions based on
one or two pieces of evidence, because the rules of thumb that we have applied will
usually get the job done when applied to the problems and in the situations for which
we typically apply them. Note that ecological rationality is therefore instrumental: the
ultimate standard is pragmatic success by our own lights, so truth and coherence are
only valuable insofar as they help us achieve our goals (see Over 2004, for further
discussion). In particular, even our ecologically-rational use of heuristics will some-
times lead us to false conclusions; this must just happen infrequently enough and/or
in sufficiently unimportant situations that it isn’t worth it to us to do things differently.

Ecological Rationality’s prominence has been driven by its ability to provide many
compelling examples of success through the use of heuristics (see Goldstein and
Gigerenzer 2002, for a well-known example). Perhaps the most striking examples are
those in which simple heuristics appear to outperform classically-rational procedures
such as weighing and averaging (see Gigerenzer and Goldstein 1996, for an example;
and Gigerenzer and Brighton 2009, for an overview).3 Gigerenzer and Sturm (2012)
use examples of this kind to argue for a limited naturalization ofmeans-ends rationality
which takes heuristics to be rational when used in environments for which they are
highly accurate. Wherever one draws the line between rational and irrational, such
examples greatly strengthen the case for ecological rationality as a true species of
normative rationality and not just a consolation prize. We do not rely on heuristics
simply because better strategies are impractical, but because they often allow us to
make correct choices and inferences in our environment.

Onemight still wonder, of course, how far this explanatory strategy can take us.Why
think that heuristics usually serve us well? Even if many heuristics can perform well,
how couldwemanage to use the right ones in the right contexts (Wallin andGärdenfors
2000)? The adaptationist backstory is important here. There is no guarantee that any
particular application of a heuristic gets us the best result, or even a good one; our
environment can change and our old strategies can fail in new contexts. Nonetheless,
it makes sense that a long period of selection in a relatively stable environment would
have endowed us with an “adaptive toolbox”4 of heuristics, and the ability to apply

3 There is some controversy surrounding these results, regarding for example whether it makes sense to
say that a heuristic can do better than optimization. See Parpart et al. (2018) and compare to Dana and
Davis-Stober (2016). For our purposes, the important point is just that there are many real-world examples
in which heuristics achieve truly excellent results, and using a more complicated procedure would not lead
to improved choices or inferences (see Gigerenzer and Sturm 2012, for a summary of such examples).
4 We will refer throughout the paper to both the adaptive toolbox (theory or hypothesis) and to ecological
rationality, which overlap to a great extent. ‘Ecological Rationality’ (capitalized) refers to the general
program of research into judgment and decision making which is characterized by emphases on the use of
simple heuristics, the importance of the specific environment, and the successes (rather than the failures)
of agents. ‘Ecological rationality’ (uncapitalized) refers to the type of rationality studied by that research
program. ‘Adaptive Toolbox’ refers to a more specific cluster of hypotheses, namely that human cognition is
as a rule explained by the application of heuristics, that our ‘adaptive toolbox’ (uncapitalized) of heuristics
is an adaptation, and that we are generally successful (ecologically rational) as a result of relying on this
toolbox. Not all of Ecological Rationality depends on Adaptive Toolbox being true, but the latter makes the
former much more compelling and interesting.

123



5752 Synthese (2021) 198:5749–5784

them adeptly. This would explain why our heuristic use would generally be successful,
allowing us to do at least well enough to survive and in many cases much better.5

Ecological Rationality therefore looks like a very promising (base for a) naturalist
project. On closer inspection, however, we find an important explanatory gap. Specif-
ically, although it may be easy for a person to apply a particular simple heuristic,
learning which heuristic from the adaptive toolbox to apply is not. Quite the opposite,
in fact: evolving even an adequate adaptive toolbox is an intractable problem. This
fact is independent of the type of adaptive process, so it holds for natural selection,
learning, etc. as well as combinations thereof (cf. Otworowska et al. 2018, 2015). This
does not mean that it is impossible that we did evolve an adaptive toolbox through truly
extraordinary luck, but it does mean that the adaptive toolbox hypothesis itself is not
supported, and the existence of adaptive toolboxes would not really be explained, by
appeals to evolution, since we would not expect evolution to yield adaptive toolboxes.

This is a problem for several reasons. Importantly, we want to adjudicate between
available explanations of human cognition, for example between Bayesian explana-
tions and heuristics-based explanations. Bayesian computation is known to face an
intractability challenge (Kwisthout et al. 2011), and it is furthermore intuitive to many
that being an ideal Bayesian reasoner would be very difficult, perhaps impossible.6

The fact that Adaptive Toolbox turns out to face its own intractability challenge means
that its apparent plausibility advantage was illusory (see also Otworowska et al. 2018).
The clever application of heuristics and the use of Bayesian inferences could both pro-
duce rational behavior, but we do not know how either would have become possible
for humans. This puts epistemic naturalists in an especially difficult position. Natural-
ists must ground normative assessments in an empirical understanding of how people
make (or could make) inferences and so forth, but our current level of understanding
is lower than we thought, and a real limiting factor.

Without understanding how far heuristics can take us, it is harder to succeed at the
delicate balancing act between the ‘ought implies can’ principle and non-trivial norma-
tive standards. While naturalists have made everyone more conscious of the demands
imposed by our normative theories, there is at the same time broad skepticism of
naturalization projects that set the bar of rationality too low, blurring the distinction
between what humans do and what we ought to do. Studying simple heuristics (seems
to) ensure that we are studying strategies that people can implement, but epistemolo-
gists are interested in those strategies mainly insofar as we should use them (because
they are effective means for achieving our ends). For the naturalist content to start
with the available concrete examples of human heuristic use, two important questions
loom large: not only why we should think that heuristics more generally would allow
us to perform well enough to count as rational, but whether they already do so. The

5 While the argument from adaptability is intuitive, it has been criticized; for example, Schulz (2011)
questions whether the fact of adaptedness really speaks in favor of heuristics-based rather than classical
rationality (see also Sterelny 2003; Polonioli 2015). We set these critiques aside in order to focus on our
point, which we see as largely independent. The fact that there are such critiques, however, is certainly
relevant, since it means that we cannot simply take for granted that humans have an adaptive toolbox; see
also the Empirical Success Objection, in 4.1.
6 It is important to recognize that an appeal to as-if explanations does not avoid the problem either (van
Rooij et al. 2018).
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second, descriptive question has its own normative implications because consciously
acquiring a new toolbox of heuristics would itself probably go beyond what humans
could do. In other words, whether humans ought make widespread use of heuristics
depends both on whether those heuristics could yield good results in theory and on
whether humans could implement them successfully, and the latter may depend on
whether that is what we in fact already do.

A major open problem in cognitive science—namely whether Bayesianism, Adap-
tive Toolbox, both, or neither7 are ‘true’ in the relevant sense—therefore turns out to
matter a great deal for naturalists. We focus here on Adaptive Toolbox, and its rela-
tively more surprising tractability challenge. In this paper, we show that this challenge
is evenmore serious than has been recognized, by providing new results demonstrating
the robustness of the intractability challenge.Wewish to emphasize that our arguments
do not show that the adaptive toolbox hypothesis is incorrect, but rather that it is cru-
cially incomplete. In line with this, we include constructive proposals for addressing
intractability, and thereby improving our understanding of cognition.

At this point we would like to help to situate our argument by acknowledging that
Ecological Rationality and the Adaptive Toolbox hypothesis are most often encoun-
tered within philosophy in the context of the so-called “rationality wars.” This refers,
broadly speaking, to the disagreement about whether or not human rationality should
be characterized by classical, coherentist norms stemming from logic and probabil-
ity theory. On the one hand, humans seem not to conform to those norms and hence
appear irrational (see e.g. Kahneman et al. 1982; Kahneman and Tversky 1973; Tver-
sky and Kahneman 1974, 1981, 1983), but on the other hand, it has been argued
that this conclusion is an artifact of using the wrong norms (cf. Boudry et al. 2014;
Brighton and Todd 2009; Gigerenzer 1996; Hertwig and Gigerenzer 1999; Polonioli
2014;Wallin 2013) or does not adequately motivate a normative or explanatory switch
to so-called “bounded rationality” (see e.g. Chater et al. 2003; Grüne-Yanoff 2008).
Proponents of Ecological Rationality (among others) have argued that the right norms
are based on correspondence instead of coherence: rational beliefs and actions are
those that lead to adaptive decisions in the world (see e.g. Arkes et al. 2016; Berg
2014b; Katsikopoulos 2009; Polonioli 2016; Rich 2016, 2018b, for discussion). Cen-
tral questions have been the extent to which the debate in the literature is substantial,
rather than terminological or rhetorical (notably Samuels et al. 2002) and whether the
views are in fact compatible (see e.g. Berg and Gigerenzer 2006; Rich 2018a; Sturm
2012, 2019).

It is important to note that our focus is different from much of this literature in
that we are fundamentally concerned with the explanatory plausibility of the adaptive
toolbox theory—which for a naturalist is a critical basis for normative assessments—
whereas much of the debate (especially in philosophy) has focused on the question of
whether so-called “bounded” or “ecological” real-world rationality is true, normative
rationality; we take an affirmative answer as a starting point. Furthermore, we do
not attempt to give a general assessment of the empirical support for the adaptive
toolbox hypothesis, but rather focus on whether tractability considerations support

7 This is not to exclude other, (to epistemologists) less familiar competitors such as Predictive Processing
(Clark 2013), which incidentally is in the same boat with respect to intractability (Otworowska 2018;
Otworowska et al. 2014, 2018).
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this theory over others. Tractability has long been one of many distinct issues at play
in the rationality wars, since the intractability of classical rationality has been used
to argue that it is not a relevant notion of rationality.8 From a descriptive perspective,
tractability is taken to be an essential feature of any account of rationality.

One important consequence of our focus on explanation is that we are primar-
ily concerned with the role of evolutionary arguments within the broader Ecological
Rationality program, although this has not been the case in the rationality wars in gen-
eral; that is, our focus is on the Adaptive Toolbox hypothesis rather than Ecological
Rationality more broadly (see Footnote 4 as well as our earlier explanation of why the
Adaptive Toolbox hypothesis is important). We wish to make clear that by advancing
our specific critique, we in no way mean to cast doubt on the viability of Ecological
Rationality in principle from a normative perspective, nor do we mean to question the
fact that this research program has succeeded in placing many important observations
(such as the relevance of decision and inference processes, the importance of con-
textual factors, and the limits of coherence criteria of rationality) at the center of the
community’s attention (Rich 2016).

1.1 Overview

The paper proceeds as follows. In Sect. 2, we introduce the computational problem
of adapting toolboxes of heuristics to a given environment. We first explain the prob-
lem informally, followed by precise formulations of the key ideas. We illustrate how
our formalism applies to concrete cases and reflect on the search space of adaptive
toolboxes for environments of realistic sizes.

In Sect. 3 we present intractability analyses for the formalization developed in
Sect. 2. We first explain the concepts and techniques used from computational com-
plexity theory to formally prove intractability (NP-hardness). Next we present a series
of complexity results that show that the intractability of ecologically rational toolboxes
is quite robust. Several intuitive proposals for ensuring tractability are shown to fail.
Notably, the conditions sufficient for ecological rationality are not sufficient for the
tractability of the adaptation process, and the idea that the toolbox would have evolved
along with the environment does not help.

Finally,wediscuss the nature of the results, their applicability, and their implications
in Sect. 4.We begin by summarizing the results and explaining the core of the problem.
Next, we address the main objections that we anticipate, defending the assumptions
we do make, and arguing that the intractability challenge is not easily dismissed. We
also explain what we think can be done about it, however. With this on the table, we
step back and discuss what the intractability challenge means for naturalists.

2 Formalizing toolbox adaptation

According theAdaptiveToolbox theory, ourminds are endowedwith a toolbox consist-
ing of fast and frugal heuristics tailored for different epistemic and pragmatic decision

8 For example: “In many real-world situations …Bayes’s rule and other ‘rational’ algorithms quickly
become mathematically complex and computationally intractable, at least for ordinary human minds”
(Gigerenzer 2000, p. 167).
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tasks. Over the last two decades, a wide variety of concrete heuristics have been pro-
posed to explain not only inferences but also moral, economic (Berg 2014a), medical
(Gigerenzer and Kurzenhaeuser 2005), and other pragmatic choices (see Ralph Her-
twig and The ABCResearch Group 2013, for many examples). (Gigerenzer and Sturm
2012, Table 1) provide a useful overview of the contents of the adaptive toolbox. Our
analysis is meant to cover the vast majority of these heuristics, as weworkwith generic
“fast and frugal trees.” As Sweers writes,

Gigerenzer et al. have proposed a list of heuristics, including the recogni-
tion heuristic, the fluency heuristic, Take The Best, tallying, satisficing, 1/N,
default heuristic, tit-for-tat, imitate the majority and imitate the successful
(Gigerenzer, 2008;Gigerenzer&Sturm, 2012).…All heuristics of this list can be
represented as fast-and-frugal trees, except for the fluency heuristic and tallying
(2015, p. 63).

Rationality, on this account, is to be understood as the fit between the heuristics in
the adaptive toolbox and the environment of adaptation. This fit is called ecological
rationality, and it is proposed to be the natural consequence of processes of adapta-
tion, such as biological evolution, cultural evolution, learning, development, or some
mix thereof. We present in this section the formalization of the process of toolbox
adaptation that will serve in our complexity analyses in Sect. 3.

2.1 Computational-level theory

In broad lines, the formalization of the toolbox adaptation problem follows the one
proposed byOtworowska et al. (2018), withminormodifications to increase generaliz-
ability (see also Sect. 3). The formalization takes the form of an input-output mapping,
consistent with theories at Marr’s (1982) computational level. We first introduce an
informal version of the theory, after which we detail the fully formalized theory. We
would like to reiterate at this point that toolbox adaptation (and the formalization we
present here) is agnostic as to the nature of the adaptation process, i.e., the adaptation
may be realized through any number of processes, either individually or mixed.

Toolbox Adaptation (informal)

Input:The environmentwhich consists of (possible) situations, (available) actions,
and for each situation dictates which set of actions are satisfactory in that situation.
Output: An adaptive toolbox of heuristics that has minimal ecological rationality
for the environment. Ecological rationality of the toolbox depends on its ability
to select satisfactory actions (often enough).

This input-output mapping captures informally what toolbox adaptation is considered
to achieve, but it leaves outmany specifics:What precisely is an adaptive toolbox?How
canwedetermine ecological rationality?What is a situation?Howare situations related
to actions? The informal theory is underspecified, and this prevents a complexity
analysis. We will build from this informal theory towards a fully formalized theory
in a few more steps. The first step is to cast the incomplete informal theory in formal
terms, after which we highlight and flesh out the missing parts.
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Toolbox Adaptation (formal, incomplete)

Input: An environment � which is defined as the triplet (S, A, D), consisting of a
set S of situations, a set A of actions and a function D : S → 2A that determines
for each situation which set of actions is satisfactory and the minimal ecological
rationality ermin ∈ [0, 1].
Output: An adaptive toolbox of heuristics T and with an ecological rationality
er ≥ ermin for environment �, if such a toolbox exists, and special symbol ⊥
otherwise.

There are several parts that are still not fully formalized, namely, the toolbox of heuris-
ticsT , situations S, actions A and the ecological rationality er of a toolbox. Formalizing
the toolbox T requires also formalizing situations S and actions A, so we address these
simultaneously.

A toolbox of heuristics is characterized by two components: a set of heuristics and
a selector heuristic that selects a heuristic to apply from that set. In this formalization
we assume that a toolbox of heuristics consists only of one type of heuristic, a fast-
and-frugal tree (Martignon et al. 2005; Luan et al. 2011; Martignon et al. 2008).9 A
fast-and-frugal tree is a structure that can be formalized as follows:

Definition 2.1 A fast-and-frugal tree consists of an ordered sequence of cue-action
pairs (c, a), where a cue c corresponds to an event e occurring or not occurring. The
event e can be any of the events in the situations S in the environment �. Additionally,
there is a default action ad . Given a situation s, the fast-and-frugal tree selects the first
action c for which the cue holds true in s. If no cue holds true, the default action ad is
selected. Figure 1 illustrates an abstract fast-and-frugal tree.

The definition of a fast-and-frugal tree calls for a more detailed formalization of
the environment, specifically, the addition that any situation s ∈ S is defined by a
the presence or absence of events. The environment � is extended into a quadruple
(E, S, A, D) by adding a set of events E that may occur in the environment and by
associating to each situation si ∈ S = {s1, . . . , sn} a function si : E → {true, f alse}
that specifies for each situationwhich events are present in that situation or not (Fig. 2).
Note that, unlike the formalization of environments given in Otworowska et al. (2018),
we allow multiple copies of a situation in E . We can now formalize a toolbox of
heuristics (Fig. 3).

Definition 2.2 A toolbox of heuristics T = (L, H) consists of a selector heuristic L
and a set of heuristics H = {h1, . . . , hm}, all of them are fast-and-frugal trees. The

9 This choice will be without loss of generality for our analyses in Sect. 3. The reason is threefold: (1) if
adaptation is intractable for a special case (here fast and frugal trees) then it is also intractable for a more
general case that includes this special case (see also Otworowska et al. 2018); (2) it is known that many
heuristics can be formally rewritten as fast and frugal trees (Sweers 2015); and (3) the results we present in
Sect. 3 hold also for all heuristics defined by some combination of 1) a search rule, 2) a stopping rule, 3)
and a decision rule (which is the general template for heuristics as conceived by Adaptive Toolbox theory
(see e.g. Gigerenzer and Sturm 2012; Martignon 2001), provided that each rule is indeed fast and frugal,
i.e., does not use all the available information in the environment (frugal), and the rule processing time is
limited by an upper bound (fast). Hence, for ease of presentation we can proceed with formalising heuristics
as fast and frugal trees.
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Fig. 1 An abstract
fast-and-frugal tree. Here, the
arrows indicate the order of the
cue-action pair sequence. The
final action a6 is the default
action. These trees can be of
arbitrary length and the
formalism is agnostic as to the
type of actions

Fig. 2 An abstract environment that represents the events E , situations S, actions A and in which situations
which events are present (black square) or absent (white square) and which actions are satisfactory (dark
gray) or not (light gray)

selector heuristic L is special in the sense that it consists of cue-heuristic pairs and a
default heuristic, effectively ‘selecting’ a heuristic to use on the basis of present (or
absent) events. Given a situation s (which is a truth-value assignment to events), a
toolbox first uses the selector L to select a heuristic H on the basis of the available
cues, and then uses H to select an action a, also on the basis of the available cues. We
write T (s) to refer to the action a that is selected by T in situation s.

With a formalization of a toolbox of heuristics and the environment we can now also
define the ecological rationality of a toolbox. The ecological rationality er specifies
the fit between an adapted toolbox T and an environment � = (E, S, A, D) as the
proportion of satisfactory action selections:
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Fig. 3 A toolbox of heuristics that consists of a selector heuristic and a collection of fast-and-frugal trees.
Here, the selector heuristic selects a heuristic based on any of the four cues or if none of its cues evaluate
to true it selects the default heuristic (far right)

er = # situations where a satisfactory action is selected

# total number of situations

= | {s|s ∈ S and T (s) ∈ D(s)} |
|S|

With all of the details formalized, we can characterize toolbox adaptation formally.
Note thatwe also introduce two additional parameters regarding the size of the toolbox,
#h and |h|. These parameters limit the size of toolbox, thereby formalizing the notion
of frugality.

Toolbox Adaptation

Input: An environment � = (E, S, A, D), the positive integer #h denoting the
maximum number of heuristics in the toolbox, the positive integer |h| denoting
the maximum size of any heuristic (i.e., the maximum number of cues), and the
minimal ecological rationality ermin ∈ [0, 1].
Output: An adaptive toolbox T with at most #h heuristics, each of size at most
|h|, and with an ecological rationality er ≥ ermin for environment �, if such a
toolbox exists, and special symbol ⊥ otherwise.
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Fig. 4 On the left is a toy example environment consisting of four situations. The first two columns corre-
spond to the con-artist example from the Introduction, the third and fourth to the tennis example. On the
right is an example toolbox, where cues are indicated by links to events and actions are indicated by links
to the actions. The ecological rationality of this toolbox would be: 0+1+0+1

4 = 0.5

We purposely presented the formalization of Toolbox Adaptation abstractly so
as to show that the formalization is agnostic towards the encoding of events (these
may correspond to complex or simple structures), the nature of the adaptation process
(whichmay be realized by biological or cultural evolution, development, or otherwise),
and can accommodate any structure in the environment (there are no constraints on
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Fig. 5 The formula describing how many toolboxes are possible for an environment with e events and a
actions

the structure in �). We now turn back to the example heuristics from the introduction
and see how they can be modeled using the formalization.

2.2 Illustration

To give the reader better intuition of the formalization, we present a slice of an environ-
ment consistent with the examples from the Introduction in Fig. 4. It contains possible
events that might occur in environment where we both adapted to deciding who will
win a two-person competition (e.g. Serena or Jane) but also to decide whether or not
to trust someone. In addition to possible events, the environment also dictates which
actions are satisfactory in which situation. Hence, the formal environment contains
a list of possible actions (or decisions) as well. These actions need not be physical;
they can also be epistemic (i.e., belief revisions or inferences). The figure also shows a
possible heuristic that has ecological rationality of 0.5 (i.e., it performs a satisfactory
action 50% of the time). In a sense, the adaptation process has to figure out which
events are relevant cues for the heuristic (the mappings indicated by the dashed lines,
in the figure). Despite the fact that the final heuristic may use only a few cues (just 5
in the example), many different situation-cue mappings are possible.

Since empirical researchers consider specific toolboxes (and their application) and
specific situations, the problem that is solved by the adaptation process remains invis-
ible. However, when one considers the Adaptive Toolbox hypothesis itself, one has to
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Table 1 Illustration of the vast number of possible toolboxes for different environment sizes e, considering
only 10 actions

Environment size e Number of possi-
ble toolboxes

Scale example: Similar to the
number of…

1 1080

2 22,300

3 334,520

4 4,458,500

5 56,109,040

…the number of neurons in a
human brain 86 × 109

…the number of neuronal
connections in a human
brain 86 × 1014

10 4.3 × 1045

20 5.0 × 1057

30 4.8 × 1071

40 6.0 × 1086 …elementary particles in the
universe 1080

50 2.2 × 10103 …grains of sand in a universe
entirely filled with sand
1095

60 1.9 × 10120 …neutrons in a universe
entirely filled with neutrons
10128

70 6.5 × 10138

80 2.3 × 10157

90 7.8 × 10176

100 2.9 × 10198

face the fact that in principle many toolboxes are available, and an adequate one would
need to be found. The number of possible toolboxes is directly related to the number
of actions and events in the environment and grows more than exponentially (as Fig. 5
shows). Even for small environments and few available actions, the size of the search
space of possible toolboxes is prohibitively big (see Table 1 for an example).

Although the size of the search space is titanic, its size alone does not prove it
cannot efficiently be searched. In fact, some exponentially large search spaces can
be efficiently traversed.10 However, as we will see, this is not the case for Toolbox
Adaptation. To formally prove this, we will need to use computational complexity
analysis.

10 The computational problemMinimum Spanning Tree has an exponential-sized search space, but can
be solved in polynomial time by exploiting structure in the space (see Cormen et al. 2009).
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3 Computational complexity analyses

3.1 Primer on computational complexity

We briefly introduce the basic concepts and proof techniques from computational
complexity theory used in the complexity analyses of the Toolbox Adaptation

problem (in Sect. 3.2.). For more details, we refer to textbooks on the topic, e.g.
(Arora and Barak 2009; van Rooij et al. 2019).

Computational complexity theory is concerned with the mathematical study of
the computational resources (time, space, randomness, etc.) consumed by computa-
tion. Solving some computational problems (i.e., input-output mappings) inherently
requires such astronomical amounts of resources that we say the problems are ‘com-
putationally intractable.’ Computational complexity theory provides analytic tools for
answering the question: does there exist any tractable algorithm for a given prob-
lem Q? For this purpose, a distinction is traditionally made between polynomial-time
algorithms (which run in time on the order of nc, where n is a measure of the input
size and c is some constant) and non-polynomial algorithms (which run in a time that
cannot be upper-bounded by any polynomial). An example of non-polynomial time is
exponential time (time on the order of cn). As Garey and Johnson (1979) remark:

Most exponential time algorithms are merely variations on exhaustive search,
whereas polynomial time algorithms generally are made possible only through
the gain of some deeper insight into the nature of the problem. There is wide
agreement that a problem has not been “well-solved” until a polynomial time
algorithm is known for it. Hence, we shall refer to a problem as intractable, if it
is so hard that no polynomial time algorithm can possibly solve it (p. 8).

To see why exponential time algorithms are traditionally considered intractable note
that even for an input size of n = 60, an exponential running time of 2n takes around
1020 steps. At 1000 steps per second, this would still take around 1017 seconds, about
the lifespan of the universe. The input size for real world problems—which our adap-
tive toolbox is meant to allow us to solve—cannot generally be assumed to be small.
As Gigerenzer and colleagues have put it:

The computations postulated by a model of cognition need to be tractable in the
real world in which people live, not only in the small world of an experiment
with only a few cues. This eliminates NP-hard models that lead to computa-
tional explosion, such as probabilistic inference using Bayesian belief networks
(Cooper, 1990), including its approximations (Dagum & Luby, 1993) (Gigeren-
zer et al. 2008, p. 263, references theirs).

Computational complexity analyses are typically performedwith so-called decision
problems, where the output of the problem is “yes” or “no” (1 or 0, respectively). The
complexity class P consists of all such problems that can be solved in polynomial
time. The Toolbox Adaptation problem introduced in Sect. 2, in contrast, is a so-
called search problem; its output is a toolbox with minimal ecological rationality (if
one exists). Its decision version instead asks whether a minimally ecological rational
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toolbox exists for a given environment. For complexity purposes, the two versions are
closely related: if the decision problem is not in the class P, then the search variant is
not polynomial-time computable either. Some of the formal proofs in the Appendix
work with the decision versions, but we will discuss the results and their implications
in terms of the search versions for presentational purposes. We do need to consider
decision problems a bit longer, in this section, to explain the key proof tools.

Computational complexity offers tools to assess whether or not a problem is
tractably (polynomial-time) computable. The most commonly used tool for this is
the complexity class NP. Intuitively, the class NP contains all decision problems that
are polynomial-time solvable, but likely also problems that are harder. Informally, a
decision problem is in the classNP if for every yes-input there exists a solution that can
be verified in polynomial time—and if for every no-input, no such solution exists. For-
mally, a decision problem is in NP if (i) there exists a polynomial function p : N → N

and (ii) a polynomial-time algorithm V (the verifier) such that: for every input x it
is the case that the output for x is 1 (“yes”) if and only if there exists a solution y of
size p(|x |) such that V returns 1 (“yes”) when given x and y as input. It is an open
problem whether P = NP, but it is widely believed in the field of theoretical computer
science that P �= NP (Fortnow 2009). Neither we nor proponents of Adaptive Toolbox
reject this common assumption (Martignon and Schmitt 1999; Schmitt andMartignon
2006), so we assume here that P �= NP, and interpret our results accordingly.

To prove that a problem is intractable (not polynomial-time solvable), the notion
of NP-hardness is used. This notion is based on problem reductions. Intuitively, a
reduction from a problem Q1 to another problem Q2 shows that Q2 is at least as hard
as Q1: one can solve Q1 by carrying out this reduction and then solving Q2. The typical
type of reductions that are used is that of polynomial-time many-to-one reductions.
A (polynomial-time many-to-one) reduction from a problem Q1 to a problem Q2 is
a function R that takes an input x1 of Q1 and produces an input x2 of Q2 and that
satisfies the following conditions: (1) R is computable in polynomial-time, and (2) x1
is a yes-input of Q1 if and only if x2 is a yes-input of Q2.

A decision problem Q is said to be NP-hard, then, if there exists a reduction from
every problem in the complexity class NP to Q. Courtesy of the transitivity of many-
one reductions (i.e., if decision problem A reduces to problem B and B reduces to C
then A reduces to C), we can also show NP-hardness by reducing a known NP-hard
problem to a new problem of interest (see Fig. 6). Intuitively, NP-hardness means that
a problem is as hard as any problem in NP. It holds that an NP-hard problem is not
solvable in polynomial time, unless P = NP—in other words, assuming that P �= NP,
an NP-hard problem is not solvable in polynomial time. A problem is said to be NP-
complete if it is both in NP and NP-hard.

Another type of reduction that is often used is that of (polynomial-time) Turing
reductions. A polynomial-time Turing reduction from a problem Q1 to a problem Q2
is a polynomial-time algorithm that solves Q1 and that has access to an oracle for Q2.
An oracle for Q2 is a special (imaginary) device that, when given an input x of Q2,
returns the correct answer in a single computational step. We say that a problem Q is
NP-hard under Turing reductions if there exists a polynomial-time Turing reduction
from every problem in the complexity class NP to Q. Courtesy of the transitivity of
Turing reductions, one can also show such NP-hardness by reducing from a problem
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Fig. 6 An illustration of the transitive relationship of many-one reductions and how these can be used to
prove NP-hardness, i.e., by showing that all problems in NP reduce to a problem of interest (here D)

that is known to be NP-hard under Turing reductions. Problems that areNP-hard under
Turing reductions are also not solvable in polynomial-time, unless P = NP.

We realize that the notion of reduction, of either type, can be tricky to understand
at first. To support intuitive understanding of our proof arguments we will include
graphical illustrations in the next section.

3.2 Intractability results

We present here a set of complexity theoretic results on the intractability of the toolbox
adaptation process. We probe the robustness of this intractability by analyzing various
refinements of the computational-level characterization of Toolbox Adaptation in
Sect. 2. Given that, we build on the original intractability (NP-hardness) proof provided
by Otworowska et al. (2018)—in part by exploiting the ability of our environments
(noted in Sect. 2) to have multiple copies of the same situation. We start by restating
the main theorem in Otworowska et al. (2018) below.

Theorem 3.1 (Otworowska et al. 2018) Toolbox Adaptation is NP-hard,
even when restricted to an arbitrary fixed ermin ∈ (0, 1].
Proof (sketch) The original proof by Otworowska et al. (2018) is by reduction
from the known NP-hard graph problem Dominating Set (Garey and John-
son 1979). We provide an alternative (simplified) proof in the Appendix. This
proof also shows NP-hardness by giving a polynomial-time reduction from
Dominating Set. See Fig. 7 for an illustration. ��

Theorem 3.1 demonstrates that there cannot exist any polynomial-time algorithm that,
given an instance of the Toolbox Adaptation problem, can reliably produce a
toolbox with minimal ecological rationality ermin (for any ermin > 0) (as always,
assuming that P �= NP). This result is limited, however, in that it only demonstrates
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Fig. 7 An illustration of the proof that Toolbox Adaptation is NP-hard. Working from the premise that
Dominating Set is NP-hard (and therefore cannot be solved in polynomial time, unless P = NP), we
construct two polynomial-time transformations. One transforms the input for Dominating Set to an input
for Toolbox Adaptation, and the other transforms the output of Toolbox Adaptation to an output
for Dominating Set. As said, these transformations run in polynomial time and hence we can conclude
by contradiction that Toolbox Adaptation cannot run in polynomial time, otherwise one could solve
Dominating Set in polynomial time (viz. by transforming the input for Dominating Set, then solving
Toolbox Adaptation and then transforming the output back to Dominating Set). Here, the problem
Dominating Set is a graph problem that asks whether or not there exists a subset of vertices (maximally
of size k) that dominate (are a neighbour of) all other vertices in the graph

NP-hardness relative to the set of all logically possible environments, which may
include many environments for which no ecologically rational toolbox exists. It is
thus of interest to investigate whether toolbox adaptation is tractable if we restrict the
domain of environments to only those affording ecologically rational toolboxes. For
this purpose we consider a variant of Toolbox Adaptation where it is promised,
for each environment, that there exists at least one (and possibly more) ecologically
rational toolboxes. This type of problem variant is also known as a promise problem.
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Theorem 3.2 below shows that the ‘promise’ does nothing to make adaptation more
tractable.

Theorem 3.2 Toolbox Adaptation is NP-hard (under Turing reductions)
even when a promise is given that there exists an ecologically rational toolbox
for the given environment (of the right size).

Proof (sketch) The general idea of the proof is the following. Suppose that a
polynomial-time tractable algorithm A exists that computes an ecologically
rational toolbox in situations where it is promised that such a toolbox exists.
We show that we can then solve the NP-complete problem of Satisfiability
in polynomial time.

Since Toolbox Adaptation is NP-hard, we know that we can reduce the
NP-complete problem Satisfiability to it (call the reduction R). Moreover,
we can do this in such a way that a valid solution for Toolbox Adaptation

can be efficiently translated to a valid solution for Satisfiability. To compute
the answer for an input x of Satisfiability, we do the following. We firstly
transform the input x to an input of Toolbox Adaptation by using the
reduction R. Then we apply the algorithm for the promise variant of Toolbox
Adaptation to R(x).

Then one of several situations is the case: either (i) the input R(x) fulfils the
promise, and there exists an ecologically rational toolbox (of the right size),
or (ii) no such ecologically rational toolbox exists. In case (i), the algorithm
produces a solution, which can be transformed to a solution for the input x
of Satisfiability. By efficiently verifying whether this solution for Satis-
fiability is valid, we are able to ascertain that the answer for x is ‘yes.’ In
case (ii), the algorithm either (ii.a) produces a toolbox that is not ecologically
rational (or not of the right size), or (ii.b) produces uninterpretable output. In
case (ii.a), we can efficiently verify that the toolbox is not ecologically rational
(or too large), and thus that the answer for x is ‘no.’ In case (ii.b), we also
know that the output for x is ‘no.’ Thus, in all cases we solve the problem of
Satisfiability correctly and efficiently.

This procedure can be seen as a Turing reduction from Satisfiability to
the promise variant of Toolbox Adaptation, and thus the problem is NP-
hard under Turing reductions. See Fig. 8 for an illustration. A full, detailed
proof is provided in the Appendix. ��

Theorem 3.1 not only shows that the original result of (Otworowska et al. 2018)
is robust with respect to the promise, but it has a further relevant implication: The
conditions that are sufficient for ecological rationality to be possible (such as studied
in the Ecological Rationality program) are not the same conditions that afford the
tractable adaptation of ecological rationality. To guarantee tractability of the adaptation
process itself, additional promises seem to be needed.

We next consider the effect of promising that the environment changes very slowly
(i.e., only one situational change takes place at a time), and that for each change an
ecologically rational toolbox still exists. In other words, it is promised that the toolbox
can adapt from an initial (potentially very simple) environment and adjusts itself
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Fig. 8 Illustration of the proof by contradiction that promise-Toolbox Adaptation isNP-hard. Assuming
that promise-Toolbox Adaptation can be computed in polynomial time, we show that one can solve
Satisfiability in polynomial time. We transform the input for Satisfiability into an input for promise-
Toolbox Adaptation, then apply the polynomial time algorithm to solve that instance, and using the
schema illustrated here infer the solution for Satisfiability in polynomial time. However, since it is known
that Satisfiability is NP-hard, this schema cannot exist (assuming P �= NP) and we reject our assumption
that promise-Toolbox Adaptation can be solved in polynomial time

iteratively over time, slowly adapting to very small changes. We cast this conception
of each step in such an iterative adaptation process in the form of the following input-
output mapping.
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Toolbox Re-adaptation (in slowly changing environments)
Input: An environment � = (E, S, A, D), the positive integer #h denoting the
maximum number of heuristics in the toolbox, the positive integer |h| denoting the
maximum size of any heuristic (i.e., the maximum number of cues), the minimal
ecological rationality ermin ∈ [0, 1], an adaptive toolbox T that has at most
#h heuristics where each heuristic is of size at most |h| and that has ecological
rationality er ≥ ermin for �, and a new environment �′ = (E ′, S′, A′, D′) that
extends � with at most one event, situation or action.
Output: An adaptive toolbox T ′ with at most #h heuristics, each of size at most
|h|, and with an ecological rationality er ≥ ermin for environment �′, if such a
toolbox exists, and special symbol ⊥ otherwise.

Note that in Toolbox Re-adaptation we start with an already previously adapted
toolbox for a given environment �, and only ask that it be re-adapted for a new
environment �′ that differs from � in at most one event, situation or action. Given
this strong constraint, one may expect the input-output mapping to be computationally
much easier than adapting a toolbox for �′ scratch. Theorem 3.3 shows, however, that
this is not the case, not even when it is promised that such an re-adaption is possible.

Theorem 3.3 Toolbox Re-adaptation is NP-hard (under Turing reduc-
tions) even in a slowly changing environment. That is, Toolbox Re-

adaptation is not tractable in a slowly changing environment, unless P = NP.
The problem remains hard when a promise is given that an ecologically ratio-
nal toolbox exists.

Proof (sketch) The general idea of the proof is the following. Suppose there
is a polynomial-time algorithm A that solves Toolbox Re-adaptation in
a slowly changing environment. Then we can use this algorithm A to con-
struct a polynomial-time algorithm B that solves Toolbox Adaptation.
The algorithm B works by iteratively constructing the environment � event
by event, action by action, and situation by situation, at each point using the
algorithm A to compute and keep track of a toolbox that has high enough eco-
logical rationality for the part of the environment constructed up to that point.
By constructing the environment � in an appropriate order, we can ensure that
this procedure outputs an ecologically rational toolbox for� (of the right size),
if and only if one exists. This procedure also works for the case where we are
given a promise that an ecologically rational toolbox (of the right size) exists.
From this we can conclude that there exists no polynomial-time algorithm
for Toolbox Re-adaptation in a slowly changing environment, unless one
exists for Toolbox Adaptation, which would imply that P = NP. A full,
detailed proof is provided in the Appendix. ��

So far, the complexity analyses show that intractability of toolbox adaptation is quite a
robust property. We close this section by making two more observations: None of the
intractability results seem to be driven by potential richness of the action repertoire
(see Corollary 3.1), nor by the potential intricacies of the selector or the individual
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heuristics in the toolbox (Corollary 3.2). In sum, the computational complexity intrin-
sic in toolbox (re-)adaptation seems to arise from the difficulty of finding a toolbox
(however simple or complex) that has the right fit with the environment (even if a good
fit is possible).

Corollary 3.1 Toolbox Adaptation is NP-hard, even when restricted to the
case where there are only two actions and in each situation exactly one action
is satisfactory.

Proof (sketch) The polynomial-time reduction that we use in the proof of The-
orem 3.1 constructs only instances with two actions. Therefore, we get that
the problem is NP-hard also when restricted to the case where there are only
two actions. ��
Corollary 3.2 Toolbox Adaptation is NP-hard, even when restricted to the
case where #h = 1 or when restricted to the case where |h| = 1. That is,
Toolbox Adaptation is NP-hard even in the cases (i) where the selector
heuristic is trivial (always selects the same heuristic), and (ii) where each
heuristic is trivial (always selects the same action).

Proof (sketch) The polynomial-time reduction that we use in the proof of The-
orem 3.1 constructs only instances with one heuristic. Therefore, we get that
the problem is NP-hard also when restricted to the case (i) where the selec-
tor heuristic is trivial. For the case (ii) where each heuristic is trivial (but the
selector heuristic is not), we can straightforwardly modify the reduction used
in the proof of Theorem 3.1 to produce only instances where each heuristic is
trivial. A more detailed proof is provided in the Appendix. ��

4 Discussion

Our formal results significantly extend current understanding of the Adaptive Toolbox
and the conditions under which toolboxes of heuristics can tractably be produced by
adaptation processes. We have built on a finding by Otworowska et al. (2018) that the
toolbox adaption problem is NP-hard (Theorem 3.1), meaning that there cannot exist
any tractable adaptation process that yields ecologically rational toolboxes. This result
was proven relative to a formalization of the toolbox theory which is restricted to a
specific set of heuristics known as ‘fast and frugal trees’ controlled by a selector oper-
ating by the same principles. But as explained in Sect. 2, this restriction is made for
ease of exposition and without loss of generality (see also footnote 9). The intractabil-
ity results for this restricted case rather underestimate the computational resources
required for adapting toolboxes consisting of heuristics that are less constrained.

Besides its generality, the intractability result also proves to be quite robust against
changes to the formalization thatprima facie couldbe expected to affect it. For instance,
onemay intuit that if an environment is structured such that there exists a toolbox that is
ecologically rational for that environment, then the problem of finding such a toolbox
for that environment is tractable. Theorem 3.2 shows, however, that this intuition
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would be mistaken: even if it is promised that for the environment under consideration
there exists a toolbox that meets the requirement of ecological rationality, it remains an
NP-hard problem to find that toolbox. In other words, the conditions that are sufficient
for ecological rationality are not the same as the conditions that enable the tractable
adaptation of ecologically rational toolboxes (an important distinction that we expand
on later). Additional conditions will need to be imposed before the adaptation problem
itself can be rendered tractable.

Sowhat could the additional conditions be? Theorem 3.3 rules out another plausible
condition for tractability: viz., the condition that the environment changes slowly such
that the adaptation process can gradually configure an ecological rational toolbox for
the final environment via intermediate states of adaptation. Again, one may intuit
that the intractability results established in Theorems 3.1 and 3.2 vanish when this
condition is imposed. Nonetheless, Theorem3.3 shows that this intuition is not correct:
it is as intractable to adapt in slowly changing environments as in drastically changing
environments, and this holds even if for each minor change in the environment there
exists a toolbox which would preserve ecological rationality. In sum, appealing to the
fact that our adaptive toolboxes would have evolved along with our environment over
a long period of time does not solve the problem.

This last theorem (Theorem 3.3) also gives a deeper insight into what seems to
be the core of the problem in toolbox adaptation. The fact that the environment may
exhibit only small local changes does not ensure that toolboxes can be re-adapted
with similarly small local changes. Instead, small local changes in the environment
can necessitate global changes to the toolbox’s configuration to maintain ecological
rationality. This means that ‘hill climbing’ adaptation procedures (Johnson et al. 1988;
Newell and Simon 1972; Russell and Norvig 2003), or any other heuristics for adap-
tation [e.g. Davis (1991)], would get the adaptation process stuck at local optima,
where the degree of ecological rationality can be arbitrarily off, not just compared to
the global optimum, but in relation to any minimal rationality criterion. The observa-
tion reveals an apparent paradox for the Ecological Rationality program: Ecological
rationality is itself a global property that is exceptionally sensitive to changes in an
environment, underscoringmoreover the importance of continuous adaptation in order
to maintain it. But, as Theorems 3.1–3.3 show, maintaining it even in the face of small
changes is intractable.

We would like to remind the reader that despite the great challenge we have pre-
sented, the challenge is presented so that it can be overcome, and not to dissuade anyone
from pursuing a fascinating research program. Accordingly, we have constructive pro-
posals for addressing the intractability challenge. Before presenting them, however,
we turn to a set of objections we envision at this point, to ensure that the nature and
significance of the challenge itself are completely clear.

4.1 Objections

Our mathematical observations, though sound, could still be of limited significance
if we made unnatural or irrelevant assumptions in our formal analyses of the toolbox
adaption problem. It is therefore important to self-critically assess whether or not we
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have misplaced the problem. We consider possible objections to our formal treatment
and explain to what extent they affect either the formal results themselves or their
applicability.

The Threshold Objection A threshold criterion for minimal ecological ratio-
nality in the formalization is unnatural and does not match how proponents of
the research program conceive of it. They have not argued for either a particular
threshold or the existence thereof.

Toolbox theorists reject the idea that real-world, adaptive rationality is defined by
optimality, because on their view,

however adaptive the behavior of organisms in learning and choice situations, this
adaptiveness falls far short of the ideal of “maximizing” postulated in economic
theory. Evidently, organisms adapt well enough to “satisfice”; they do not, in
general, “optimize” (Simon 1956, p. 129).

Therefore, in our formalization, we have endeavored to avoid any optimality
assumptions or appeal to ‘perfection’ which would require so-called ‘Laplacian
demons’ (see e.g. Gigerenzer and Goldstein 1996, p. 3). In the formalism, it is not
the case that a toolbox is rational only if all the actions it selects for in a given envi-
ronment are optimal or perfect. On the contrary, we build in non-optimality in two
ways. Firstly, in how we code actions as satisfactory or not for a given situation: the
formalism leaves what would count as ‘satisfactory’ open to interpretation. The com-
putational complexity analysis is independent of and insensitive to the semantics of
‘satisfactory’ here. Secondly, a toolbox need not always select satisfactory actions in
order to count as ‘ecologically rational.’ It could fail to do so on many occasions and
still be considered ecologically rational. All that is required is that there is some lower
bound on how many satisfactory actions it picks, averaged over all possible situations
it may encounter.

Yet onemayobject—so theThreshold objection goes—that building in thisminimal
ecological rationality criterion isn’t in the spirit of the theory. The originators see
ecological rationality as a fit between our toolbox of heuristics and the environment.
And the study of ecological rationality is to understand the nature of that fit: which
heuristics work when, for which environments. Nowhere does the theory specify that
ecological rationality would imply a minimal rational performance.

Our response is that this does not seem to invalidate our formalism, but rather
shows a perhaps-unrecognized and unexplored commitment of Ecological Rationality,
understood as an account of rationality specifically. Without any minimal threshold,
anything goes. Even an agent who never picks any satisfactory actions for any situation
would count as (ecologically) rational. This would make the notion of rationality void,
in our opinion. To counter that possibility, we impose a free-to-interpret, but otherwise
fixed, minimal threshold for ecological rationality, ermin , which can be any number
between 0 and 1, but excluding 0.

We realize that allowing the option that ermin = 1 risks that our intractability
results could be driven solely by that limit case scenario. If so, one could object that
optimally is still smuggled in. Something similar could be said if the results were
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driven by the inclusion of high thresholds. Yet, our proofs show that this is not the
case: each theorem also holds for any ermin , with 0 < ermin < 1.

In other words, for the interpretation and implications of our formal results, one
not need commit to any particular performance threshold for ecological rationality,
and the threshold can be set fairly low. Surely there is some threshold for which
everyone would agree that a toolbox failing to meet that threshold is not rational in
anymeaningful sense. Indeed, Ecological Rationality is championed on the basis of the
idea that humans are largely and surprisingly successful through the clever application
of heuristics, so it would be strange to claim that human rationality consists in using
heuristics to make arbitrarily poor choices and inferences.

The Luck Objection That the adaptation process is intractable from a
deterministic computation perspective is irrelevant. Adaptation processes are
non-deterministic, and we clearly have evolved this type of rationality, so it
seems to have just worked out.

In our analyses we built on the classical theory of computational complexity (Arora
and Barak 2009, see also Section 3.1). Consequently, in our analyses the notion of
‘computation’ is defined as a process that can in principle be simulated by a deter-
ministic Turing machine. This foundation is less limiting then it may at first appear.
NP-hardness results are known to have a straightforward and well-understood rela-
tion to probabilistic computation. For instance, even if we’d recast the adaptation
problem as one where an ecologically rational toolbox is to be found in at least half
of the situations (or in fact, any constant percentage), then the NP-hardness results
that we presented proves the impossibility of a tractable probabilistic computation
process that meets that requirement (given another widely assumed conjecture, that
P = BPP). In other words, the ability to tractably adapt ecologically rational toolboxes
in a probabilistic sense would, just like the ability to tractably adapt ecologically
rational toolboxes in a deterministic sense, imply that P = NP. To our knowledge, no
toolbox theorists question the famous P �= NP conjecture. In fact, NP-hardness and
the P �= NP conjecture are widely referenced by toolbox theorists to point out the
computational demons hidden in classical accounts of rationality (recall the quotation
in 3.1 and see also Gigerenzer et al. 2011).

Be that as it may, the toolbox theorist may still object we’vemisconstrued the nature
of the adaptation claim of ecologically rational toolboxes, and that there is no claim
that evolutionary processes (phylogenetically or ontogenetically) would more or less
reliably yield them, even probabilistically. The argument could go like this: So what
that the adaptation process seems intractable? Clearly we have evolved this type of
rationality (see also the Empiricist objection below), so it seems to have just worked
out. Evolutionary process are not teleological, but in hindsight we can see that there
have been (a concatenation) of lucky events that led us to have adapted ecologically
rational toolboxes. This, however, seems to be begging the question. Adaptationist
stories cannot appeal to a one-shot lucky event, but must appeal to a process that tends
to bring about some property. Otherwise, it can only be claimed that the adaptation
story is not impossible, not that it is a plausible explanation. Analogously, imagine
that we learn that a coin has landed Tails on 100 consecutive tosses. It is possible that
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the coin was fair and that the sequence was the product of incredible luck. Without
knowing in advance that the coin was fair and fairly flipped, however, we could not
offer this as the explanation for the series of Tails. Similarly, we cannot be satisfied
with the adaptation of a toolbox as the explanation for our rationality. Just as we would
inquire whether the coin were constructed so that it could only land Tails, we must
inquire whether some special feature of the context of adaptation would make the
adaptation of an ecologically rational toolbox antecedently probable.

It is worth observing, furthermore, that it would not be enough for humans to
have gotten lucky with an adaptive toolbox, despite the odds. This is because the
environment, though stable enough for adaptation to be possible, does change. As our
results show, re-adapting an already-ecologically rational toolbox in response to an
individual small change is itself an intractable problem. So, essentially, an appeal to
luck means “explaining” human cognition not just with one fluke series of Tails, but
with many.

The Empirical Success Objection The empirical evidence that people use
heuristics—and that heuristics can perform spectacularly well—already justifies
the conclusion that we have adapted this type of rationality. Formal analyses
are irrelevant given the empirical evidence.

This objection follows up on the Luck objection by suggesting that we have enough
evidence about human cognition to infer that we did evolve an adaptive toolbox. We
have lots of empirical evidence that humans and other animals use heuristics widely
and successfully, so the lucky event (adaptation of an ecologically rational toolbox)
must have taken place. We have two responses to this objection. First, it overstates
the weight of the empirical evidence. Second, even if the empirical evidence were
unequivocal, our results show that we would still lack a satisfactory explanation of
how we came to have adaptive toolboxes.

The objection seems forceful because the examples of successful heuristic use can
be so striking and compelling. Consider for instance the gaze heuristic: people and
dogs alike catch flying objects with no thought at all, not by calculating trajectories,
but by e.g. running so that their “gaze angle” stays constant (McLeod and Dienes
1996; Shaffer et al. 2004). If a heuristic can take the place of calculus here, what
could heuristics not accomplish? From our set of examples of successful heuristic use,
however, we cannot infer that human cognition is as a rule the product of heuristic
use.11 This is a much stronger claim. The evidence is suggestive, but the examples still
cover only a small minority of cognitive tasks and the set may be non-representative.
So the empirical evidence is not yet sufficient to demonstrate the strong, general claim
on which the objection relies.

Furthermore, it is not actually surprising that examples of heuristics performing
well have been found. In the examples, both the task and the environment are chosen
by the researchers, and it is known that if one is free to characterize the environment,
there always exist tractable heuristics that perform well. Using human intelligence, it

11 In fact, it is a point of discussion whether the empirical evidence favors heuristic use in general (Glöckner
et al. 2014) or the lauded heuristics in particular (see e.g. Chater et al. 2003). For our purposes, we wish
to remain neutral on these issues and focus on the question of whether the adaptive toolbox theory has the
important explanatory virtue of avoiding the intractability problem.
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is not difficult to pair heuristics to environments and identify a task that the heuristic
will do well at in that environment. This does not provide us with evidence for the
separate claim that there exist adaptive processes which will tend to discover such
pairings. The conditions sufficient for the existence of ecologically rational heuristics
are not the same as the conditions which would make generating a toolbox of those
heuristics tractable. For example, we could specify that our environment is such that
being famous (for something) is highly correlated with winning competitions (for that
something). If we set the task as guessing who is going to win such competitions,
and specify that the right level of knowledge and the right options are present, then
it is no surprise that ecological rationality is possible (that guessing that the famous
person wins will be a very good strategy). The example is constructed for this to be the
case. The existence of a strong correlation between fame and probability of winning
(something) enables the heuristic to guess correctly, but it does not enable adaptation to
find the heuristic. The two are separate issues, and the latter one is entirely neglected.

The Just Wrong Objection Intractability is based on a notion of computability
that just doesn’t fit with how cognition actually works. The formal analyses seem
to be “just wrong,” as they allow for all kinds of free parameters, failing to model
the specific heuristics that we, humans, have evolved.

This objection expresses the possible intuition that there is just something wrong with
our formal intractability analyses and how we approach the problem generally. This
intuitionmay seem to be supported by the idea that all accounts face the same problem,
or as Samuels put it (for cognition in general; cf. Otworowska et al. 2018, for rationality
specifically):

(…) it is verywidely assumedon inductive grounds by thosewhomodel cognitive
processes that pretty much any interesting computational problem is superpoly-
nomial in the worst case. Thus, the current criterion for intractability does little
more than characterize those problems that are not of interest to a computational
account of cognition (Samuels 2010, Ft. 4).

Reflecting Samuels’ complaint, we can provide a more precise interpretation of the
intuition. Note that there are several other interpretations, the details of which call for
different variants of our response here (for a fuller treatment, see van Rooij et al. 2019;
van Rooij 2008).

In the context of the adaptive toolbox, the objection to the worst-case character
of intractability results may go something like this: The formalization put forth and
analyzed fails to model the specific problem that evolution solved in our (the human)
case. Instead, themodel and analyses containmany free parameters. It couldwell be the
case that for some parameter settings, an adaptive toolbox is not tractably evolvable,
but that these parameter settings represent ‘worst-case’ situations that may never arise
in practice, and thus the intractability may be an artifact of overgeneralizing the input
domain beyond ecologically relevant situations (see also van Rooij 2015).

This interpretation of our findings is not invalid, but does not invalidate the analyses.
We fully agree that the resultsmay be driven by unfortunate combinations of parameter
settings, but draw an opposite conclusion from it. In fact, the point of (in)tractability
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analyses is to identify constraints on the input domain that render computations—
which are intractable for unconstrained input domains—tractable (van Rooij et al.
2019; van Rooij 2008; van Rooij and Wareham 2008). The analysis is meant to be
productive, revealingwhen theories are under-specified, so that the problematic param-
eter settings can be explicitly ruled out (such that the newworst-case parameter settings
actually present a tractable problem). A theory for which this has been done is the
stronger for it.

Furthermore, comparing the parameter settings for which competing theories are
tractable provides possibilities for comparing the empirical plausibility of the theories.
The Just Wrong Objection should seem much less compelling once it is recognized
that it ought not remain the case that every theory of cognition is intractable. In fact,
there is consensus that good theories of rationality must not be intractable (Fodor
1983, 2001; Lieder and Griffiths 2019; Martignon and Schmitt 1999), so as to not vio-
late the ought-can principle (Oaksford and Chater 1998; Zenker 2017), and Adaptive
Toolbox theorists have seen it as a virtue of their approach that their account meets
this criterion, unlike competing, classical accounts of rationality (Gigerenzer 2008;
Gigerenzer et al. 2008). For a program that aims specifically to give a tractable account
of rationality, it is important to have formal tools to be able to assess whether and when
it does. Our analyses demonstrate that the theory in current, unconstrained, form is
not yet tractable. Formal analyses such as we have reported here can guide a research
program aimed at developing tractable versions of the Adaptive Toolbox by pointing
in the direction where tractable version may be found: they must lie in specifying the
parameter settings.

4.2 Lessons

We turn now to forward-looking lessons. For the Adaptive Toolbox, new research
strategies should be used to ensure tractability. For naturalists seeking to ground nor-
mative claims in empirical ones, caution is required where it would not have been
expected.

The current Ecological Rationality research program (which attempts to empirically
validate the toolbox theory through examples of heuristics and experimental data)
leaves the adaptation problem invisible. It also seems ill-suited for solving it directly,
since it focuses on the application of heuristics from a pre-existing toolbox rather
than on the adaptation of the toolbox itself, and the examples are handpicked. More
constructively, then, our results demonstrate the need for a new sub-program within
Ecological Rationality focused on identifying the constraints needed to ensure the
tractability of the adaptation process specifically. This can only be achieved with
the help of complexity analysis (as we explain in our response to the last objection,
above); intuition is very misleading in this area. Fortunately, the systematic evaluation
of possible constraints can also be very useful for the empirical part of the research
program. Figuring out what would have enabled us to come to successfully apply
heuristics could also tell us a great deal about how those heuristics work, which could
in turn make it easier to populate the adaptive toolbox in a systematic way.

For epistemologists, this paper’s results shine the spotlight on a dependency of nat-
uralism: the naturalist project relies on sufficiently developed and credible descriptive
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theories, since it must ground its normative claims in them. At bare minimum and
even for moderate naturalists, it is quite important whether we in fact make most of
our inferences using heuristics, just as it is quite important whether we are (or could
be) Bayesian reasoners in some sense. Cognitive science is relatively young, however,
and it is still not clear how human cognition is best explained. This is not an argument
against naturalism itself, since it does not make non-naturalistic theories any more
palatable. Instead, it is an argument for conscientiousness when drawing on scientific
hypotheses, and for thinking about the implications of explanatory gaps for our nor-
mative projects. This requires, of course, staying abreast of what explanatory gaps
there are.

One might have thought, in particular, that one could unproblematically build a
naturalist, instrumentalist normative theory on the back of Ecological Rationality. The
adaptive toolbox hypothesis is highly intuitive, the examples that have been provided
are very compelling, and (in contrast to Bayesianism) it is easy to see how people can
apply heuristics to draw inferences and so forth. The results presented here, however,
show that we cannot yet be sure how far this research program can take us. We know
that success can be achieved through heuristic use, but we cannot yet see how we
could have evolved a full toolbox of heuristics for solving all of our problems. We
may discover reasonable constraints that make toolbox adaptation tractable, or we
may instead discover that only a part of human rationality stems from heuristic use.
Our normative judgments cannot outpace our empirical understanding.

This is no reason for philosophers to stop incorporating the insights and discoveries
that Ecological Rationality has brought us (some of which are independent of the
adaptationist backstory anyhow). Nor do these results make Adaptive Toolbox less
plausible orworse off than its competitors,which have their own tractability challenges
(Kwisthout et al. 2011; van Rooij et al. 2018); they rather show that it does not have
the tractability advantage that it appeared to have. On the flip side, this shows that the
naturalist should not be too quick to abandon Bayesianism and the like as too-idealized
and descriptively implausible. Just as all theories have tractability challenges, any
and all have prospects for overcoming those challenges (for example, by using the
methodology for determining the sources of intractability described in e.g. Blokpoel
et al. 2013; van Rooij 2008; van Rooij and Wareham 2008; van Rooij et al. 2018).

Moreover, we can learn a great deal about what a good descriptive theory would
look like by comparing Ecological Rationality and Bayesianism. The two sit at oppo-
site extremes, with Ecological Rationality collecting concrete examples of successful
heuristic application and Bayesianism providing an extremely abstract characteriza-
tion of rational beliefs and choices. The contrast makes salient the weaknesses of
both and the need for an intermediate offering. Bayesianism’s intractability problems
result from its generality, and the possibility of re-interpreting almost everything as a
Bayesian optimization means that it is hard to truly test and improve the theory. Eco-
logical Rationality, in contrast, envies Bayesianism its all-encompassing abstraction.
An improved adaptationist backstory would help to unify the plethora of examples and
allow the prediction of new heuristics on theoretical grounds. In both cases, showing
how tractability is possible is an important part of improving the theories’ plausibility
and explanatory strength.
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A Appendix

In this Appendix, we provide full proofs of the results discussed in the body of the
paper. We restate the results before giving their proofs.

Theorem 3.1 Toolbox Adaptation isNP-hard, evenwhen restricted to an arbitrary
fixed ermin ∈ (0, 1].
Proof We give an alternative and simplified proof of the result by Otworowska et al.
(2018). We firstly show hardness for the case of ermin = 1. Then we describe how the
proof can be adapted for other ermin ∈ (0, 1].

We showNP-hardness by giving a polynomial-time reduction from theNP-complete
problem of Dominating Set. In this problem, one is given an undirected graph G =
(V , F) and a positive integer k, and the question is to decide whether there exists a
subset D ⊆ V of at most k vertices in the graph that is a dominating set—that is, D is
such that for all v ∈ V it holds that either (i) v ∈ V or (ii) there is some v′ ∈ D such
that v and v′ are adjacent in G.

Let (G, k) be an input of Dominating Set, where G = (V , F) is an undirected
graph, k is a positive integer, V = {v1, . . . , vn}, and F = { f1, . . . , fm}. We construct
an instance of Toolbox Adaptation as follows. We let #h = 1 and |h| = k.
Moreover, we let ermin = 1. We construct the environment � = (E, S, A, D) as
follows. As set of events, we take E = {ei | 1 ≤ i ≤ n}. The set A = {a1, a2} of
actions consists of two actions. As set of situations, we take S = {si , ti | 1 ≤ i ≤ n}.
For each 1 ≤ i ≤ n, we let the situation si set exactly those events e j to true for
which it holds that i = j or {v j , vi } ∈ F . Moreover, for each 1 ≤ i ≤ n, we let the
situation ti set all cues to false. We define the function D in such a way that in all
situations si only the action a1 is satisfactory and in all situations ti only the action a2
is satisfactory. This concludes our description of the construction of the instance of
Toolbox Adaptation.

We argue that (G, k) is a yes-instance of Dominating Set if and only if the
constructed instance is a yes-instance of Toolbox Adaptation.
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(⇒) Suppose that (G, k) is a yes-instance of Dominating Set. That is, there is
some D ⊆ V of size k that dominates all vertices in G. Let D = {v j1, . . . , v jk }. We
construct a toolbox that iteratively checks the events e j1 , . . . , e jk . If any of them is true,
the action a1 is performed. Otherwise, the action a2 is performed. Clearly, since D is
a dominating set, this toolbox has an ecological rationality of ermin = 1. Moreover,
since |D| = k, the toolbox fits the bounds given by #h and |h|.

(⇐) Conversely, suppose that there exists a toolbox T that fits the bounds given by
#h and |h| and that has ecological rationality ermin = 1. Due to the construction of �,
it is straightforward to see that T must check k events e j1 , . . . , e jk , and perform a1 if
and only if at least one of them is true. Since T has ecological rationality ermin = 1,
we then know that D = {v j1 , . . . , v jk } is a dominating set in G.

Tomodify the proof towork also for other ermin ∈ (0, 1], one can add an appropriate
number of additional situations for which none of the actions is satisfactory. By doing
this, one can decrease the ecological rationality ermin that canmaximally be attained by
an arbitrary amount. Since ermin is a fixed constant, this only adds a polynomial-time
overhead to the reduction. ��
Theorem 3.2 Toolbox Adaptation is NP-hard (under Turing reductions) even
when a promise is given that there exists an ecologically rational toolbox for the
given environment (of the right size).

Proof Suppose that Toolbox Adaptation is tractable (i.e., solvable in polynomial
time) when such a promise is given. We show that then SAT is solvable in polynomial
time. (The polynomial-time algorithm for SAT that we specify is a polynomial-time
Turing reduction from SAT to the variant of Toolbox Adaptationwhere a promise
is given that there exists an ecologically rational toolbox of the right size for the given
environment. Thus, this shows that the problem is NP-hard under Turing reductions.)

Take an input ϕ of SAT, i.e., ϕ is a propositional formula. Due to the fact that
Toolbox Adaptation is NP-hard (Theorem 3.1), we know that there exists a
polynomial-time reduction R from SAT to Toolbox Adaptation. We employ this
reduction to construct an instance R(ϕ) of Toolbox Adaptation in polynomial
time. Moreover, this reduction R has the property that for any satisfiable formula ϕ,
each solution for the input R(ϕ) Toolbox Adaptation can be transformed in poly-
nomial time (say with an algorithm R′) to a satisfying assignment for ϕ.

Now, due to our assumption that Toolbox Adaptation is tractable when an
ecologically rational toolbox is promised to exist, we know that there exists an algo-
rithm A that—for each input of Toolbox Adaptation for which there exists a
solution—returns such a solution in polynomial time. We then run the algorithm A
on the input R(ϕ), leading to some output. If this output is not a toolbox, we return
“unsatisfiable.” If this output is some toolbox, we run the algorithm R′ on the toolbox
to get a truth assignment α for ϕ. If the algorithm R′ returns no truth assignment or if
it returns a truth assignment α that does not satisfy ϕ (we can check this in polynomial
time), we return “unsatisfiable.” Otherwise, if it returns a satisfying truth assignment
α for ϕ, we return “satisfiable.”

We claim that this algorithm correctly solves SAT in polynomial time. Suppose
that ϕ is satisfiable. Then R(ϕ) is a yes-instance of Toolbox Adaptation. Thus,
the algorithm A will output a valid solution (a toolbox) for R(ϕ). Consequently, after
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running the algorithm R′ on this solution, we get a satisfying truth assignment α for ϕ,
and thus the algorithm correctly outputs “satisfiable.” Conversely, if ϕ is unsatisfiable,
there does not exist any satisfying truth assignment for ϕ. Therefore, the algorithm
will correctly output “unsatisfiable.” This concludes our proof. ��

Theorem 3.3 Toolbox Re-adaptation is NP-hard (under Turing reductions) even
in a slowly changing environment. That is,Toolbox Re-adaptation is not tractable
in a slowly changing environment, unless P = NP. The problem remains hard when a
promise is given that an ecologically rational toolbox exists.

Proof We give a polynomial-time Turing reduction from Toolbox Adaptation.
By Theorem 3.2, this allows us to conclude the the problem of Toolbox Re-

adaptation is NP-hard under Turing reductions.
Take an instance (�, #h, |h|, ermin) of Toolbox Adaptation, where � =

(E, S, A, D). Without loss of generality, we may assume that #h = 1—because
the reduction in the proof of Theorem 3.2 constructs only instances where #h = 1.
Moreover, let nE = |E | be the number of events, let nS = |S| be the number of
situations, and let nA = |A| be the number of actions in �. We will solve this instance
in polynomial time by querying an oracle for Toolbox Re-adaptation multiple
times.

We firstly construct the environment �1, consisting of a single event e1, a single
situation s1, and a single action a1 taken from �—in such a way that �1 agrees with �,
and such that the action a1 is satisfactory in s1. Moreover, we construct a toolbox T1
that has ecological rationality 1 ≥ ermin; this is easy, since �1 has a single event, a
single situation and a single action, and this action is satisfactory in the only situation.

Then, we proceed in r = nE+nA+nS−3 rounds. In each i-th round, we construct a
toolbox Ti with sufficient ecological rationality for some environment �i that consists
of �i−1 together with a new event, a new situation, or a new action from �, if possible.
We do this by querying an oracle for Toolbox Re-adaptation several times. In
the first nE − 1 rounds, we iterate over all possible events from � that do not appear
in �i−1. For each such event, the input that we give to the oracle consists of the
environment �i−1, the integers #h and |h|, the value ermin, the toolbox Ti−1, and the
environment �′ consisting of � extended with the new event. If the oracle returns the
special symbol⊥ for each possible event, situation and action, we terminate the entire
algorithm and return ⊥ also. Otherwise, the oracle returns some suitable toolbox Ti
for some pair �′. Then we let �i = �′, and we continue with the next round.

In the next nA − 1 rounds, we do the same for the actions appearing in � but not
in�i . Then, in the last nS = 1 rounds, we again do the same, but then for the situations
appearing in � but not in �i .

After performing all rounds,we have either found a suitable toolbox T = Tr that has
ecological rationality er ≥ ermin for the environment �r = �, or we have terminated
the procedure in some round and have returned⊥. We claim that the algorithm returns
a suitable toolbox T (for the original instance of Toolbox Adaptation) if and only
if such a toolbox exists.

(⇒) Suppose that the algorithm returns a toolbox T . This can only happen when
T is found in the r -th round. By the way we define the input to the oracle in the r -th

123



5780 Synthese (2021) 198:5749–5784

round, we know that T must have at most #h heuristics, each of size at most |h|, and
have ecological rationality er ≥ ermin for �r = �.

(⇐) Conversely, suppose that a suitable toolbox T exists for � = �r . Then we
know that in each round, the oracle will return a suitable toolbox T . This is because
we construct the rounds in such a way that we first add all events and actions, and then
add all situations. Whenever we can add a new situation in such a way that a suitable
toolbox exists that has high enough ecological rationality, we can safely do so (without
having to backtrack later) because ecological rationality is monotone—meaning that
adding a situation where a toolbox chooses a satisfactory action never decreases the
ecological rationality of that toolbox. Therefore, after the r -th round, the algorithm
will return some toolbox T for �r = � with at most #h heuristics, each of size at most
|h|, and with ecological rationality er ≥ ermin for �.

Since Toolbox Adaptation is NP-hard, we can conclude that Toolbox Re-

adaptation is NP-hard under polynomial-time Turing reductions.
To see that the problem remains intractable even when a promise is given that an

ecologically rational toolbox exists, it suffices to note that the proof of Theorem 3.2,
also works when the polynomial-time algorithm for Toolbox Adaptation consists
of the above algorithmcombinedwith a polynomial-time algorithm for Toolbox Re-

adaptation that is used to simulate the oracle queries. That is, there is no polynomial-
time algorithm that solves Toolbox Re- adaptation for the case where a promise
is given that an ecologically rational toolbox exists, unless P = NP. ��

Corollary 3.1 Toolbox Adaptation is NP-hard, even when restricted to the case
where there are only two actions and in each situation exactly one action is satisfactory.

Proof The polynomial-time reduction that we use in the proof of Theorem 3.1 con-
structs only instances with two actions. Therefore, we get that the problem is NP-hard
also when restricted to the case where there are only two actions. ��

Corollary 3.2 Toolbox Adaptation is NP-hard, even when restricted to the case
where #h = 1 or when restricted to the case where |h| = 1. That is, Toolbox
Adaptation is NP-hard even in the cases (i) where the selector heuristic is trivial
(always selects the same heuristic), and (ii) where each heuristic is trivial (always
selects the same action).

Proof The polynomial-time reduction that we use in the proof of Theorem 3.1 con-
structs only instances where #h = 1. Therefore, we get that the problem is NP-hard
also when restricted to the case where #h = 1.

For the other case, we can modify the proof of Theorem 3.1 as follows. In the
reduction in the proof ofTheorem3.1,we construct the instance in such away that #h =
1 and |h| = k. In the modified reduction, we instead let #h = k and |h| = 1. The
rest of the proof is entirely the same. The argument why the reduction is correct is
entirely analogous. Thus, we get a polynomial-time reduction (showing NP-hardness)
that produces only instances where |h| = 1, and therefore we can conclude that the
problem is NP-hard also when restricted to the case where |h| = 1. ��
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