Skip to main content
. 2021 Oct 27;16(10):e0256559. doi: 10.1371/journal.pone.0256559

Table 3. Performance evaluation of PLS models to predict wood chemical composition.

Species Component PP LV Rc2 RMSEC Rp2 RMSEP RPDa RPDb
Capirona Cellulose 2ndDer 4 85.1 1.57 74.0 2.06 1.96 1.96
Hemicellulose 1stDer 5 77.3 0.52 61.1 0.68 1.60 1.60
Holocellulose 2ndDer 4 83.0 1.62 72.1 2.07 1.89 1.90
Lignin 2ndDer 4 90.2 0.31 75.4 0.48 2.02 2.06
Bolaina Cellulose MM-N 4 97.3 1.83 97.3 1.82 6.14 6.14
Hemicellulose 1stDer 5 85.1 1.98 81.3 2.12 2.31 2.32
Holocellulose V-N 6 89.3 3.09 88.8 3.16 2.99 2.99
Lignin 1stDer 6 82.6 0.72 77.7 0.81 2.12 2.12

PP: Pre-processing methods: (1st Der: First derivative, 2nd Der: Second derivative. MM-N: Min—Max normalization and V-N: Vector normalization).

LV: Latent variables according to Gowen et al. [21].

a RPD according to Santos et al. [25].

b RPD according to Li et al. [26].