Skip to main content
. 2021 Aug 7;3(2):169–204. doi: 10.1007/s42521-021-00038-2

Table 14.

Differences in raw annualized returns of long-short portfolios (unique cashtags)

Panel A: Twitter
(1) (2) (3) (4) (5) (6) (7) (8) (9)
Harvard-IV (1) −1.30 −1.24 −2.16 −0.63 −1.01 −0.79 −1.45 −1.61
LM (2) 0.13 −0.73 0.72 0.34 0.46 −0.34 −0.29
L1 (3) −1.04 0.59 0.24 0.39 −0.45 −0.49
L2 (4) 1.47 1.21 1.37 0.35 0.44
VADER (5) −0.36 −0.21 −0.96 −1.00
Naive Bayes (6) 0.22 −0.63 −0.74
Max. entropy (7) −0.74 −0.86
Deep-MLSA (8) 0.02
DeepMoji (9)
Panel B: StockTwits
(1) (2) (3) (4) (5) (6) (7) (8) (9)
Harvard-IV (1) 0.60 −0.31 −1.47 −0.21 0.48 0.45 −0.79 −0.81
LM (2) −0.88 −2.05 −0.82 −0.11 −0.13 −1.38 −1.29
L1 (3) −1.31 0.09 0.83 0.82 −0.54 −0.61
L2 (4) 1.22 2.17 2.31 0.43 0.66
VADER (5) 0.66 0.65 −0.69 −0.65
Naive Bayes (6) −0.04 −1.28 −1.68
Max. entropy (7) −1.31 −1.76
Deep-MLSA (8) 0.07
DeepMoji (9)

The table depicts the t-statistics of the average differences in raw returns of long-short portfolios based on daily bullish sentiment estimated from short messages published on Twitter (Panel A) and StockTwits (Panel B) mentioning a unique cashtag. More precisely, we take the difference between returns obtained from methodologies reported in the rows with those reported in columns. The t-statistics are constructed using Newey-West (1987) standard errors. Differences which are statistically significant at the 5% level are highlighted by boldfaced numbers