Table 14.
Differences in raw annualized returns of long-short portfolios (unique cashtags)
Panel A: Twitter | |||||||||
---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
Harvard-IV (1) | – | −1.30 | −1.24 | −2.16 | −0.63 | −1.01 | −0.79 | −1.45 | −1.61 |
LM (2) | – | 0.13 | −0.73 | 0.72 | 0.34 | 0.46 | −0.34 | −0.29 | |
L1 (3) | – | −1.04 | 0.59 | 0.24 | 0.39 | −0.45 | −0.49 | ||
L2 (4) | – | 1.47 | 1.21 | 1.37 | 0.35 | 0.44 | |||
VADER (5) | – | −0.36 | −0.21 | −0.96 | −1.00 | ||||
Naive Bayes (6) | – | 0.22 | −0.63 | −0.74 | |||||
Max. entropy (7) | – | −0.74 | −0.86 | ||||||
Deep-MLSA (8) | – | 0.02 | |||||||
DeepMoji (9) | – |
Panel B: StockTwits | |||||||||
---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
Harvard-IV (1) | – | 0.60 | −0.31 | −1.47 | −0.21 | 0.48 | 0.45 | −0.79 | −0.81 |
LM (2) | – | −0.88 | −2.05 | −0.82 | −0.11 | −0.13 | −1.38 | −1.29 | |
L1 (3) | – | −1.31 | 0.09 | 0.83 | 0.82 | −0.54 | −0.61 | ||
L2 (4) | – | 1.22 | 2.17 | 2.31 | 0.43 | 0.66 | |||
VADER (5) | – | 0.66 | 0.65 | −0.69 | −0.65 | ||||
Naive Bayes (6) | – | −0.04 | −1.28 | −1.68 | |||||
Max. entropy (7) | – | −1.31 | −1.76 | ||||||
Deep-MLSA (8) | – | 0.07 | |||||||
DeepMoji (9) | – |
The table depicts the t-statistics of the average differences in raw returns of long-short portfolios based on daily bullish sentiment estimated from short messages published on Twitter (Panel A) and StockTwits (Panel B) mentioning a unique cashtag. More precisely, we take the difference between returns obtained from methodologies reported in the rows with those reported in columns. The t-statistics are constructed using Newey-West (1987) standard errors. Differences which are statistically significant at the 5% level are highlighted by boldfaced numbers