Skip to main content
. 2021 Aug 7;3(2):169–204. doi: 10.1007/s42521-021-00038-2

Table 5.

Correlations of daily bullish sentiment across sentiment measures (unique cashtags)

Panel A: Twitter
(1) (2) (3) (4) (5) (6) (7) (8) (9)
Harvard-IV (1) 1.00 0.26 0.24 0.29 0.41 0.12 0.11 0.12 0.23
LM (2) 1.00 0.21 0.31 0.33 0.11 0.12 0.20 0.17
L1 (3) 1.00 0.53 0.30 0.35 0.34 0.11 0.45
L2 (4) 1.00 0.32 0.38 0.38 0.16 0.47
VADER (5) 1.00 0.20 0.18 0.16 0.30
Naive Bayes (6) 1.00 0.73 0.08 0.46
Max. entropy (7) 1.00 0.08 0.45
Deep-MLSA (8) 1.00 0.10
DeepMoji (9) 1.00
Panel B: StockTwits
(1) (2) (3) (4) (5) (6) (7) (8) (9)
Harvard-IV (1) 1.00 0.28 0.21 0.33 0.40 0.18 0.18 0.14 0.21
LM (2) 1.00 0.20 0.27 0.34 0.16 0.17 0.25 0.20
L1 (3) 1.00 0.52 0.21 0.35 0.37 0.15 0.38
L2 (4) 1.00 0.31 0.48 0.53 0.17 0.54
VADER (5) 1.00 0.21 0.20 0.19 0.22
Naive Bayes (6) 1.00 0.81 0.12 0.55
Max. entropy (7) 1.00 0.13 0.60
Deep-MLSA (8) 1.00 0.13
DeepMoji (9) 1.00
Panel C: correlation between Twitter and StockTwits
(1) (2) (3) (4) (5) (6) (7) (8) (9)
StockTwits-Twitter 0.28 0.32 0.25 0.32 0.33 0.20 0.20 0.26 0.30

Note: This table reports correlations between daily bullish sentiment scores estimated from short messages that contain a unique cashtag published on Twitter and StockTwits based on different approaches (dictionary-based and machine learning techniques). Panel A and B report correlations between daily bullish sentiment scores estimated from Twitter and StockTwits short messages, respectively. Panel C reports correlations between daily bullish sentiment scores estimated from Twitter short messages with those estimated from StockTwits short messages