Table 8.
Fama-MacBeth (1973) regression coefficients for daily bullish sentiment (unique cashtags)
Panel A: Twitter | ||||
---|---|---|---|---|
Harvard-IV | 0.0010 | 0.0004 | 0.0003 | 0.0002 |
(1.49) | (0.56) | (0.51) | (0.32) | |
LM | 0.0028 | 0.0014 | 0.0012 | 0.0011 |
(4.22) | (2.06) | (1.68) | (1.53) | |
L1 | 0.0014 | 0.0005 | −0.0003 | 0.0003 |
(1.83) | (0.63) | (−0.41) | (0.47) | |
L2 | 0.0027 | 0.0025 | 0.0019 | 0.0017 |
(3.62) | (3.18) | (2.55) | (2.26) | |
VADER | 0.0011 | 0.0007 | 0.0011 | 0.0007 |
(1.50) | (1.00) | (1.53) | (0.99) | |
Naive Bayes | 0.0031 | 0.0021 | 0.0006 | 0.0015 |
(4.29) | (2.76) | (0.71) | (1.77) | |
Max. entropy | 0.0025 | 0.0015 | 0.0006 | 0.0006 |
(3.31) | (2.01) | (0.78) | (0.76) | |
Deep-MLSA | −0.0004 | −0.0006 | −0.0003 | −0.0008 |
(−0.68) | (−0.87) | (−0.41) | (−1.30) | |
DeepMoji | 0.0013 | 0.0001 | −0.0007 | −0.0002 |
(1.75) | (0.17) | (−0.73) | (−0.26) |
Panel B: StockTwits | ||||
---|---|---|---|---|
Harvard-IV | 0.0028 | 0.0019 | 0.0019 | 0.0011 |
(4.44) | (2.69) | (2.42) | (1.44) | |
LM | 0.0034 | 0.0025 | 0.0011 | 0.0012 |
(5.42) | (4.18) | (1.50) | (1.60) | |
L1 | 0.0022 | 0.0015 | 0.0008 | 0.0006 |
(2.79) | (1.99) | (0.96) | (0.71) | |
L2 | 0.0024 | 0.0016 | 0.0002 | 0.0001 |
(3.37) | (2.26) | (0.35) | (0.09) | |
VADER | 0.0025 | 0.0019 | 0.0017 | 0.0010 |
(3.54) | (2.61) | (2.14) | (1.24) | |
Naive Bayes | 0.0003 | 0.0001 | −0.0001 | −0.0007 |
(0.34) | (0.08) | (−0.19) | (−0.98) | |
Max. entropy | −0.0002 | −0.0002 | −0.0012 | −0.0007 |
(−0.21) | (−0.21) | (−1.50) | (−0.96) | |
Deep-MLSA | 0.0000 | 0.0003 | −0.0011 | −0.0015 |
(−0.02) | (0.41) | (−1.76) | (−2.37) | |
DeepMoji | 0.0019 | 0.0003 | 0.0007 | 0.0006 |
(2.42) | (0.40) | (0.93) | (0.76) |
Note: The table reports average cross-sectional regression coefficients (see Fama and MacBeth 1973) for daily bullish investor sentiment estimated from short messages published on Twitter (Panel A) and StockTwits (Panel B) mentioning a unique cashtag. The rows refer to the respective investor sentiment measure. The columns represent the dependent variable, being the h-day ahead retail investors’ order imbalance, for . Newey-West (1987) standard errors are used to construct t-statistics, which are reported in parentheses below the respective coefficient estimate. All covariates are standardized such that the reported parameters can be interpreted as the effect of a one standard deviation change in that variable