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Abstract

Spatial resolution plays a critically important role in MRI for the precise delineation of the imaged 

tissues. Unfortunately, acquisitions with high spatial resolution require increased imaging time, 

which increases the potential of subject motion, and suffers from reduced signal-to-noise ratio 

(SNR). Super-resolution reconstruction (SRR) has recently emerged as a technique that allows 

for a trade-off between high spatial resolution, high SNR, and short scan duration. Deconvolution­

based SRR has recently received significant interest due to the convenience of using the image 

space. The most critical factor to succeed in deconvolution is the accuracy of the estimated 

blur kernels that characterize how the image was degraded in the acquisition process. Current 

methods use handcrafted filters, such as Gaussian filters, to approximate the blur kernels, and have 

achieved promising SRR results. As the image degradation is complex and varies with different 

sequences and scanners, handcrafted filters, unfortunately, do not necessarily ensure the success 

of the deconvolution. We sought to develop a technique that enables accurately estimating blur 

kernels from the image data itself. We designed a deep architecture that utilizes an adversarial 

scheme with a generative neural network against its degradation counterparts. This design allows 

for the SRR tailored to an individual subject, as the training requires the scan-specific data 

only, i.e., it does not require auxiliary datasets of high-quality images, which are practically 

challenging to obtain. With this technique, we achieved high-quality brain MRI at an isotropic 

resolution of 0.125 cubic mm with six minutes of imaging time. Extensive experiments on both 

simulated low-resolution data and clinical data acquired from ten pediatric patients demonstrated 

that our approach achieved superior SRR results as compared to state-of-the-art deconvolution­

based methods, while in parallel, at substantially reduced imaging time in comparison to direct 

high-resolution acquisitions.
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1 Introduction

MRI is critically important in clinical and scientific research studies. High spatial resolution 

in MRI allows for the precise delineation of the imaged tissues. However, the high spatial 

resolution requires a long scan time, and in turn unfortunately increases the potential 

of subject motion [1, 22] and reduces the signal-to-noise ratio [2, 16]. Super-resolution 

reconstruction (SRR) has recently emerged as a technique of post-acquisition processing, 

which allows for obtaining MRI images at a high spatial resolution, high SNR, and short 

scan time [7–9, 19, 26]. Among these SRR techniques, deconvolution-based methods [16, 

20, 21, 23, 24] have recently received significant interest due to the convenience of using 

the image space only. However, the deconvolution requires an accurate estimate in the blur 

kernel that characterizes the degradation process of the acquired images, which are usually 

difficult to obtain. Current methods take handcrafted filters as an approximation of the blur 

kernel, such as Gaussian filters [7, 20]. As the image degradation is complex and varies with 

different sequences and scanners, however, handcrafted approximations do not necessarily 

ensure the success of the deconvolution, and even possibly lead to unusable reconstructions.

Blur kernel estimation is often used in natural image deblurring, also known as blind 

deconvolution [3], in particular equipped with deep neural networks [6]. Unfortunately, no 

techniques focus on blur kernel estimation for deconvolution-based SRR in MRI. Although 

deep learning-based techniques have been widely used in natural image super-resolution, 

the majority of deep SRR methods for MRI are performed with 2D slices [4, 28, 30] as 

the large-scale, auxiliary datasets of high-quality volumetric MRI images are practically 

challenging to obtain at a high resolution and suitable SNR. It has been shown that the deep 

SRR model learned on volumetric data achieved better results than on 2D slice data [15].

We sought to develop a methodology that allows for accurately estimating blur kernels from 

the image data itself. We designed a deep architecture that utilizes an adversarial scheme 

with a generative neural network against its degradation counterparts. Our design enables 

the SRR tailored to an individual subject, as the training of our deep SRR model requires 

the scan-specific image data only. We achieved high-quality brain MRI images through our 

SRR method at an isotropic resolution of 0.125 cubic mm with six minutes of imaging time. 

We assessed our method on simulated low-resolution (LR) image data and applied it to ten 

pediatric patients. Experimental results show that our approach achieved superior SRR as 

compared to state-of-the-art deconvolution-based methods, while in parallel, at substantially 

reduced imaging time in comparison to direct high-resolution (HR) acquisitions.

2 Methods

2.1 Theory

It is difficult for SRR to enhance 2D in-plane or true 3D MRI resolution due to the 

frequency encoding scheme [14, 18], but effective to improve through-plane resolution for 

2D slice stacks [10]. Therefore, we focus on reducing the slice thickness of LR scans1 with 

large matrix size and thick slices. The thick slices lead to reduced scan time and increased 

1We refer to a 2D slice stack as a scan or an image hereafter.
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SNR. Thus, we can acquire a set of LR images with different orientations to facilitate the 

SRR to capture the HR signals distributed in different directions, while keeping the total 

scan time short.

Forward Model.—Let x denote the HR reconstruction and yj j = 1
n  denote the n acquired 

LR images. The forward model that describes the acquisition process is formulated as

yj = DjBjTjx+ν, j = 1, 2, …, n . (1)

The transform Tj compensates for subject motion and is obtained by aligning the n LR 

images together. Bj describes the image degradation defined by a blur kernel. Dj is the 

downsampling operator that discards a certain amount of data from the HR signal. The noise 

ν is additive and Gaussian when SNR > 3 [11].

Generative Degradation Learning.—Our SRR targets a joint estimate in both the HR 

reconstruction and blur kernel. We use a generative neural network to generate an HR 

estimate by x = fθ (zx ), and n generative networks to generate n blur kernels by Bj = 

gω j(zbj). These generations are constrained by the image degradation process as described in 

the forward model. Therefore, the generative degradation learning is found by

min
x, θ, Bj, ωj

ℓ x−fθ zx + ∑
j = 1

n
ℓbj Bj − gωj zbj ,

s . t . yj = DjBjTjx + ν, j = 1, 2, …, n .
(2)

where fθ and gω j are nonlinear functions that generate data, parameterized by θ and ωj, 

respectively, ℓ and ℓbj are the loss functions in the optimization, and zx and zbj are the initial 

guesses for x and Bj, respectively. The function fθ here is also known as the deep image 

prior [25]. When the loss functions are ℓ2 loss, we can substitute x and Bj with the generative 

functions, and the optimization is then re-formulated as

min
θ, ωj

∑
j = 1

n
yj − Djgωj zbj Tjfθ zx 2

2 + λℛTV fθ zx , (3)

with a total variation (TV) [17] term imposed to regularize the HR reconstruction for edge 

sharpness, and a weight parameter λ > 0.

We implement these generative functions by deep neural networks. fθ is realized by a 3D 

UNet-like encoder-decoder network [31]. gω j is implemented by a fully connected network 

containing four hidden linear layers and one Tanh layers. Each layer is followed by a 

dropout regularization and a ReLU activation. The architecture of our generative degradation 

networks (GDN) is shown in Fig. 1. A degradation network comprises a generative function 

for the blur kernel in combination with the constraint delivered by the forward model. 

We solve the optimization by an Adam algorithm [12]. The training for the GDN is an 

optimization problem. It is thus carried out on the scan-specific LR images yj themselves 

only, and in turn, allows for the SRR tailored to an individual subject.
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The HR reconstruction is obtained directly from x = fθ (zx ) once the GDN model has 

been trained. Also, to ensure the appropriate scale of the voxel intensity, a standard TV­

based SRR with the learned blur kernels Bj can be optionally applied to obtain the HR 

reconstruction.

2.2 GDN-Based SRR

Since we focus on enhancing the through-plane resolution, the degradation process is 

assumed to be associated with the blurs from the slice excitation and downsampling. The 

downsampling is carried out by truncating the high frequency in the Fourier domain, and it 

is thus determined by a sinc low-pass filter. The slice excitation is characterized by the slice 

profile that is generated by the radio frequency (RF) pulse during scans. Therefore, the blur 

kernel we estimate is the convolution between the slice profile and the sinc filter.

The motion compensation is implemented by a rigid body image registration as we focus on 

brain MRI in this work. We interpolate the LR images to those with the resolution and size 

the same as the HR reconstruction, and align them together. The obtained transformations 

are used as Tj in the forward model.

We initialize the blur kernels as a sinc filter convolved with a Gaussian low-pass filter whose 

full width at half maximum (FWHM) is equal to the slice thickness of the LR image over 

that of the HR reconstruction. We compute an initial guess of the HR reconstruction by a 

standard TV-based SRR [16] with the above initialized blur kernels. We set λ = 0.01 in Eq. 

(3) according to our empirical results. We run 4k iterations with a learning rate of 0.01 to 

minimize Eq. (3). It took about 2.5 h to reconstruct an HR image of size 384 × 384 × 384 

voxels from three LR scans on an NVIDIA Titan RTX GPU with PyTorch [13].

2.3 Materials

We simulated an LR dataset based on the Human Connectome Project (HCP) database [5]. 

We randomly selected forty subjects from the HCP database, including five T1w and five 

T2w HR images with an isotropic resolution of 0.7 mm as the ground truths. We generated 

four blur kernels, as shown in Figs. 2(b) and 2(c), based on a Dirac pulse, a Gaussian, a sinc, 

and a boxcar functions depicted in Fig. 2. We simulated four groups of LR images according 

to the four types of blur kernels. We downsampled each ground truth image to three LR 

images in the complementary planes with a slice thickness of 2 mm after convolving it with 

the blur kernel in its group. Gaussian noise was added in each LR image with a standard 

deviation of 5% of maximum voxel intensity.

We acquired thirty LR T2-FSE scans from ten pediatric patients - three images in 

complementary planes per patient - on a 3T scanner. The field of view (FOV) was 192 

mm × 192 mm, matrix size was 384 × 384, slice thickness was 2 mm, TE/TR = 93/12890 

ms with an echo train length of 16 and a flip angle of 160◦. It took about two minutes in 

acquiring an LR image.
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2.4 Experimental Design

As our SRR is an unsupervised deconvolution-based approach, we compared our approach 

to state-of-the-art methods in the same category, including a TV-based method [16], a 

gradient guidance regularized (GGR) method [20], and a TV-based method with joint blur 

kernel learning (TV-BKL) implemented by ourselves. The parameters of the baselines were 

set according to their best PSNR.

Experiment 1: Assessments on Simulated Data.—The goal of this experiment is 

two-fold: to assess the accuracy of the blur kernel estimates and to demonstrate that the 

estimated blur kernels lead to superior HR reconstructions. We reconstructed each HR 

image at an isotropic resolution of 0.7 mm from three LR images on the HCP dataset. 

We investigated the estimation error defined by the ℓ2 norm of the difference between the 

estimated kernel and ground truth over the ℓ2 norm of ground truth ‖kest − kgt‖2 /‖kgt‖2. To 

evaluate the reconstruction quality, we investigated the PSNR and SSIM [27] of the HR 

reconstructions.

Experiment 2: Assessments on Clinical Data.—This experiment aimed at assessing 

the applicability of our SRR for clinical use. We reconstructed each HR image at an 

isotropic resolution of 0.5 mm on the clinical dataset. We evaluated the sharpness of these 

reconstructions by average edge strength [29]. We checked the estimated blur kernels and 

qualitatively assessed these reconstructions.

Experiment 3: Impact on Deconvolution-Based Algorithms.—This experiment 

aimed at evaluating the impact of our generative degradation learning on deconvolution­

based algorithms. We expected our estimated blur kernels can improve the TV and GGR 

algorithms in their SRR quality on the HCP dataset.

3 Results

Experiment 1: Assessments on Simulated Data.

Figure 3 shows the estimation errors in the blur kernels obtained from our method and 

TV-BKL. Our method, SR-GDN, considerably outperformed TV-BKL on the HCP dataset. 

The average errors of SR-GND and TV-BKL were respectively 10.1% ± 4.6% and 25.8% 

± 12.0%. Two-sample t-test showed that SR-GND offered significantly lower errors on the 

simulated data than TV-BKL at the 5% significance level (p = 2.16e−118).

Figure 4 shows the spectrum of true and estimated blur kernels from SR-GDN and TV-BKL 

on four representative simulations. Our estimates (SR-GDN) closely followed the true 

kernels and offered higher accuracy than TV-BKL with all types of kernels on the HCP 

dataset.

Figure 5 shows the quantitative assessment of our approach (SR-GDN) and the three 

baselines on the HCP dataset in terms of PSNR and SSIM. Our method achieved an average 

PSNR at 41.2 dB ± 3.74 dB and SSIM at 0.98 ± 0.01, which were considerably higher than 

obtained from the three base-lines. Two-sample t-tests showed that SR-GDN significantly 

Sui et al. Page 5

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2021 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



outperformed the three baselines in terms of SSIM at the 5% significance level with p = 

2.36e−18 against TV, 4.37e−18 against GGR, and 1.81e−7 against TV-BKL.

Experiment 2: Assessments on Clinical Data.

Figures 6(a) and 6(b) show the mean and standard deviation of the blur kernels estimated 

by TV-BKL and SR-GDN from ten sets of clinical scans acquired on a 3T scanner. The 

results show that both methods led to small standard deviations of estimations. Figure 6(c) 

shows the spectrum magnitudes of the handcraft Gaussian filter and the mean blur kernels 

estimated by TV-BKL and SR-GND. In comparison to the simulation results shown in 

Fig. 4, the results show that our approach (SR-GND) estimated the slice profile as a close 

approximation to a boxcar function.

We evaluated the average edge strength (AES) of the HR reconstructions obtained from our 

approach and the three baselines on the ten sets of clinical scans. The results, as shown in 

Table 1, suggests that our approach, SR-GDN achieved the highest AES. TV-BKL yielded 

the lowest AES as the noise in the reconstructions led to blurry edges.

Figure 7 shows the qualitative assessment of our approach and the three baselines in the 

slices of representative clinical data. The results show that SR-GDN offered high-quality 

brain MRI with the clinical LR data. GGR smoothed the images excessively so missed some 

anatomical details, while TV and TV-BKL generated noisy images and caused artifacts as 

shown in the coronal image.

Experiment 3: Impact on Deconvolution-Based Algorithms.

We replaced the handcrafted Gaussian filter used in TV and GRR with our estimated blur 

kernels and ran the two methods on the HCP dataset. The increased PSNR/SSIM were 

respectively: TV = 13.90%/3.15% and GGR = 3.35%/2.44%. The results show that our 

estimated blur kernels led to improved deconvolution-based algorithms.

4 Discussion

We have developed a deconvolutional technique that enabled accurately estimating blur 

kernels from the image data itself. We have designed a deep architecture that utilizes an 

adversarial scheme with a generative neural network against its degradation counterparts. 

This design has been demonstrated to allow for the SRR tailored to an individual subject. 

We have thoroughly assessed the accuracy of our approach on a simulated dataset. We have 

successfully applied our approach to ten pediatric patients, and have achieved high-quality 

brain MRI at an isotropic resolution of 0.125 cubic mm with six minutes of imaging 

time. Experimental results have shown that our approach achieved superior SRR results as 

compared to state-of-the-art deconvolution-based methods, while in parallel, at substantially 

reduced imaging time in comparison to direct HR acquisitions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Architecture of our proposed approach to generative degradation learning.
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Fig. 2. 
Illustrations of the mock slice profiles (a), generated blur kernels (b), and spectrum 

magnitudes of these kernels (c).
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Fig. 3. 
Estimation errors in the blur kernels obtained from the two methods. Our methods, SR­

GDN, considerably outperformed TV-BKL on the HCP dataset.
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Fig. 4. 
Spectrum of true and estimated blur kernels from SR-GDN and TV-BKL on four 

representation simulations. Our estimates (SR-GDN) closely followed the true kernels and 

offered higher accuracy than TV-BKL with all types of kernels.
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Fig. 5. 
Quantitative assessment of the four SRR methods in terms of PSNR and SSIM.
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Fig. 6. 
Mean and standard deviation of the blur kernels estimated by (a) TV-BKL and (b) SR-GDN 

from ten sets of clinical scans. (c) Spectrum magnitudes of the handcraft Gaussian filter and 

the mean blur kernels estimated by TV-BKL and SR-GDN.
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Fig. 7. 
Qualitative assessment of our approach (SR-GDN) and the three baselines in the slices of 

representative clinical data.
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Table 1.

Average edge strength obtained from our approach and the three baselines on the ten sets of clinical scans.

TV GGR TV-BKL SR-GDN

2.73 ± 0.72 3.12 ± 0.90 1.78 ± 0.50 3.49 ± 0.97
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