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Abstract RNF43 is an E3 ubiquitin ligase and known negative regulator of WNT/β-catenin 
signaling. We demonstrate that RNF43 is also a regulator of noncanonical WNT5A-induced signaling 
in human cells. Analysis of the RNF43 interactome using BioID and immunoprecipitation showed 
that RNF43 can interact with the core receptor complex components dedicated to the noncanonical 
Wnt pathway such as ROR1, ROR2, VANGL1, and VANGL2. RNF43 triggers VANGL2 ubiquitination 
and proteasomal degradation and clathrin-dependent internalization of ROR1 receptor and inhibits 
ROR2 activation. These activities of RNF43 are physiologically relevant and block pro-metastatic 
WNT5A signaling in melanoma. RNF43 inhibits responses to WNT5A, which results in the suppres-
sion of invasive properties of melanoma cells. Furthermore, RNF43 prevented WNT5A-assisted 
development of resistance to BRAF V600E and MEK inhibitors. Next, RNF43 acted as melanoma 
suppressor and improved response to targeted therapies in vivo. In line with these findings, RNF43 
expression decreases during melanoma progression and RNF43-low patients have a worse prog-
nosis. We conclude that RNF43 is a newly discovered negative regulator of WNT5A-mediated 
biological responses that desensitizes cells to WNT5A.

Introduction
Ubiquitination is a post-translational modification (PTM) based on the addition of the evolutionary 
conserved protein ubiquitin (Ub) to the lysine residue(s) of the modified protein (Hershko and Ciech-
anover, 1998). Ubiquitination controls the turnover, activation state, cellular localization, and inter-
actions of target proteins. Undoubtedly, it is a process that has a direct impact on various aspects of 
cell biology (Rape, 2018). Ubiquitination requires sequential activation of ubiquitin, its transfer to 
the carrier protein, and subsequent linkage reaction with the substrate lysine residues. This last step, 
mediated by the E3 ubiquitin protein ligases (E3s), determines target specificity.

Ring Finger protein 43 (RNF43) is a E3 ubiquitin ligase with a single transmembrane domain 
from the PA-TM-RING family. RNF43 and its close homolog Zinc and Ring Finger 3 (ZNRF3) act 
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as negative regulators of the Wnt/β-catenin signaling pathway (Koo et  al., 2012; Hao et  al., 
2012). Wnt/β-catenin signaling is an evolutionary conserved pathway and a crucial regulator of 
embryonal development and tissue homeostasis. RNF43 and ZNRF3 control via regulation of 
Wnt/β-catenin multiple processes including liver zonation (Planas-Paz et al., 2016), limb spec-
ification (Szenker-Ravi et  al., 2018), and mammalian sex determination (Harris et  al., 2018). 
Mechanistically, RNF43 and ZNRF3 ubiquitinate plasma membrane Wnt receptors called Frizzleds 
(FZDs) and a co-receptor low-density lipoprotein receptor-related protein 6 (LRP6), which results 
in their internalization and degradation (Hao et  al., 2012; Koo et  al., 2012). Therefore, cells 
become less sensitive or insensitive to Wnt ligands. Activity of RNF43/ZNRF43 is regulated by 
secreted proteins from R-spondin (RSPO) family (Kazanskaya et al., 2004; Kim et al., 2008; Kim 
et al., 2006; Kim et al., 2005; Nam et al., 2007; Nam et al., 2006; Peng et al., 2013; Xie et al., 
2013) that trigger internationalization of RNF43/ZNRF3 and function as physiologically relevant 
activators of Wnt/β-catenin pathway (Binnerts et al., 2007; Carmon et al., 2011; de Lau et al., 
2011; Hao et al., 2016; Hao et al., 2012; Jiang et al., 2015; Koo et al., 2012; Zebisch et al., 
2013; Zebisch and Jones, 2015).

Because deregulation of Wnt/β-catenin pathway promotes tumor formation (Lim and Nusse, 
2013; van Kappel and Maurice, 2017; Wiese and Nusse, 2018), RNF43/ZNRF3 can act as tumor 
suppressors. Indeed, mutation or inactivation of RNF43/ZNRF3 leads to the oncogenic activation 
of Wnt signaling and associates with colorectal, liver, gastric, endometrial, ovarian, and pancreatic 
cancers (Bond et al., 2016; Eto et al., 2018; Giannakis et al., 2014; Jiang et al., 2013; Jo et al., 
2015; Niu et al., 2015; Planas-Paz et al., 2016; Ryland et al., 2013; Spit et al., 2020; Tsukiyama 
et al., 2020).

Some members of the Wnt family – such as WNT5A and WNT11 – preferentially activate 
downstream signaling that is distinct from Wnt/β-catenin pathway and is referred to as β-catenin-
independent or noncanonical Wnt pathway (Pandur et al., 2002; Humphries and Mlodzik, 2018; 
VanderVorst et al., 2019; Andre et al., 2015). Noncanonical Wnt pathway shares some features 
with the Wnt/β-catenin pathway – such as the requirement for FZD receptors, dishevelled (DVL) 
phosphoprotein and casein kinase 1 (CK1) – but clearly differs in others. In the mammalian nonca-
nonical pathway, receptor tyrosine kinase-like orphan receptor 1 (ROR1) and ROR2 act as primary 
(co-)receptors (in contrast to LRP5/6 that have this role in the Wnt/β-catenin pathway) and four-
transmembrane Vang-like protein 1 (VANGL1) and VANGL2 participate in the signal transduction 
(Asem et al., 2016; VanderVorst et al., 2019). This signaling axis is also referred to as planar cell 
polarity pathway (PCP), and its activation leads to changes in actin cytoskeleton dynamics, facil-
itating, that is, polarized cell migration (Andre et al., 2015; Janovská and Bryja, 2017; Kaucká 
et al., 2015; Weeraratna et al., 2002).

FZD receptors, the best-defined targets of RNF43/ZNRF3, are shared among all Wnt pathways 
and their endocytosis and/or degradation have the potential, at least in theory, to prevent signaling 
by any Wnt ligands. So far, there is only one study that suggests the role of RNF43/ZNRF3 in nonca-
nonical Wnt signaling in mammals (Tsukiyama et al., 2015). In addition, secreted inhibitor of RNF43/
ZNRF3 called r-spondin 3 (RSPO3) potentiated noncanonical PCP pathway in Xenopus in a Wnt5a 
and dishevelled-dependent manner (Glinka et al., 2011; Ohkawara et al., 2011). In mouse embryos, 
Znrf3 knockout caused open neural tube defects, which is a common consequence of the Wnt/PCP 
signaling disruption (Hao et al., 2012). Other report showed a similar phenotype in Xenopus embryos 
after Rnf43 mRNA injection (Tsukiyama et  al., 2015). And finally, in Caenorhabditis elegans, the 
homolog of RNF43 and ZNRF3 called plr-1 was shown to control not only the surface localization of 
frizzled, but also proteins related to mammalian noncanonical Wnt co-receptors ROR1/2 and RYK 
(Moffat et al., 2014). However, it is worth underlining that RSPO family homologs are absent in C. 
elegans (Lebensohn and Rohatgi, 2018), so the mode of action of RNF43/ZNRF3 in the worm might 
be different than in mammalian cells.

In this study, we have directly addressed the role of RNF43 in the WNT5A-induced signaling. We 
demonstrate that RNF43 controls the noncanonical Wnt pathway similarly to Wnt/β-catenin pathway. 
Further, we show that RNF43 is a relevant inhibitor of pro-metastatic WNT5A signaling in melanoma 
where it prevents both WNT5A-induced invasive behavior and WNT5A-assisted development of resis-
tance to B-RAF and MEK inhibitors.

https://doi.org/10.7554/eLife.65759
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Results
RNF43 inhibits WNT5A-driven noncanonical Wnt signaling pathway
In order to test whether or not RNF43/ZNRF3 controls noncanonical Wnt signaling, we have decided 
to study T-REx 293 cells. T-REx 293 cells secrete endogenous WNT5A that constitutively activates the 
noncanonical Wnt pathway – this can be demonstrated by the CRISPR/Cas9-mediated knockout of 
WNT5A (Kaiser et al., 2020). Removal of endogenous WNT5A in T-REx 293 cells is sufficient to elim-
inate the activation of readouts of WNT5A signaling such as phosphorylation of ROR1, DVL2, and 
DVL3 that can be monitored by western blotting as the decrease in the phosphorylation-mediated 
electrophoretic mobility shifts (Figure  1A; Bryja et  al., 2007b; Kotrbová et  al., 2020; Radasz-
kiewicz and Bryja, 2020). Autocrine WNT5A signaling was promoted by the inhibition of endoge-
nous RNF43/ZNRF3 by RSPO1 treatment (Figure 1B, compare lanes 1 and 2) and inhibited by RNF43 
overexpression under the tetracycline (Tet)-controlled promoter (TetON) or by block of WNT secre-
tion using Porcupine inhibitor Wnt-C59 (Figure 1B). To confirm that the effects are indeed caused 
by the block of WNT5A signaling, T-REx 293 cells pretreated with Wnt-C59 and as such unable to 
produce Wnt ligands were stimulated with increasing doses of recombinant WNT5A. As shown in 
Figure 1C, overexpression of RNF43 completely blocked signaling induced by recombinant WNT5A. 
Altogether, this demonstrates that RNF43 has the potential to block WNT5A signaling in mammalian 
cells.

RNF43 physically interacts with key proteins from the noncanonical 
Wnt pathway
To address the molecular mechanism of RNF43 action in the noncanonical Wnt pathway, we decided 
to describe RNF43 interactome by the proximity-dependent biotin identification (BioID; Roux et al., 
2012), which was already successfully applied in the challenging identification of E3s substrates 
(Coyaud et al., 2015; Deshar et al., 2016). We have exploited our recently published dataset (Spit 
et al., 2020) based on T-REx 293 TetON cells that inducibly expressed RNF43 fused C-terminally (intra-
cellularly) with BirA* biotin ligase. Several core proteins of the noncanonical Wnt signaling pathway 
– namely, ROR1, ROR2, VANGL1, VANGL2, SEC24B, and all three isoforms of DVL – were strongly 
and specifically biotinylated by RNF43-BirA* (Figure 1D and D′, Figure 1—source data 1). Further-
more, the noncanonical Wnt pathway was significantly enriched also in the gene ontology (GO) terms 
(Figure 1—source data 2). Altogether, it suggests that RNF43 can at least transiently interact with 
multiple proteins involved in the Wnt/PCP pathway, including essential receptor complex components 
from the ROR, DVL, and VANGL protein families.

To validate the protein-protein interactions identified by BioID, we performed a series of co-im-
munoprecipitation (co-IP) and co-localization experiments (Figure 2, Figure 2—figure supplement 
1). We have focused on the interactions of RNF43 with ROR1/ROR2 and with VANGL1/VANGL2 
mainly because these interactions are novel and at the same time highly relevant for the nonca-
nonical Wnt pathway. RNF43 co-immunoprecipitated with both VANGL2 (Figure 2A) and VANGL1 
(Figure 2—figure supplement 1A). More detailed analysis of VANGL2 showed co-localization of 
VANGL2 and RNF43 in the cell membrane (Figure 2B and B′). RNF43 also efficiently pulled down 
ROR1 (Figure  2C) and ROR2 (Figure  2—figure supplement 1B). Deletion of the cysteine-rich 
domain (CRD) (ROR2, Figure 2—figure supplement 1B) had no impact on the amount of co-im-
munoprecipitated RNF43, which suggests that RNF43 primarily interacts with RORs intracellularly. 
Both ROR1/ROR2 co-localized with RNF43 at the level of the plasma membrane (Figure 2D and D′ 
and Figure 2—figure supplement 1C and C′). It was described that RORs and VANGLs also bind 
DVL (Gao et al., 2011; Mentink et al., 2018; Seo et al., 2017; Witte et al., 2010; Yang et al., 
2017) and at the same time DVL proteins mediate ubiquitination of FZD receptors by RNF43 in the 
Wnt/β-catenin pathway (Jiang et al., 2015). To address whether DVL also acts as a physical link 
between RNF43 and the analyzed PCP proteins, we performed the co-IP experiments with VANGL2 
and ROR1 in the T-REx 293 cells lacking all free DVL isoforms (DVL triple knockout cells) (Paclíková 
et al., 2017). As shown in Figure 2—figure supplement 1D and E, RNF43 was able to bind both 
VANGL2 and ROR1 as efficiently as in the wild-type cells (compare with Figure  2A and D). In 
summary, our results indicate that RNF43 interacts, in a DVL-independent way, with PCP proteins 
from VANGL and ROR families.

https://doi.org/10.7554/eLife.65759
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Figure 1. RNF43 interactome is enriched with the Wnt planar cell polarity pathway components. (A) Western blot analysis of T-REx 293 wild type 
(WT) and WNT5A KO cells. Phosphorylation-dependent shifts of endogenous ROR1, DVL2, and DVL3 were suppressed upon WNT5A loss (TCL: total 
cell lysate; CM: conditioned medium). Signal of β-actin serves as a loading control. Empty arrowhead marks phosphorylation-dependent shift; black 
arrowhead indicates unphosphorylated protein. (B) Western blot showing activation of the noncanonical Wnt pathway components: ROR1, DVL2, and 
DVL3 upon rhRSPO1 overnight treatment (arrowheads as in A). Tetracycline-forced RNF43 overexpression (as visualized by HA tag-specific antibody) 
suppressed this effect. Inhibition of Wnt ligands secretion by the Porcupine inhibitor Wnt-C59 shows dependency of the rhRSPO1-mediated effect 
on endogenous Wnt ligands; representative blots from N = 3. (C) Western blot analysis of cellular responses to the increasing doses of rhWNT5A. 
ROR1 shift and phosphorylation of DVL2 and DVL3 (empty arrowhead) were inhibited upon tetracycline-induced RNF43-HA-BirA* overexpression. 
All samples were treated with Wnt-C59 Porcupine inhibitor to ascertain assay specificity to the exogenous rhWNT5A, N = 3. (D) Volcano plot of the 
RNF43 interactome identified by BioID and subsequent mass spectrometric detection (see Materials and methods for details). Significantly enriched 
proteins annotated as the components of the noncanonical Wnt signaling pathway are highlighted and their log fold change and adjusted p values are 
presented (D′). A full list of BioID-based identified interactors of RNF43 is presented in Figure 1—source data 1 and GO terms enrichment analysis in 
Figure 1—source data 2.

The online version of this article includes the following source data for figure 1:

Figure 1 continued on next page

https://doi.org/10.7554/eLife.65759
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RNF43 ubiquitinates VANGL2 and triggers its degradation
Since RNF43 is an E3 ubiquitin ligase, we next tested whether it can ubiquitinate its binding partners 
from the noncanonical Wnt pathway. Enzymatically inactive RNF43 Mut1 variant (Koo et al., 2012) 
served here as a negative control. Using His-ubiquitin pulldown assay, we were able to show that 
VANGL2 (Figure 3A), as well as DVL1 and DVL2 (Figure 3—figure supplement 1A), was ubiquiti-
nated when co-expressed with RNF43 but not with RNF43 Mut1. However, we were unable to detect 
RNF43-induced ubiquitination of ROR1 or ROR2 (negative data, not shown).

Further analysis showed that overexpression of RNF43, but not its E3 ligase dead variant, decreased 
VANGL2 protein level (Figure  3B, quantified in Figure  3—figure supplement 1B). Decrease in 
VANGL2 caused by RNF43 was accompanied by impeded phosphorylation of ROR1 (Figure 3B) and 
DVL3 (Figure 3B, Figure 3—figure supplement 1B). On the other side, two independent clones of 
cells deficient in both RNF43 and ZNRF3 (RNF43/ZNRF3 dKO; R/Z dKO) showed higher VANGL2 
levels and higher DVL phosphorylation (Figure 3B, Figure 3—figure supplement 1B). These confirm 
that also endogenous RNF43/ZNRF3 module affects the noncanonical Wnt signaling. Interestingly, 
treatment with the proteasome inhibitor MG132 but not with autophagosome-lysosome inhibitor 
chloroquine blocked these effects of RNF43 (Figure  3C). This suggests that RNF43 action in the 
noncanonical Wnt pathway depends on the proteasomal degradation pathway, which differs from 
the Wnt/β-catenin pathway, where RNF43 triggers FZD degradation via the lysosomal pathway (Koo 
et al., 2012). This is in accordance with immunofluorescence analysis, which did not show an increased 
co-localization of VANGL2 and RNF43 in lysosomes (Figure 3—figure supplement 2B). However, 
RNF43 overexpression led to the retention of VANGL2 in the Golgin-97-positive area (Figure 3—
figure supplement 2C). This suggests that RNF43 can act via similar mechanism that was described 
for WNT5A-induced regulation of VANGL2 plasma membrane localization during planar cell polarity 
maintenance (Feng et al., 2021; Guo et al., 2013; Tower-Gilchrist et al., 2019; Yang et al., 2017).

RNF43 induces ROR1 endocytosis by a clathrin-dependent pathway
ROR1 and ROR2 are the key receptors for WNT5A that we found to interact with RNF43 (Figures 1 
and 2). We thus speculated that RNF43 can regulate ROR1/ROR2 surface levels. T-REx cells express 
dominantly ROR1, and indeed flow cytometric analysis demonstrated that cell lacking endogenous 
RNF43 and ZNRF3 have more ROR1 receptor on the surface than parental T-REx cells (Figure 3D). 
The staining is specific as demonstrated by the validation of the ROR1-APC antibody in ROR1 KO 
T-REx 293 cells (Figure 3—figure supplement 1C and D). When we introduced inducible RNF43 into 
RNF43/ZNRF3 dKO T-REx cell line, we were able to rescue this phenotype, and after 3 hr of tetracy-
cline treatment, we detected decreased surface ROR1 and the overnight exposition to tetracycline 
had no significant effect (Figure 3E and E′).

In our analysis of RNF43 interactors (Figure 1D), we identified also multiple proteins involved in 
endosomal transport. It included proteins involved in the clathrin endocytic pathway – STAM1, HRS, 
ZFYVE16, PICALM, NUMB, RAB11-FIP2, and subunits of the associated adaptor protein complexes 
AP-3 and AP-4 (Supplementary file 1; Bache et al., 2003; Cullis et al., 2002; Hirst et al., 2013; 
Raiborg et al., 2001; Santolini et al., 2000; Seet and Hong, 2005; Tebar et al., 1999). Based on 
the BioID results analysis, we speculated that RNF43 may promote clathrin-mediated endocytosis of 
ROR1. Thus, we applied dansylcadaverine to block this pathway (Blitzer and Nusse, 2006). In agree-
ment with our hypothesis, treatment with this inhibitor prevented RNF43-mediated effect on the 
ROR1 surface expression in T-REx 293 RNF43/ZNRF3 dKO RNF43 TetON cells (Figure 3F).

To get a better insight into the mechanism of RNF43-induced internalization of ROR1, we analyzed 
the co-localization of ROR1 and RAB5 (marker of early endosomes) and RAB11 (marker of recycling 
endosomes) in T-REx 293 R/Z dKO RNF43 TetON (Figure 3G and Figure 3—figure supplement 3A) 
and T-REx 293 RNF43 TetON cells (Figure 3—figure supplement 1E and Figure 3—figure supple-
ment 3B). Hyperactivation of Rab5 by overexpression of wild-type Rab5 leads to the formation of 
giant early endosomes (Bucci et al., 1992) where we observed ROR1/RAB5 co-localization after 3 

Source data 1. BioID RNF43 interactors.

Source data 2. gProfiler GO terms analysis.

Figure 1 continued

https://doi.org/10.7554/eLife.65759
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Figure 2. RNF43 interacts with Wnt/planar cell polarity (PCP) components. (A) RNF43 interacts with VANGL2, but not with its mutants lacking N- or 
C-termini. VANGL2-EGFP and its variants (schematized) were overexpressed with RNF43-HA in Hek293 T-REx cells, immunoprecipitated by anti-HA and 
anti-GFP antibodies and analyzed by western blotting. Representative experiment from N = 3. Scheme illustrates secondary structure of the wild-type 
VANGL2 protein and its shortened variants used in this study. (B, B′) RNF43 (anti-HA, red) co-localized with transiently expressed VANGL2 (GFP, green). 

Figure 2 continued on next page
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hr of tetracycline treatment. The co-localization decreased after overnight exposition to tetracycline. 
RAB11+ endosomes were recruited to the ROR1 as well as after RNF43 induction and RAB11 co-lo-
calized strongly with ROR1 even after ON treatment. We conclude that surface ROR1 is controlled by 
RNF43 via interference with RAB5- and RAB11-mediated endocytosis and RNF43-mediated effect is 
not persistent due to the activity of recycling RAB11 recycling pathway (Ullrich et al., 1996).

RNF43 expression is decreased in human melanoma
Our data shown in Figures 1–3 demonstrate that RNF43 can inhibit WNT5A-induced noncanonical 
signaling via downregulation of the receptor complexes. But is RNF43 capable of blocking WNT5A-
induced biological processes? WNT5A signaling plays a crucial role in melanoma, one of the most 
malignant tumor types. High expression of WNT5A in this cancer is a negative overall survival and 
positive metastasis formation factor (Da Forno et al., 2008; Luo et al., 2020; Weeraratna et al., 
2002). Signaling cascade activated by WNT5A in melanoma drives epithelial–mesenchymal transition-
like program (EMT), resulting in increased metastatic properties of melanoma cells in vitro and in vivo 
(Dissanayake et al., 2008; Dissanayake et al., 2007; Sadeghi et al., 2018). In melanoma, WNT5A 
acts through FZD and ROR1/ROR2 (O’Connell et al., 2010; Tiwary and Xu, 2016; Weeraratna et al., 
2002). The importance of WNT5A-driven signaling in melanoma is thus well recognized, and mela-
noma represents probably the most characterized (and most clinically relevant) pathophysiological 
condition where noncanonical WNT5A signaling drives cell invasion and disease progression (Aroza-
rena and Wellbrock, 2017b; Da Forno et al., 2008; Dissanayake et al., 2007; Lai et al., 2012; Liu 
et al., 2018; O’Connell et al., 2010; O’Connell et al., 2008; Weeraratna et al., 2002).

Interestingly, the in silico analysis of gene expression (Talantov et al., 2005; Xu et al., 2008) showed 
that RNF43 expression dramatically decreases between benign melanocytic skin nevus and cutaneous 
melanoma (Figure 4A; Talantov et al., 2005) and further between primary site and metastasis (Xu 
et al., 2008; Figure 4B). Importantly, analysis of other datasets (Anaya, 2016) showed that RNF43 low 
melanoma patients have shorter overall survival (OS; Figure 4C). ZNRF3 expression had no prognostic 
value (Figure 4—figure supplement 1A). Interestingly, the expression of two genes encoding direct 
targets ubiquitinated by RNF43, namely, DVL3 and VANGL1, increased during melanoma progression 
(Figure 4—figure supplement 1B and C) and high expression in both cases correlates with bad prog-
nosis and shorter overall survival (Figure 4D, Figure 4—figure supplement 1D). All these findings are 
in line with the hypothesis that RNF43 acts in melanoma as a tumor suppressor that restricts WNT5A-
induced biological processes and gets silenced during melanoma progression.

RNF43 inhibits invasive properties of melanoma cells in vitro
A375 and A2058 are human melanoma cell lines carrying BRAF V600E mutations that are broadly used 
to study WNT5A role in melanoma (Anastas et al., 2014; Connacher et al., 2017; Da Forno et al., 
2008; Ekström et al., 2014; Linnskog et al., 2016; Liu et al., 2018). For the purpose of our study, we 
chose A375 wild-type (A375) cells and their derivate with the increased metastatic potential referred 
to as A375 IV (Kucerova et al., 2014). Both A375 variants and A2058 express WNT5A, RNF43, and 
ZNRF3 (Figure 4—figure supplement 2A–C, I–K). A375 and A375 IV secrete WNT5A and WNT11 
to the culture medium, whereas A2058 produces only WNT11 (Figure 4E). WNT5A protein levels are 
higher and WNT11 levels lower in case of A375 IV metastatic derivate in comparison to parental A375 

Co-localization was analyzed utilizing histograms of red, green, and blue channels signals along selection (yellow line) (B′). TO-PRO-3 Iodide was used 
to stain nuclei (blue). Scale bar: 25 μm. (C) RNF43 binds to the ROR1 and deletion of the intracellular part of ROR1 disrupts this interaction. RNF43-HA 
was detected in the ROR1 pull down prepared from lysates of Hek293 T-REx cells overexpressing RNF43-HA and ROR1-V5, N = 3. ROR1 wild-type and 
truncated mutants are represented in the scheme. (D, D′) RNF43 (anti-HA, red) co-localized with transiently expressed ROR1-V5 (anti-V5, green). Signals 
along selection (yellow line) were analyzed (D′). TO-PRO-3 was employed nuclei staining (blue). Scale bar: 25 μm. RNF43 interactions with VANGL1 and 
ROR2 are studied in Figure 2—figure supplement 1.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. RNF43 interacts with Wnt/planar cell polarity (PCP) components.

Figure supplement 1. RNF43 interacts with Wnt/planar cell polarity (PCP) components.

Figure supplement 1—source data 1. RNF43 interacts with Wnt/planar cell polarity (PCP) components.

Figure 2 continued

https://doi.org/10.7554/eLife.65759
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Figure 3. Mechanism of Wnt/planar cell polarity (PCP) inhibition by RNF43. (A) Hek293 T-REx cells were transfected with plasmid encoding His-tagged 
ubiquitin, VANGL2-GFP and HA-tagged wild-type or Mut1 RNF43 constructs. Ubiquitinated proteins were enriched by His pull down and analyzed by 
western blotting. VANGL2 is ubiquitinylated by the E3 ubiquitin ligase RNF43, but not by its enzymatically inactive variant (RNF43Mut1). Representative 
experiment from N = 3. RNF43-mediated ubiquitination of DVL1 and DVL2 together in Figure 3—figure supplement 1. (B) Tetracycline-induced 

Figure 3 continued on next page
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cell line (Figure 4E′ and E′′). Interestingly, RNF43 expression in the A375 IV cells was significantly 
lower than that in the A375 parental cells (Figure 4—figure supplement 2B). Expression of ZNRF3 
did not differ and it was not affected by RNF43 overexpression (Figure 4—figure supplement 2C). 
Further, A375 line has lower expression of ROR1 than IV derivate (Figure 4—figure supplement 2D). 
A2058 cells are ROR1 and ROR2 positive with ROR1 level being higher (Figure 4—figure supplement 
2L and M).

To study the RNF43 function, we generated A375 cells lacking RNF43/ZNRF3 (R/Z dKO) by 
CRISPR/Cas9 method (sequencing results are presented in Supplementary file 1), cells stably over-
expressing RNF43 (RNF43 OE) as well as A375, A2058, and additionally NRASQ61L/WT HRASG13D/G13D 
MelJuso -based doxycycline-inducible RNF43 TetON lines (Figure  4F). The initial characterization 
of A375 derivatives essentially confirmed the findings from T-REx 293 (see Figure 1), where RNF43 
loss- and gain of function correlated strongly with the level of Wnt pathway activation assessed as 
DVL phosphorylation (Figure 4G, quantified in Figure 4—figure supplement 1E and F). Total protein 
levels of DVL2, DVL3, as well as expression of their genes remained unaffected by the RNF43 manip-
ulation (Figure 4—figure supplement 2E–H). Similarly to T-REx 293 cells, in A375 (Figure 4H), A375 
IV (Figure 4I), and A2058 (Figure 4J and quantified effect of RNF43 OE on the endogenous WNT 
pathway activity in Figure 4—figure supplement 1G and H) melanoma cells RNF43 overexpression 
efficiently blocked WNT5A-induced signaling. To extend the importance of our studies further, we 
tested the RNF43-mediated effect also in the RAS-mutant MelJuso cells. Here we also confirmed the 
suppression of ROR1, DVL2, and DVL3 shifts by forced RNF43 expression (Figure 4—figure supple-
ment 3A). Inducible model of A375 RNF43 TetON cells drew a similar picture (Figure  4—figure 
supplement 3B), compared to the control cells that underwent the same procedures (Figure 4—
figure supplement 3C).

WNT5A signaling has been related to numerous biological features that support the invasive prop-
erties of melanoma (Arozarena and Wellbrock, 2017b; O’Connell and Weeraratna, 2009; Prasad 
et al., 2015; Weeraratna et al., 2002). To address if RNF43 affects any of these WNT5A-controlled 
properties, we have compared parental and RNF43-derivative melanoma cells in a panel of functional 
assays that included (1) wound healing assay, (2) collagen I hydrogel 3D chemotaxis assay, (3) Matrigel 
invasion assay, (4) invadopodia formation assay, and (5) gelatin degradation assay. Firstly, all A375, 
A375 IV, and A2078 cells overexpressing RNF43 showed suppressed 2D collective migration in the 
wound healing assay (Figure 5A–E). Next, we analyzed the impact of RNF43 expression on directional 

overexpression of the wt RNF43 (HA), but not enzymatically inactive RNF43Mut1 (HA), decreased VANGL2 protein level and suppressed phosphorylation 
of ROR1 and DVL3 (empty arrowhead; full arrowhead indicates unphosphorylated protein). CRISPR/Cas9-derived RNF43/ZNRF3 (R/Z) dKO cell lines 
#1 and #2 display phenotype reversed to the RNF43 overexpression. Quantified in Figure 3—figure supplement 1B, N = 3. (C) Inhibition of the 
proteasomal degradation pathway by MG132 (but not by lysosomal inhibitor chloroquine) blocked the RNF43 effects on ROR1, DVL2, DVL3 (empty 
arrowhead: phosphorylated; full arrowhead indicates unphosphorylated) and VANGL2 as shown by the western blotting analysis, N = 3. (D) Flow 
cytometric analysis of surface ROR1 in wild-type (WT) and RNF43/ZNRF3 (R/Z) dKO cells; unpaired two-tailed t-test: p=0.0298, N = 4. ROR1 was stained 
using ROR1-APC conjugate on the nonpermeabilized cells. Validation of the a-ROR1-APC antibody is shown in Figure 3—figure supplement 1D. (E, 
E′’) Surface ROR1 levels upon 3 hr and overnight (ON) induction of RNF43 in RNF43 TetON RNF43/ZNRF3 dKO cells; unpaired t-test p<0.0001, N = 6. 
Representative histogram of ROR1-APC signal in the analyzed conditions is shown (E′). (F) Dansylcadaverine, inhibitor of clathrin-mediated endocytosis, 
blocked the effect of RNF43 overexpression on surface ROR1, performed as in (E); unpaired t-test p=0.0037 3 hr Tet. vs 3 hr Tet.+ dansylcadaverine; 
N = 5 and 6 (3 hr Tet. condition). (G) Immunofluorescence imaging showed enhanced ROR1 (anti-V5, magenta) co-localization with the marker of 
early endosomes RAB5 (GFP, green) after 3 hr tetracycline treatment in RNF43 TetON RNF43/ZNRF3 dKO cells. RAB11-positive (GFP, green) recycling 
endosomes were recruited to the ROR1 (anti-V5, magenta) at the plasma membrane after overnight tetracycline treatment. Cells were transfected, 
treated, fixed, and stained. DNA was visualized by Hoechst 33342 (blue). Other tetracycline time points are shown in Figure 3—figure supplement 3A. 
Similar results were obtained for T-REx RNF43 TetON cell line (Figure 3—figure supplement 1E). Raw data used in (D–F) are given in Figure 3—source 
data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Mechanism of Wnt/planar cell polarity (PCP) inhibition by RNF43.

Figure supplement 1. Mechanism of Wnt/planar cell polarity (PCP) inhibition by RNF43.

Figure supplement 1—source data 1. Mechanism of Wnt/planar cell polarity (PCP) inhibition by RNF43.

Figure supplement 2. Mechanism of Wnt/planar cell polarity (PCP) inhibition by RNF43.

Figure supplement 3. Mechanism of Wnt/planar cell polarity (PCP) inhibition by RNF43.

Figure 3 continued

https://doi.org/10.7554/eLife.65759
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Figure 4. RNF43 in melanoma. (A, B) RNF43 expression is lower in melanoma when compared with the skin and benign melanocytic skin nevus 
(A) and in the case of distant metastasis compared to the primary tumors (B), unpaired two-tailed t-test: ****p<0.0001. (C, D) RNF43 expression is 
a negative prognostic factor in melanoma. RNF43 low patients have shorter overall survival (logrank p-value=0.0311). Contrary, patients with low-
expression VANGL1 (D) had longer survival (logrank test, p-value=0.00518). Expression of DVL3, VANGL1,and ZNRF3 is analyzed in Figure 4—figure 
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invasion through the collagen I hydrogel in response to chemokines. This assay mimics the taxis of 
melanoma cells in body: CCL21 drives lymph nodes metastasis and CXCL12 promotes lung invasion 
(Figure 5F; Jacquelot et al., 2018; McArdle et al., 2016). A375 IV and A2058 cell lines showed signif-
icant response to these treatments and RNF43 blocked completely these invasion events (Figure 5G 
and H). Importantly, the response of A375 cells in this assay was negligible (Figure 5—figure supple-
ment 1B), confirming their decreased metastatic capacity compared to the A375 IV. In line, inva-
sion of individual cells through the extracellular matrix (ECM) mimicking Matrigel was higher in A375 
IV in comparison to A375 but in both cases reduced by RNF43 OE (Figure 5—figure supplement 
1D). The same is true for the number of invadopodia-specialized structures mediating adhesion and 
remodeling of the surrounding ECM (Eddy et al., 2017; Masi et al., 2020). A375 IV cells formed 
more invadopodia than A375 parental cells (Figure 5I) and cells overexpressing RNF43 formed less of 
them (Figure 5I). In agreement, we also observed reduced gelatin degradation activity in A375 and 
A375 IV cells overexpressing RNF43 (Figure 5J). Furthermore, treatment with WNT5A enhanced the 
gelatin degradation capacity of A375 cells, but not their RNF43-overexpressing derivate (Figure 5J). 
Representative images from the conducted assays are shown in Figure  5—figure supplement 1, 
Figure 5—figure supplement 2, Figure 5—figure supplement 3, Figure 5—figure supplement 4. 
All these assays strongly support the conclusion that RNF43 acts as a strong molecular inhibitor of 
WNT5A-triggered proinvasive features of melanoma. Interestingly, RNF43/ZNFR3 removal did not 
lead to significant potentiation in these functional assays, which suggests that the noncanonical Wnt 
pathway-controlled pro-metastatic features of these cells are already close to its maximum. In agree-
ment, treatment with WNT5A showed the effect only in case A375 cells in the gelatin degradation 
assay (Figure 5J).

RNF43 prevents acquisition of resistance to BRAF V600E targeted 
therapy
The mitogen-activated protein kinase (MAPK) pathway is hyperactivated in melanoma (Davies et al., 
2002) as a result of UV-induced mutations triggering constitutive activation of this signaling axis. 
The most common genetic aberration – BRAF V600E is a target of anti-melanoma therapy (Akbani 
et  al., 2015; Birkeland et al., 2018; Chapman et al., 2011; Flaherty et  al., 2010; Hodis et  al., 
2012; Shain et al., 2015). Drugs targeting mutated BRAF (e.g., vemurafenib/PLX4032) in melanoma 

supplement 1A–D. (E, E′, E′′) Culture media from melanoma A375, A375 IV, and A2058 cell lines were collected after 48 hr and analyzed by western 
blotting for the presence of WNT5A (E′) and WNT11 (E′′). Densitometric analysis has been done using the ImageJ software. Graphs represent ratio 
of corresponding WNT (medium) and β-actin (lysate) signals. Unpaired two-tailed t-test: p=0.0092 (E′); 0.0320 and 0.0001 (E′′); N = 3. (F) Schematic 
representation of the melanoma cell lines and their genetically modified variants used in this study. (G) Effects of the stable RNF43 overexpression and 
RNF43/ZNRF3 knockout in A375 and in its invasive derivate A375 IV. Exogenous RNF43 expression blocked DVL2 and DVL3 activation (arrowheads 
showing phosphorylation-dependent change of the electrophoretic mobility). Removal of endogenous RNF43 and ZNRF3 proteins had an opposite 
effect, N = 6. Quantification is given in Figure 4—figure supplement 1E,F. Expression of WNT5A, RNF43, ZNRF3, ROR1, DVL2, and DVL3 in tested 
cell lines was checked and shown in Figure 4—figure supplement 2. (H–J) Western blot showing inhibitory effect of RNF43 on A375 (H), A375 IV (I), 
and A2058 RNF43 TetON (J) cell lines in response to the 40 and 80 ng/ml 3 hr-long rhWNT5A treatments. RNF43/ZNRF3 dKO A375 (H), A375 IV (I) cell 
lines had stronger response to rhWNT5A than parental line. β-actin served as a loading control. Empty arrowhead: phosphorylated; full arrowhead: 
unphosphorylated protein. Porcupine inhibitor LGK-974 was used to block endogenous Wnt ligands secretion and RNF43 was probed by HA antibody, 
N = 3 and N = 4 (A2058). Quantification of DVL2 and DVL3 activation status and their protein levels in A2058 cells is given in Figure 4—figure 
supplement 1G and H. Figure 4—figure supplement 3 presents rhWNT5A treatment and consequences of RNF43-induced expression in RAS-mutant 
melanoma cell line MelJuso (A) and A375 (B) together with isogenic control (C). Figure 4—source data 1 contains raw data.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. RNF43 in melanoma.

Figure supplement 1. RNF43 in melanoma.

Figure supplement 1—source data 1. RNF43 in melanoma.

Figure supplement 2. RNF43 in melanoma.

Figure supplement 2—source data 1. RNF43 in melanoma.

Figure supplement 3. RNF43 in melanoma.

Figure supplement 3—source data 1. RNF43 in melanoma.

Figure 4 continued
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Figure 5. RNF43 inhibits WNT5A-dependent invasive properties of human melanoma. (A–E) RNF43 reduced migration of A375 (B), A375 RNF43 TetON 
(C), A375 IV (D), and A2058 RNF43 TetON (E) in the wound healing assay. Wound was photographed 48 hr after scratch and presented as % of cell-free 
surface at the end of the experiment. Cells proliferation was suppressed by serum starvation, unpaired two-tailed t-test: *p<0.05, **p<0.01, ***p<0.001, 
N = 3 (B, D) or 4 (C, E). Representative photos at the end of the experiment are shown in (A) and in Figure 5—figure supplement 1A. (F–H) RNF43 

Figure 5 continued on next page
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have improved patients’ survival (Chapman et al., 2011; Flaherty et al., 2010; Joseph et al., 2010). 
Unfortunately, patients receiving BRAF inhibitors (BRAFi) relapse after several months of monotherapy 
because of the acquired resistance (Nazarian et al., 2010). WNT5A was shown to play a crucial role in 
the process leading to the vemurafenib resistance (Anastas et al., 2014; Arozarena and Wellbrock, 
2019; Mohapatra et al., 2019; O’Connell et al., 2013; Prasad et al., 2015; Webster et al., 2015). 
Therefore, we were interested in checking whether RNF43 inhibits, via its effects on WNT5A signaling, 
cellular plasticity in response to vemurafenib (PLX4032), a clinically used BRAF V600E inhibitor.

The process of vemurafenib resistance acquisition can be modeled in vitro. We applied an exper-
imental scheme optimized for A375 (Anastas et al., 2014). This model (Figure 6A) allows to study 
both acute responses to vemurafenib (24 hr treatment) as well as the gradual adaptation of long-term 
cell culture to increasing vemurafenib doses. Vemurafenib-resistant (VR) cells can be obtained after 
approximately 2 months. As shown in Figure 6B, treatment with vemurafenib resulted in rapid and 
complete inhibition of ERK1/2 phosphorylation, the readout of MAPK activation (compare lanes 1 and 
2). In contrast, A375 VR cells showed constitutive ERK1/2 phosphorylation in the presence of 2 μM 
vemurafenib (compare lanes 2 and 3). Interestingly, transient exposition to vemurafenib resulted in 
the impeded phosphorylation of ROR1, DVL2, and DVL3 and increased ROR2 protein level without 
change in its mRNA (Figure 6B–D, Figure 6—figure supplement 1A and B). On the other side, VR 
cells displayed elevated ROR1 levels (both protein and mRNA) and increased phosphorylation of 
DVL2 and DVL3 (Figure 6B–D, Figure 6—figure supplement 1A and B). Strikingly, the expression of 
WNT5A was also higher in the resistant VR cells (Figure 6E). This suggests that activation of nonca-
nonical WNT5A-induced signaling and ROR1 and ROR2 changes is indeed a part of the melanoma 
adaptation mechanism to vemurafenib. Therefore, we challenged A375 and its RNF43-expressing 
derivatives with vemurafenib. As shown in Figure 6F, exogenous RNF43 decreased colony forma-
tion and proliferation of cells seeded in low density and vemurafenib further enhanced this effect. 
Importantly, both A375 and A375 IV-overexpressing RNF43 completely failed to develop resistance to 
vemurafenib and died off during selection at 1 μM vemurafenib concentration (Figure 6G). Both A375 
and A375 IV RNF43/ZNRF3 double KO cells survived selection with BRAFi but showed decreased 
proliferation rate. Lower proliferation of RNF43/ZNRF3 dKO cells can be caused by senescence 
because these cells have elevated WNT5A pathway activity (i.e., Figures 3B and 4I, Figure 4—figure 
supplement 1E and F) and WNT5A at the same time causes a senescence-like phenotype of mela-
noma after exposition to vemurafenib (Webster et al., 2015). Alternatively, RNF43/ZNRF3 KO could 
affect also canonical Wnt/β-catenin pathway that was shown to drive distinct features of melanoma 

blocked collagen I hydrogel 3D invasion in response to CCL21 (100 ng/ml) and CXCL12 (100 ng/ml) of A375 IV (G) and A2058 (H) cell lines. Cells were 
serum starved, collagen I (1.5 mg/ml) was overlaid and polymerized. Doxycycline was applied for RNF43 induction during starvation. After 24 hr, cells 
were fixed and stained for DNA (Hoechst 33342, blue) and F-actin (phalloidin, red) and imaged by confocal microscopy. Invasion index was calculated 
as the ratio of invaded cells at specified height to the number of noninvasive cells at the glass level, unpaired two-tailed t-test: **p<0.01, ****p<0.0001, 
N = 3 (G) or N = 4 (H). A375 cells did not invaded collagen I hydrogel (Figure 5—figure supplement 1B). Representative photos are presented in 
Figure 5—figure supplement 1C and C′. (I) RNF43 overexpression in A375 and A375 IV decreased number of invadopodia. Quantification of the 
invadopodia formed by melanoma cells, based on the analysis of confocal images. Number of cortactin/F-actin double-positive puncta in the individual 
cells was calculated in the ImageJ software, unpaired two-tailed t-test: ***p<0.001, ****p<0.0001. Examples of confocal imaging are shown: green, 
phalloidin; red, cortactin; blue, DNA. See Figure 5—figure supplement 2 for images from all experimental conditions. (J) Gelatin degradation assay; 
both A375 and A375 IV RNF43-overexpressing cell lines showed decreased capacity to locally degrade the extracellular matrix. rhWNT5A treatment 
induced gelatin degradation by A375 cells. Serum-starved cells were plated onto gelatin-Oregon Green-coated coverslips and incubated for 24 hr. 
Images obtained by Leica SP8 confocal microscope were analyzed for the presence of gelatin degradation by individual cells using ImageJ software, 
unpaired two-tailed t-test: *p<0.05, **p<0.01, N = 3. Example of gelatin degradation is shown; more pictures are presented in Figure 5—figure 
supplement 3 and Figure 5—figure supplement 4. Numerical data are given in Figure 5—source data 1 file.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. RNF43 inhibits WNT5A-dependent invasive properties of human melanoma.

Figure supplement 1. RNF43 inhibits Wnt5a-dependent invasive properties of human melanoma.

Figure supplement 1—source data 1. RNF43 inhibits Wnt5a-dependent invasive properties of human melanoma.

Figure supplement 2. RNF43 inhibits Wnt5a-dependent invasive properties of human melanoma.

Figure supplement 3. RNF43 inhibits Wnt5a-dependent invasive properties of human melanoma.

Figure supplement 4. RNF43 inhibits Wnt5a-dependent invasive properties of human melanoma.

Figure 5 continued
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Figure 6. RNF43-overexpressing melanoma cells do not develop resistance to BRAF V600E targeted therapies. (A) Scheme showing the experimental 
model used for the analysis of vemurafenib resistance (VR) acquisition. Melanoma cells are exposed to the increasing doses of the BRAF V600E 
inhibitor vemurafenib and following initial decrease in cell numbers recover and obtain capacity to grow in the presence of vemurafenib. (B–D) 
Western blot analysis of the cellular responses to the acute vemurafenib treatment (0.5 µM, 24 hr) in comparison to the signaling in VR cells growing 

Figure 6 continued on next page
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cells than the ones related to the WNT5A-specific events (Arozarena et al., 2011; Arozarena and 
Wellbrock, 2019; Uka et al., 2020; Webster and Weeraratna, 2013).

To strengthen our results, we exposed A375 and A2058 parental and RNF43-expressing cells 
temporarily and chronically to vemurafenib, MEK inhibitor – cobimetinib and to the FDA-approved 
combination of these drugs (Ascierto et al., 2016; Signorelli and Shah Gandhi, 2017; experimental 
scheme in Figure 6—figure supplement 1C’). We failed to obtain A375-resistant line, but A2058 
acquired resistance to cobimetinib alone and its combination with vemurafenib (Figure 6H and L). 
Treatments and resistance were validated by pERK1/2 levels (Figure 6H). A2058 enriched with ecto-
pically expressed RNF43 did not survive cobimetinib monotherapy and cobimetinib with vemurafenib 
combination, whereas vemurafenib-only treatment did not fully eliminate those cells (Figure 6L). Thus, 
we aimed to detect the differences in mechanisms behind targeted therapies resistance acquisition 
to characterize better the function of RNF43 in melanoma. Firstly, we noticed the shift of VANGL1 in 
all delivered resistance models, while VANGL2 was shifted only in cells being in the long-term culture 
with cobimetinib and with cobimetinib and vemurafenib (Figure 6H). This corresponds with decreased 
RNF43 and ZNRF3 expression (Figure 6J, Figure 6—figure supplement 1D) and increased WNT5A 
mRNA level (Figure 6K). Interestingly, both MITF protein level and MITF gene expression increased in 
VR cells and decreased in all cobimetinib-insensitive lines (Figure 6H and I). Moreover, MITF upreg-
ulation was accompanied by clear pigmentation of resistant cells (Figure 6I′), suggesting cell pheno-
type change (Arozarena and Wellbrock, 2019; Ji et  al., 2015; Müller et  al., 2014). Expression 
of ROR1 decreased in case of MEKi resistance, while ROR2 remained unaffected (Figure 6—figure 
supplement 1E and F). Contrary to A375, ROR1 did not significantly increase in VR-resistant cells and 
we did not detect the increased DVL2 and DVL3 phosphorylation (Figure 6—figure supplement 1C).

Altogether, these data confirm earlier findings on the importance of WNT5A signaling in the 
acquisition of resistance to targeted therapies and demonstrate that RNF43 can block this process. 
Moreover, we show that RNF43 could be a negative regulator of melanoma phenotype plasticity by 
targeting MITF-low/WNT5A-high melanoma cells (Hoek et al., 2006; Kim et al., 2017; Sensi et al., 2011; 
Tirosh et al., 2016).

in the presence of 2 µM vemurafenib. Transient treatment resulted in decreased DVL2 and DVL3 phosphorylation and increased ROR2 signal. In 
VR cells, ERK1/2 is constitutively phosphorylated in the vemurafenib presence. β-actin served as a loading control. A375 VR cells showed increased 
activation of DVL2 and DVL3 (empty arrowheads; quantifications in C and D) and higher expression of ROR1. Unpaired two-tailed t-test: *p<0.05, 
**p<0.01, N = 3. Figure 6—figure supplement 1A and B presents changes in ROR1 and ROR2 genes expression and quantification of ROR1 and 
ROR2 proteins signals. (E) Expression of WNT5A gene is elevated in the VR A375 cells in comparison to the parental line, unpaired two-tailed t-test: 
**p=0.0013, N = 3. Data presented are normalized to 1. Relative expression was normalized to the HSPCB and RPS13 genes (2−ΔΔCt). (F) Melanoma 
cell lines A375 and A375 IV overexpressing RNF43 showed decreased ability to grow and form colonies when seeded in the low density. After 7 days, 
colonies were fixed and stained with crystal violet. Paired (vemurafenib – vs+) and unpaired (A375 vs. IV) two-tailed t-tests: *p<0.05, ****p<0.0001, 
N ≥ 5. (G) RNF43-overexpressing A375 and A375 IV did not develop resistance to the BRAF V600E inhibition by vemurafenib treatment. Cells were 
cultured for approximately 2 months in the presence of increasing doses of the inhibitor. Photos show crystal violet-stained cultures at the end of the 
selection process. (H) A2058 cells (marked as ‘ctrl’) were exposed to the 24 hr-long treatments with vemurafenib (2.5 μM), cobimetinib (0.1 μM), or 
their combination. These short treatments were compared with cells cultured for approximately 2 months in the presence of vemurafenib (5 μM; VR), 
cobimetinib (0.5 μM; Cob. R) or their combination (V + C R). Experiment is schematized in Figure 6—figure supplement 1C’. Selected proteins were 
analyzed by western blot. Cells chronically exposed to inhibitors showed shifts of VANGL1 and VANGL2 bands (empty arrowhead) and changes in the 
MITF signal. Signal of pERK1/2 was used as treatments control. β-actin signal served as a loading control, N = 3. Figure 6—figure supplement 1C 
presents DVL2, DVL3 and total ERK1/2 signals. (I–K) Expression analysis of MITF (I), RNF43 (J), and WNT5A (K) genes. MITF is significantly upregulated 
in cells resistant to 5 μM Vemurafenib and downregulated in cells derived from the long-term culture in the presence of 0.5 μM cobimetinib alone and 
in combination with vemurafenib. (I′) VR A2058 show higher pigmentation. RNF43 expression decreased in the derived cells, while WNT5A increased. 
Relative expression levels are presented as 2−ΔΔCt ± SD and normalized to the levels of B2M and GAPDH genes, unpaired two-tailed t-tests: *p<0.05, 
**p<0.01, N = 3. Figure 6—figure supplement 1D–F shows expression analysis of ZNRF3, ROR1, and ROR2. (L) RNF43-overexpressing A2058 cells did 
not develop resistance to the cobimetinib and its combination with vemurafenib. Cells were cultured for approximately 2 months in the presence of 
increasing doses of the inhibitors (up to 5 μM for vemurafenib and 0.5 μM for cobimetinib), schematized in Figure 6—figure supplement 1C’. Figure 
6—source data 1 presents raw data.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. RNF43-overexpressing melanoma cells do not develop resistance to BRAF V600E targeted therapies.

Figure supplement 1. RNF43-overexpressing melanoma cells do not develop resistance to BRAF V600E targeted therapies.

Figure supplement 1—source data 1. RNF43-overexpressing melanoma cells do not develop resistance to BRAF V600E targeted therapies.

Figure 6 continued
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RNF43 as onco-suppressor in vivo: impact on tumors and resistance to 
vemurafenib
Next, we aimed to confirm our results also in the in vivo model. We decided to use cell lines with the 
same origin but varying in the RNF43 expression. For this purpose, A375 RNF43 TetON cells and 
A375 control lines (Figure 4—figure supplement 3B and C) were tested by qPCR. A375 control line 
had the lowest expression (referred to as ‘RNF43 low’) of RNF43, and doxycycline-untreated A375 
RNF43 TetON showed intermediate expression due to TetON leakage (‘RNF43 mid’) that could be 
further enhanced by the doxycycline treatment (‘RNF43 high’) (Figure 7A). Next, we prepared and 
tested a novel vemurafenib formulation in 25%   Kolliphor-water solution ensuring the solubility of 
this BRAFi and which could be administrated by oral gavage in the previously published dose 25 mg/
kg (Figure 7—figure supplement 1A; Wang et al., 2019). Cells were injected intradermally into the 
NOD-Rag1null IL2rgnull mice. Animals were divided into treatment cohorts once tumors became prom-
inent in size (Figure 7B, Figure 7—figure supplement 1B). Cohort I (RNF43 low) had significantly 
shorter survival and formed macroscopic tumors earlier than RNF43 mid and high cohorts (Figure 7C, 
Figure 7—figure supplement 1C). Moreover, tumors originating from cells with the lowest RNF43 
expression were significantly bigger than RNF43 mid ones (Figure 7D). To validate RNF43 expression 
induction and impact on its targets, protein lysates from tumors were analyzed by western blotting 
(Figure 7—figure supplement 1D). We found out that the level of RNF43-specific signal in cohorts 
I–III was significantly and inversely correlated with ROR1 and VANGL2 protein levels and similar trend 
was also noticed for DVL2 phosphorylation (Figure 7E, Figure 7—figure supplement 1D and E), reca-
pitulating the described above in vitro effect also in the in vivo experiment. Importantly, we observed 
the RNF43 leakage (HA signal in Figure 7—figure supplement 1D), meaning that TetON system did 
not efficiently suppress the ectopic expression of RNF43 even in the absence of doxycycline, which 
also provides explanation for different RNF43 levels in studied here cell lines (Figure 7A). In conclu-
sion, the dose-dependent effect mediated by RNF43 showed the features of the onco-suppression in 
melanoma in vivo model.

Further, we also investigated the synergistic effect of RNF43 and vemurafenib in vivo. RNF43 mid 
and RNF43 high cohorts received vemurafenib, and this treatment significantly prolonged the survival 
(Figure 7F), validating our formulation and dosing efficacy. Importantly, doxycycline supplementation 
(RNF43 high) in addition to vemurafenib resulted in the more efficient suppression of tumor growth, 
suggesting the delayed the BRAFi resistance acquisition (Figure  7G). Nevertheless, there was no 
difference at the experimental end point (Figure 7F and H), possibly due to the loss of transgene 
expression observed in cells during this long-term experiment (HA signal in Figure 7—figure supple-
ment 1D). Moreover, the protein level of WNT5A was significantly increased in tumors treated with 
vemurafenib, which could help to bypass the RNF43-related effect as well (Figure 7—figure supple-
ment 1E′′′). Our main findings are summarized as a graphical abstract (Figure 8).

Discussion
Our study identified RNF43 as an inhibitor of noncanonical WNT5A-induced signaling. RNF43 
physically interacted with multiple receptor components of the Wnt/PCP pathway such as ROR1/2, 
VANGL1/2, or DVL1/2/3 and triggered degradation of VANGL2 and membrane clearance of ROR1, 
ultimately resulting in the reduced cell sensitivity to WNT5A. The newly discovered RNF43 action in 
WNT5A-mediated signaling seems to be mechanistically different than the well-known function in the 
Wnt/β-catenin pathway. For example, we observed ROR1 and VANGL2 interaction with RNF43 in the 
absence of DVL. In contrast, DVL seems to be essential for the activity of RNF43 in the Wnt/β-catenin 
pathway (Jiang et al., 2015). Further, the inhibitory action of RNF43 in WNT5A signaling could not be 
blocked by inhibition of lysosomal pathway, in contrast to the earlier observations in WNT/β-catenin 
pathway (Koo et al., 2012). On the other side, WNT5A signaling can be, similarly to Wnt/β-catenin, 
promoted by RNF43 inhibitors from R-SPO family. Also, in line with the earlier findings that RNF43 
leads to the packing of ubiquitinated FZD to the RAB5+ endosomes (Koo et al., 2012), ROR1 is as well 
internalized via a clathrin-dependent mechanism into RAB5+ and RAB11+ endosomes. Interestingly, 
ROR1 internalization is transient. We can speculate that it represents the first step in the silencing 
of the noncanonical Wnt pathway, which further translates into stable inhibition, for example, via 

https://doi.org/10.7554/eLife.65759
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Figure 7. RNF43 inhibits melanoma proliferation and response to vemurafenib in vivo. (A) RT-qPCR results – expression of the RNF43 gene in control 
(RNF43 low) and A375 RNF43 TetON cells in the absence (RNF43 mid) and presence of doxycycline (RNF43 high). Results are presented as 2−ΔΔCt ± SD, 
two-tailed t-test: **p<0.01, ****p<0.0001, N = 3. Relative expression level was normalized to the B2M and GAPDH genes expression. (B) Schematic 
representation of the in vivo experiment based in the immunodeficient NOD-Rag1null IL2rgnull mouse strain. A375 and its variants were injected 

Figure 7 continued on next page
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VANGL2 sequestration. It remains to be studied how RNF43 in a coordinated manner controls both 
WNT/β-catenin and noncanonical WNT pathways.

We demonstrate that the newly characterized RNF43-WNT5A regulatory module controls WNT5A 
signaling and biology in melanoma. WNT5A-induced signaling plays a crucial role in this cancer type. 
Up to date, 5 -year survival of metastatic melanoma patients rates between 5 and 19%, depending 
on the location and the number of metastases (Sandru et al., 2014). Elevated expression of WNT5A 
associates with negative overall survival in melanoma (Da Forno et  al., 2008; Luo et  al., 2020; 
Weeraratna et al., 2002); we have observed an inverse correlation for RNF43, which was a posi-
tive prognostic factor in melanoma and got silenced as melanoma progressed. WNT5A promotes 
multiple proinvasive features of melanoma cells such as EMT-like process, invasion, metastasis, cell 
proliferation, and ECM remodeling by melanoma cells (Dissanayake et al., 2008; Dissanayake et al., 
2007; Fernández et al., 2016; Lai et al., 2012). Moreover, WNT5A ligand co-receptors – ROR1 and 
ROR2 – have been already described in melanoma as key factors driving invasion in vitro and in vivo 
(Fernández et al., 2016; Lai et al., 2012; O’Connell et al., 2013; O’Connell et al., 2010). Ultimately, 
RNF43 overexpression here efficiently suppressed all tested pro-metastatic properties of melanoma 
cells associated with WNT5A and its (co)receptors. Among those, the clinically most relevant is the 
acquisition of resistance to BRAF inhibitor vemurafenib (Chapman et al., 2011; Flaherty et al., 2010).

BRAF V600E mutation appears in up to 50%  of melanoma cases, which results in the oncogenic 
activation of MAPK pathway (Akbani et  al., 2015; Wan et  al., 2004). Vemurafenib (PLX4032), a 
compound selectively inhibiting BRAF V600E, showed positive clinical effects in melanoma (Bollag 
et al., 2012; Joseph et al., 2010). Unfortunately, most of the patients develop resistance to vemu-
rafenib treatment and progress (Chapman et al., 2011). Multiple mechanisms underlying acquisition 
of resistance were described (Arozarena and Wellbrock, 2019; Arozarena and Wellbrock, 2017a; 
Johnson et al., 2015; Luebker and Koepsell, 2019; Schmitt et al., 2019; Su et al., 2020; Su et al., 
2017; Talebi et al., 2018; Tirosh et al., 2016). Among those mechanisms, WNT5A signaling has a 
prominent role – WNT5A expression was shown to positively correlate with vemurafenib resistance 
(Anastas et al., 2014; Prasad et al., 2015; Webster et al., 2015) and WNT5A treatment decreased 
melanoma cells’ response to the vemurafenib (Anastas et al., 2014; O’Connell et al., 2013). Our 
finding that RNF43-controlled regulatory axis could completely block the development of resistance 
to BRAF and also MEK inhibition further highlights the importance of WNT5A signaling in this process 
and uncovers a mechanism that can be explored therapeutically.

Previous studies showed that melanoma displays remarkable phenotypic plasticity upon targeted 
therapy (Hoek et al., 2006; Hoek and Goding, 2010; Kemper et al., 2014; Rambow et al., 2018). 
This is also well demonstrated in our A2058 model where vemurafenib-resistant cells become 

intradermally (50,000 cells in PBS/mouse). Animals were divided into five cohorts once palpable tumors were formed. Ectopic RNF43 expression was 
induced by doxycycline presence in the drinking water. Vemurafenib was delivered daily by oral gavage as 25%  Kolliphor in water formulation (see 
Figure 7—figure supplement 1A). Tumors sizes and animal weight were checked weekly. Mice were sacrificed when tumors reached approximately 
1000 mm3. (C) Survival within cohorts I–III. Injection with cells having the lowest RNF43 expression led to the shortest mean survival (28 days). Experiment 
in cohorts II (56 days) and III (62 days) was significantly longer, Mantel–Cox test: *p<0.05, **p<0.01. (D) Cells expressing RNF43 higher than the 
endogenous level have impaired ability to proliferation in vivo. Tumor sizes at end point for the RNF43 low cohort (N = 5) with RNF43 mid (N = 3), two-
tailed t-test: *p=0.0297. (E) RNF43 negatively regulates its targets also in vivo. Correlation analysis of RNF43 western blot signals with ROR1, VANGL2 
protein levels, and phosphorylation status of DVL2 (shown in Figure 7—figure supplement 1D). Results for cohorts I–III were analyzed (N = 12), 
one-tailed Spearman correlation test, p and r values are shown in the graph. (F) Survival analysis showing vemurafenib treatment efficacy. Doxycycline 
treatment for RNF43 induction did not increase further vemurafenib effect. Mean survival: RNF43 mid: 56 days; RNF43 mid + vemurafenib: 84 days; 
RNF43 high: 62 days; RNF43 high + vemurafenib: 76 days, Mantel–Cox test: *p<0.05, **p<0.01. (G) RNF43 delays acquisition of vemurafenib resistance 
in vivo. Cohort V (N = 4) receiving doxycycline for RNF43 overexpression induction and vemurafenib (RNF43 high + vemurafenib) had significantly 
smaller tumors at days 49–62 than cohort IV (RNF43 mid + vemurafenib), tumors were not different at the treatments starting point (day 28) two-tailed 
t-test: *p<0.05, **p<0.01. (H) Tumor growth curve – caliper measurements of tumors sizes within experimental groups II–V. Treatment starting points are 
marked and presented in Figure 7—figure supplement 1B. All used data are presented in Figure 7—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. RNF43 inhibits melanoma proliferation and response to vemurafenib in vivo.

Figure supplement 1. RNF43 inhibits melanoma proliferation and response to vemurafenib in vivo.

Figure supplement 1—source data 1. RNF43 inhibits melanoma proliferation and response to vemurafenib in vivo.

Figure 7 continued
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Figure 8. RNF43 inhibits WNT5A-driven signaling and suppresses melanoma invasion and resistance to the targeted therapy. Graphical summary. 
RNF43 is an inhibitor of the noncanonical WNT5A-induced pathway. RNF43 interacts with receptor complexes of the Wnt/PCP signaling and its 
enzymatic activity results in the reduced cells sensitivity to WNT5A (A). In melanoma, WNT5A promotes invasion and metastasis (B) as well as resistance 
to targeted therapies, including treatments with vemurafenib – inhibitor of commonly mutated BRAF kinase and cobimetinib-targeting activity of the 

Figure 8 continued on next page
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melanotic (MITFhigh), whereas cobimetinib- and especially vemurafenib/cobimetinib-double-resistant 
cells have MITFlow/WNT5Ahigh phenotype that is characteristic for highly invasive melanoma with the 
dedifferentiated phenotype (Ahn et  al., 2017; Anastas et  al., 2014; Arozarena and Wellbrock, 
2019; Massi et al., 2020; Webster et al., 2015). Inhibition of the WNT5A pathway by RNF43 could 
block one of the trajectories of resistance acquisition by Darwinian selection of preexisting subpopu-
lation (Chisholm et al., 2015), thereby promoting less metastatic phenotype (Bai et al., 2019). This 
is supported by our observation that vemurafenib-treated A2058 cells can partially overcome RNF43 
OE by phenotypic switch to MITFhigh phenotype, which is not the case in cobimetinib-treated cells. 
From the other angle, the low RNF43 expression might be explored as a marker of resistant melanoma 
phenotype. RNF43 is a β-catenin target gene (Takahashi et al., 2014), which could be a reason for 
the low RNF43 levels in metastatic melanomas where Wnt/β-catenin signaling is inhibited (Arozarena 
et al., 2011; Kageshita et al., 2001; Uka et al., 2020). Altogether, we provide evidence that RNF43 
can act as a tumor suppressor and a negative regulator of the acquisition of the resistance to the 
targeted therapy.

The relevance of our findings is likely not limited to melanoma. Signaling cascade RSPO–LGR4/5–
RNRF43/ZNRF3 has been shown to regulate a variety of biological processes. In light of our results, it 
is tempting to speculate that WNT5A-RNF43 axis regulates other developmental, physiological, and 
pathophysiological conditions. For example, WNT5A is overexpressed in gastric cancer where it posi-
tively correlates with the presence of lymph node metastasis, tumor depth, EMT induction, and poor 
prognosis (Astudillo, 2020; Hanaki et al., 2012; Kanzawa et al., 2013; Kurayoshi et al., 2006; Nam 
et al., 2017; Saitoh et al., 2002). Notably, reduced RNF43 function is a negative prognosis factor in 
gastric cancer patients (Gao et al., 2017; Neumeyer et al., 2019a; Niu et al., 2015) and RNF43 loss-
of-function type of mutation exacerbated Helicobacter pylori-induced gastric tumor carcinogenesis 
associated with the upregulation of WNT5A mRNA level (Katoh, 2007; Li et al., 2014; Neumeyer 
et al., 2019b; Peek and Crabtree, 2006). Further, in colorectal cancer, RNF43 mutations were found 
to associate with BRAF V600E mutation (Matsumoto et al., 2020; Yan et al., 2017). These results 
suggest the existence of a more universal functional WNT5A-RNF43 axis where RNF43 acts as a gate-
keeper guarding the abnormal pro-cancerogenic noncanonical Wnt pathway activation.

Further exciting avenues relate to the importance of RSPO-RNF43/ZNRF3 module in the regu-
lation of multiple developmental processes dependent on WNT5A. There are literature hints that 
suggest that indeed WNT5A signaling is fine-tuned by RNF43/ZNRF3 during convergent extension 
movements. The regulation of Rspo3 has been proven in Xenopus embryogenesis, where it regu-
lates gastrulation movements and head cartilage morphogenesis in a manner involving Wnt5a and 
Syndecan-4 binding by R-spondin. Strikingly, Rspo3 antisense morpholino caused a phenotype char-
acteristic for the noncanonical Wnt signaling pathway – spina bifida (Ohkawara et al., 2011). Simi-
larly, overexpression of Znrf3 in zebrafish embryos caused shortened body axis and abnormal shape 
of somites, phenotypes also recognized as typical for Wnt/PCP pathway perturbances (Hao et al., 
2012). And, finally in mammals, a fraction of Znrf3 KO mice showed an open neural tube phenotype 
(Hao et  al., 2012), again reminiscent of defective Wnt/PCP signaling. Altogether, these observa-
tions, together with our data, suggest that RSPO-RNF43/ZNRF3 signaling represents an evolutionary 
conserved and widely used mechanism used to control the activation of noncanonical WNT signaling.

Materials and methods
1. Cell lines and treatments
T-REx-293 (R71007, Thermo Fisher Scientific), GFP labeled human melanoma A375 wild-type (A375) 
and its metastatic derivates A375 IV (Kucerova et al., 2014), A2058 (ECACC 91100402), and MelJuso 
(Štětková et al., 2020) (kindly gifted by Stjepan Uldrijan) cell lines were propagated in the Dulbecco’s 
modified Eagle’s medium (DMEM, 41966-029, Gibco, Life Technologies) supplemented with the 10%  
fetal bovine serum (FBS, 10270-106, Gibco, Life Technologies), 2 mM L-glutamine (25030024, Life 
Technologies), 1%  penicillin-streptomycin (XC-A4122/100, Biosera) under 5%  (vol/vol) CO2 controlled 

MEK enzyme (C). RNF43 blocks melanoma-invasive properties via interference with the nonconical Wnt pathway, leading to the increased sensitivity to 
treatment (D).

Figure 8 continued
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atmosphere at 37 °C. Routine checks for mycoplasma contamination were performed. For inhibition 
of endogenous Wnt ligands, cells were treated with the 0.5 μM Porcupine inhibitors C-59 (ab142216, 
Abcam) or 1 μM LGK-974 (1241454, PeproTech). The time points and doses have been chosen based 
on the purpose of the experiment. Changes in the phosphorylation of the WNT5A-downstream 
proteins in the noncanonical Wnt pathway transduction have been analyzed after 3 hr with the recom-
binant human WNT5A (645-WN, R&D Systems) in doses 40–100 ng/ml as given in the figure legends. 
Longer stimulation (overnight and longer) has been used in the functional experiments. For canonical 
Wnt signaling activation, the recombinant human WNT3A (5036-WN, R&D Systems) was used over-
night in 40 ng/ml, 60 ng/ml, or 80 ng/ml concentrations. Co-treatment with the recombinant human 
R-Sponidin-1 (120-38, PeproTech) in 50 ng/ml dose was applied where indicated. Dansylcadaverine 
(D4008, Sigma-Aldrich) 50 µM treatment along with 3 hr tetracycline was applied to block clathrin-
dependent endocytosis pathway (Blitzer and Nusse, 2006).

For preparation of stable cell lines, antibiotic selection after plasmid DNA transfection was 
performed using 5 μg/ml blasticidin S (3513-03-9, Santa Cruz Biotechnology) or 200 μg/ml of hygro-
mycin B (31282-04-9, Santa Cruz Biotechnology) for T-REx-293 cells and accordingly 400 μg/ml and 
5  μg/ml in case of A375 melanoma cell line. As a result, tetracycline-inducible T-REx-293 RNF43 
and RNF43 Mut1 TetON, T-REx-293 RNF43/ZNRF3 dKO RNF43 TetON, A375+ RNF43,  and A375 
IV + RNF43 were obtained. A2058 RNF43 TetON, MelJuso RNF43 TetON A375 RNF43 TetON, and 
A375 TetON ctrl (not expressing exogenous RNF43) cells were obtained by lentiviral transduction 
of doxycycline-inducible pCW57-RNF43 (blast) plasmid encoding HA- and FLAG- tagged RNF43, 
using published protocol (Barta et al., 2016), followed by 5 μg/ml blasticidin S selection and limiting 
dilution.

T-REx-293 DVL1/2/3 tKO cells were described previously (Paclíková et  al., 2017). For trans-
gene expression induction (TetON), T-REx-293 cells were treated with 1 μg/ml of tetracycline (60-
54-8, Santa Cruz Biotechnology) for the indicated time (3 hr to overnight) and melanoma cells were 
induced overnight by 1 μg/ml doxycycline (HY-N0565B, MedChem Express). Lysosomal degradation 
pathway was blocked by the 10 μM chloroquine (C662, Sigma) treatment, whereas 10 μM MG-132 
(C2211, Sigma) was used for the proteasome inhibition. Generation of the melanoma cells resistant 
to vemurafenib (HY-12057, MedChem Express) and cobimetinib (HY-13064, MedChem Express) was 
performed according to the published protocols (Anastas et al., 2014). Resistant cells were cultured 
in the presence of 2 μM (A375) and 5 μM (A2058) of vemurafenib and 0.5 μM cobimetinib or their 
combination (A2058). For transient treatments (24 hr) of melanoma cell lines, 0.5 μM vemurafenib has 
been used (A375) or 2.5 μM of vemurafenib and 0.5 μM of cobimetinib (A2058).

2. Plasmids/cloning
Backbone of the plasmid pcDNA4-TO-RNF43-2xHA-2xFLAG (kindly gifted by Bon-Kyoung Koo 
together with pcDNA4-TO-RNF43Mut1-2xHA-2xFLAG; Koo et  al., 2012) was used for further 
cloning. Briefly, for generation of the BioID-inducible pcDNA4-TO-RNF43-BirA*-HA plasmid, cDNA 
encoding RNF43 without stop codon was amplified by the PCR and cloned into the pcDNA3.1 MCS-
BirA(R118G)-HA (Addgene plasmid #36047; RRID:Addgene_36047) using HpaI (ER1031, Thermo 
Fisher Scientific) and EcoRI (ER0271, Thermo Fisher Scientific) restriction enzymes to fuse it in frame 
with the BirA*-HA sequence. Then, RNF43-BirA*-HA cDNA was amplified and cloned by the In-Fusion 
cloning method (639690, Takara Bio) into linearized by HindIII (ER0501, Thermo Fisher Scientific) and 
XbaI (ER0681, Thermo Fisher Scientific) pcDNA4-TO plasmid. To eliminate BirA* enzyme-mediated 
potential false-positive results, pcDNA3-RNF43-HA was prepared by subcloning RNF43 PCR product 
containing HA encoding sequence in the reverse primer to the pcDNA3 backbone (Invitrogen). 
pCW57-RNF43 (blast) plasmid was obtained by RNF43-HA-FLAG cDNA cloning into the EcoRI site 
of the pCW57-MCS1-P2A-MCS2 (Blast) backbone (Addgene #80921; RRID:Addgene_80921) by the 
In-Fusion cloning method. All obtained plasmids were verified by the Sanger sequencing method.

Other plasmids used were described previously and included myc-Vangl1, GFP-Vangl2, GFP-
Vangl2ΔN, GFP-Vangl2ΔC, GFP-Vangl2ΔNΔC (Belotti et  al., 2012), pLAMP1-mCherry (Addgene 
#45147), pEGFP-C1-Rab5a (Chen et al., 2009), GFP-rab11 WT (Addgene #12674), His-ubiquitin (Tauri-
ello et al., 2010), pcDNA3-Flag-mDvl1 (Tauriello et al., 2010), pCMV5-3xFlag Dvl2 (Addgene #24802), 
pCDNA3.1-Flag-hDvl3 (Angers et al., 2006), pcDNA3.1-hROR1-V5-His (gifted by Kateřina Tmějová), 
pcDNA3-Ror2-Flag and pcDNA3-Ror2-dCRD-FLAG (Sammar et al., 2004), pRRL2_ROR1ΔCYTO and 

https://doi.org/10.7554/eLife.65759
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pRRL2_ROR1ΔTail (Gentile et al., 2011), hCas9 (Addgene #41815), gRNA_GFP-T1 (Addgene #41819), 
and PiggyBack-Hygro and Transposase coding plasmids (gifted by Bon-Kyoung Koo). Sequences of 
primers used for cloning are presented in Table 1.

3. CRISPR/Cas9
For targeting RNF43 and ZNRF3 in the T-Rex-293, gRNAs ​TGAGTTCCATCGTAACTGTG​TGG (PAM) 
and ​AGACCCGCTCAAGAGGCCGG​TGG were cloned into gRNA_GFP-T1 backbone and transfected 
together with PiggyBack-Hygro and Transposase coding plasmids using polyethylenimine (PEI) in a 
way described below. For ROR1 and WNT5A knockout cell lines generation, gRNA ​CCATCTATG-
GCTCTCGGCTG​CGG (ROR1) and ​AGTATCAATTCCGACATCGA​AGG (WNT5A) were used. Trans-
fected cells were hygromycine B selected and seeded as single cells. Genomic DNA isolation was 
performed using DirectPCR Lysis Reagent (Cell) (Viagen Biotech), Proteinase K (EO0491, Thermo 
Fisher Scientific), and DreamTaq DNA Polymerase (EP0701, Thermo Fisher Scientific) according to the 
manufacturer’s instructions. PCR products were analyzed by restriction digestion using Taal (ER1361, 
Thermo Fisher Scientific) in case of RNF43, HpaII (ER0511, Thermo Fisher Scientific) – ZNRF3, TaqI 
(ER0671, Thermo Fisher Scientific) – WNT5A and TseI (R0591S, New England BioLabs) – ROR1 for 
detection of Cas9-mediated disruptions in the recognition sites.

For targeting RNF43/ZNRF3 in the A375 and in the A375 IV melanoma lines, gRNAs ​AGTTAC-
GATGGAACTCA​TGG (RNF43) and ​CTCCAGACAGATGGCACAGT​CGG (ZNRF3) were accordingly 
cloned by described protocol into the pU6-(BbsI)CBh-Cas9-T2A-mCherry (Addgene #64324) and 
pSpCas9(BB)-2A-GFP (PX458) (Addgene #48138) backbones, transfected and sorted as single, GFP, 
and mCherry double-positive cells. These were then analyzed by restriction enzymes Hin1II (ER1831, 
Thermo Fisher Scientific) and Taal as described above. Finally, PCR products were sequenced using the 
Illumina platform and compared with the reference sequence (Malcikova et al., 2015). Sequencing 
results are presented in Supplementary file 1.

4. RNF43 BioID analysis
Data are available via ProteomeXchange (Deutsch et  al., 2020) with identifier PXD020478 in the 
PRIDE database (Perez-Riverol et al., 2019). The analysis of the mass spectrometric RAW data files 
was carried out using the MaxQuant software (version 1.6.2.10) using default settings unless other-
wise noted. MS/MS ion searches were done against modified cRAP database (based on http://www.​
thegpm.org/crap) containing protein contaminants like keratin, trypsin, etc., and UniProtKB protein 
database for Homo sapiens (ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledge-
base/reference_proteomes/Eukaryota/UP000005640_9606.fasta.gz; downloaded 19.8.2018, version 
2018/08, number of protein sequences 21,053). Oxidation of methionine and proline, deamidation (N, 
Q) and acetylation (protein N-terminus) as optional modification, carbamidomethylation (C) as fixed 
modification, and trypsin/P enzyme with two allowed miss cleavages was set. Peptides and proteins 

Table 1. Cloning and mutagenesis primers.

Primer Sequence Purpose

RNF43 BirA*F ATGCAGTTAACATGAGTGGTGGCCACCAGCTG
RNF43 cDNA cloning into 
pcDNA3.1 MCS-BirA(R118G)-HARNF43 BirA*R ATGCAGAATTCCACAGCCTGTTCACACAGCTCCT

RNF43 InFusion F GTTTAAACTTAAGCTTATGAGTGGTGGCCACCAG
RNF43-BirA(R118G)-HA into 
pcDNA4RNF43 InFusion R AAACGGGCCCTCTAGACTATGCGTAATCCGGTACA

RNF43-HA F TTAAAGCTTATGAGTGGTGGCCACCAG

RNF43-HA cloning into pcDNA3RNF43-HA R

ATCGATATCTCAAGCGTAATCTGGAACATCGTATGGG
TACACAGCCTGTTCACACAGCT

pCW57-RNF43 
InFusion F ATTGGCTAGCGAATTATGAGTGGTGGCCACCAGC

pCW57-RNF43 generation
pCW57-RNF43 
InFusion R CGGTGTCGACGAATTTCAGGCGTAGTCGGGCACG

https://doi.org/10.7554/eLife.65759
http://www.thegpm.org/crap
http://www.thegpm.org/crap
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with FDR threshold <0.01 and proteins having at least one unique or razor peptide were considered 
only. Match between runs was set among all analyzed samples. Protein abundance was assessed 
using protein intensities calculated by MaxQuant. Protein intensities reported in ​proteinGroups.​txt 
file (output of MaxQuant) were further processed using the software container environment (https://​
github.com/OmicsWorkflows, Kristina, 2021), version 3.7.2 a. Processing workflow is available upon 
request. Briefly, it covered (1) removal of decoy hits and contaminant protein groups, (2) protein group 
intensities log2 transformation, (3) LoessF normalization, (4) imputation by the global minimum, and 
(5) differential expression using LIMMA statistical test. Prior to volcano plot plotting, suspected BirA* 
binders were filtered out (proteins identified by at least two peptides in both technical replicates of 
particular BirA* sample, and present in  more than three samples). Volcano plot was created in R using 
ggplot2 and ggrepel R packages by R version 3.6.1. Proteins with an adjusted p-value < 0.05 and 
log fold change >1 were further subjected to gene ontology tools, considering only the first ID of 
majority protein IDs: g:Profiler online tool (https://biit.cs.ut.ee/gprofiler/gost, version e98_eg45_p14_
ce5b097; Raudvere et al., 2019) was used and selected GO terms were highlighted. RNF43 interac-
tors from BioID assay are listed in Figure 1—source data 1, and the results obtained by g:Profiler are 
presented in Figure 1—source data 2.

5. Transfection
T-REx-293 cells were transected using 1 μg/ml, pH 7.4 PEI, and plasmid DNA in a 4:1 ratio (Paclíková 
et al., 2017). Plasmid DNA were in amount of 3 µg for 6 cm culture dish (ubiquitination assay) and 
6  µg for 10  cm dish (co-immunoprecipitation or stable cell lines preparation). Approximately 1 × 
106 of A375 and A375 IV cells were electroporated with 6 μg of plasmid DNA utilizing Neon Trans-
fection System (Thermo Fisher Scientific) 1200 V, 40 ms, 1 pulse. Culture media were changed 6 hr 
post-transfection.

6. His-ubiquitin pulldown assay
Cells were transfected with the plasmid encoding polyhistidine-tagged ubiquitin, RNF43-HA, or enzy-
matically inactive RNF43, protein of interest, and cultured overnight. Next, cells were treated with 
0.2 µM epoxomicin (E3652, Sigma) for 4 hr and lysed in the buffer containing 6 M guanidine hydro-
chloride (G3272, Sigma), 0.1 M NaxHxPO4 pH 8.0, and 10 mM imidazole (I5513, Sigma), sonicated, 
and boiled. Insoluble fraction was removed by the centrifugation (16,000 g, room temperature [RT], 
10 min). For the pull down of tagged proteins, 10 µl of equilibrated in lysis buffer His Mag Sepharose 
beads Ni (GE28-9799-17, GE Healthcare) was added to each sample and kept on a roller overnight. 
Then, the beads were washed three times in the buffer containing 8 M urea (U5378, Sigma), 0.1 M 
NaxHxPO4 pH 6.3, 0.01 M Tris, and 15 mM imidazole, resuspended in 100 μl of western blot sample 
buffer, boiled for 5 min, and loaded onto SDS-PAGE gel. Approximately 10%  of cellular lysate was 
used as a transfection control after ethanol precipitation and resuspension in the western blot sample 
buffer.

7. Western blotting and antibodies
Western blot analysis was performed as described before using samples with the same protein 
amount, measured by the DC Protein Assay (5000111, Bio-Rad), or lysed directly in the sample buffer 
(2%  SDS, 10%  glycerol, 5%  β-mercaptoethanol, 0.002%  bromophenol blue, and 0.06 M Tris HCl, 
pH 6.8) and protease inhibitor cocktail (11836145001, Roche) after PBS wash (Mentink et al., 2018). 
Protein extraction from mouse tissues was done by homogenizing in the 1%  SDS, 100 mM NaCl, 
100 mM Tris, pH 7.4 buffer, sonication, clarification by centrifugation (16,000 g, 4 °C, 15 min), and 
protein concentration measurement. Next, volumes of samples containing the same protein amounts 
were mixed with western blot sampling buffer and loaded onto SDS-PAGE gels. Briefly, after elec-
trophoretic separation, proteins were transferred onto Immobilon-P PVDF Membrane (IPVH00010, 
Millipore) and detected using primary and corresponding HRP-conjugated secondary antibodies on 
Fusion SL imaging system (Vibler) using Immobilon Western Chemiluminescent HRP Substrate (Merck, 
WBKLS0500). Molecular size of the bands is marked in each panel (kDa). A list of used antibodies is 
presented in Appendix 1—key resources table. Shifts of ROR1, ROR2, DVL2, DVL3, VANGL1, and 
VANGL2 are marked by arrowheads. Empty arrowhead marks phosphorylation-dependent shift. 
Densitometric analysis of western blot signals was performed using ImageJ software. Activation level 

https://doi.org/10.7554/eLife.65759
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of DVL2 and DVL3 (Bryja et al., 2007a) is presented as the ratio of intensities of upper band; repre-
senting active – phosphorylated protein fraction and lower band (black arrowhead; unphosphory-
lated). Total DVL2 and DVL3 levels were quantified as the sum of two bands intensities.

8. Immunofluorescence and confocal microscopy
Cells growing on the glass were fixed in 4%  paraformaldehyde (PFA) in PBS. Fixed cells were perme-
abilized by 0.1%  Triton X-100 in PBS and blocked in 1%  solution of bovine serum albumin (BSA) in 
PBS. Then, samples were incubated overnight at 4 °C with primary antibodies diluted in 1%  BSA 
in PBS and washed. Corresponding Alexa Fluor secondary antibodies (Invitrogen) were incubated 
with samples for 1 hr at RT, along with 1 µg/ml Hoechst 33342 (H1399, Thermo Fisher Scientific) for 
nuclei staining. After PBS washes, the samples were mounted in the DAKO mounting medium (S3023, 
DAKO). Images were taken on the confocal laser scanning microscopy platform Leica TCS SP8 (Leica). 
For co-localization analysis, histograms for each channel were prepared in LAS X Life Science (Leica) 
software and plotted in GraphPad Prism 8. Co-localization is marked by arrowheads.

9. Immunoprecipitation
T-REx-293 cells were transfected with the proper plasmid DNA and cultured for 24 hr. Then, cells were 
washed two times with PBS and lysed for 15 min in the buffer containing 50 mM Tris pH7.6, 200 mM 
NaCl, 1 mM EDTA, 0.5% NP40, fresh 0.1 mM DTT (E3876, Sigma) and protease inhibitor cocktail 
(04693159001, Roche). Insoluble fraction was removed by centrifugation (16,000 g, RT, 15 min), 10%  
of total cell lysate was kept as western blot control. Lysates were incubated with 1 μg of antibody for 
16 hr at 4 °C on the head-over-tail rotator. Next, 20 μl of protein G-Sepharose beads (17-0618-05; GE 
Healthcare) equilibrated in complete lysis buffer were added to each sample and incubated for 4 hr at 
4 °C, following six washes using lysis buffer and resuspension in 100 μl of western blot sample buffer. 
Immunoprecipitation experiments were analyzed by the western blot.

10. Flow cytometric determination of ROR1 surface expression
Determination of the ROR1 surface expression of T-REx-293 and its derivates was done using anti-
ROR1-APC (#130-119-860, Miltenyi Biotec) and Accuri C6 (BD Biosciences) (RNF43/ZNRF3 dKO 
cells) or using BD FACSVerse Flow Cytometer (BD Biosciences) (TetON cells). Cells were harvested in 
0.5 mM EDTA/PBS, washed in PBS, and incubated in 2%  FBS in PBS with anti-ROR1-APC antibody 
(1:25, #130-119-860, Miltenyi Biotec) on ice for 30 min. The cells were washed and resuspended in 
PBS, and incubated with propidium iodide (10 ng/ml, #81845, Sigma-Aldrich) for 5 min to exclude 
dead cells from analysis. For the detection of ROR1 surface expression in HA-positive cells, ROR1-
APC-stained cells were washed in PBS, fixed in 4%  PFA at RT for 15 min, permeabilized in 0.02%  
Triton X-100 at RT for 15 min, and incubated with anti-HA antibody (1:1000, #9110, Abcam) in staining 
buffer at RT for 30 min. After two washes, cells were incubated with secondary antibody ALEXA Fluor 
488 Donkey anti-Rabbit (#A21206, Invitrogen) at RT for 20 min, washed, and measured using FACS 
Verse (BD Biosciences). Data were analyzed using NovoExpress Software (ACEA Biosciences).

11. Quantitative polymerase chain reaction (qPCR)
Messenger RNA was isolated using the RNeasy Mini Kit (74106; Qiagen) according to the manu-
facturer’s instructions. 1 μg of mRNA was transcribed to cDNA by the RevertAid Reverse Transcrip-
tase (EP0442, Thermo Fisher Scientific) and analyzed by use of LightCycler 480 SYBR Green I Master 
(04887352001, Roche) and LightCycler LC480 (Roche). Results are presented as 2−ΔΔCT and compared 
by unpaired Student’s t-test. Mean expression of B2M and GAPDH or HSPCB and RPS13 (A375 VR 
cells) was used as reference. Primers are listed in Appendix 1—key resources table.

12. Databases
RNF43, VANGL1, and DVL3 gene expression in different melanoma stages was analyzed through 
Oncomine (RRID:SCR_007834; Rhodes et  al., 2004) database in the different datasets (Talantov 
et al., 2005, Xu et al., 2008, Haqq et al., 2005). OncoLnc (Anaya, 2016) database was employed 
to elucidate whether the expression of the RNF43, ZNRF3, VANGL1, and DVL3 gene expression has 
a significant impact on the melanoma patients’ overall survival. RNF43 BioID data are available via 

https://doi.org/10.7554/eLife.65759
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ProteomeXchange (RRID:SCR_004055; Deutsch et  al., 2020) in the PRIDE database (PXD020478) 
(RRID:SCR_003411; Perez-Riverol et al., 2019).

13. Wound healing assay, Matrigel invasion assay, fluorescent gelatin 
degradation assay, invadopodia formation assay, and collagen I 
hydrogel 3D invasion assay
For the determination of cellular motility and invasive properties in vitro wound healing (O’Con-
nell et al., 2008), Matrigel invasion towards 20 % FBS as chemoattractant followed by crystal violet 
staining of invaded cells, fluorescent gelatin degradation in the presence of 5%  FBS after overnight 
starvation, and invadopodia formation assays were prepared according to the established protocols 
(Makowiecka et al., 2016). The wound gap was photographed using the Olympus ix51 inverted fluo-
rescence microscope after 48 hr from scratch. Percentage of the cell-free surface was measured by 
ImageJ software. For the fluorescent gelatin degradation assay purpose, 80 ng/ml of rhWNT5A was 
used during 16 hr of cells’ incubation on the coverslips coated with gelatin-Oregon Green conjugate 
(G13186, Thermo Fisher Scientific). Alexa Fluor 594 phalloidin (A12381, Thermo Fisher Scientific) and 
TO-PRO-3 Iodide (642/661) were employed for the cells’ visualization on confocal microscopy plat-
form Leica TCS SP8. For the invadopodia formation assay, an immunofluorescence imaging protocol 
employing phalloidin and anti-cortactin antibody was performed. Invadopodia – as structures double 
positive for F-actin and cortactin staining – was quantified for tested cell lines and conditions and 
presented as the number of invadopodia per one cell. Two independent repetitions were performed.

Collagen I hydrogel 3D invasion assay is a modification of the inverted vertical invasion assay 
(McArdle et al., 2016). Cells were plated on the µ-Slide 8 Well glass bottom coverslips (80827, Ibidi). 
At 80%  confluence, the full medium was replaced with one containing 0.5%  FBS for proliferation 
suppression. Doxycycline for RNF43 induction was applied at this step when needed. Next day, a solu-
tion of rat tail collagen type I in final concentration 1.5 mg/ml prepared accordingly to the manufactur-
er’s protocol was overlaid over the cells and left for polymerization for 30 min at 37 °C, 5%  CO2. Then 
medium with final FBS concentration 10%  and 100 ng/ml CXCL12 (350-NS, R&D Systems) or 100 ng/
ml CCL21 (366-6C , R&D Systems) was added to the wells. After 24 hr, cells were PFA fixed, permea-
bilized, and stained with Hoechst 33342 (H1399, Thermo Fisher Scientific) and Alexa Fluor 594 phal-
loidin. Corresponding photos at the coverslip level and at 50 μm (A375 and A2058) or 70 μm (A375 IV) 
were taken using a confocal laser scanning microscopy platform Leica TCS SP8 (Leica). Invasion index 
was calculated as the ratio of invaded cells at a specified height to the number of noninvasive ones.

14. Colony formation assay
To assess the ability of colony formation in the presence of 0.3 μM vemurafenib, 300 of the melanoma 
cells were plated onto 24-well plate and were subsequently cultured for 7 days. After that time, the 
medium was removed and colonies were washed in PBS, fixed in the ice-cold methanol for 30 min, and 
stained with 0.5%  crystal violet in 25%  methanol. After washing and drying, bound crystal violate was 
eluted with 10%  acetic acid and absorbance at 590 nm was measured on Tecan Sunrise plate reader. 
Results were normalized to the nontreated A375 wild-type results.

15. Animal studies
Animal experiments were approved by the Academy of Sciences of the Czech Republic (AVCR 
85/2018), supervised by the local ethical committee, and performed by certified individuals (Karel 
Souček, Markéta Pícková, Ráchel Víchová).

A375 ctrl and A375 RNF43 TetON cells were implanted as a suspension of 50,000 cells in 50 μl 
saline intradermally into 9  -week-old males of NOD-Rag1null IL2rgnull strain, obtained from Jackson 
Laboratory. Animals were checked daily, and weight and tumors sizes were measured weekly along 
perpendicular axes using an external caliper. Tumor volumes were calculated using the equation 
volume = ½ (length × width2). Upon tumor establishment, animals were divided into five cohorts 
based on administered cells and treatment: (I) A375 ctrl + vemurafenib (N = 5); (II) A375 RNF43 TetON 
Dox - (N = 3); (III) A375 RNF43 TetON Dox + (N = 4); (IV) A375 RNF43 TetON VEMURAFENIB Dox - (N 
= 5); and (V) A375 RNF43 TetON VEMURAFENIB Dox + (N = 4). Doxycycline supplemented for RNF43 
expression induction was administrated in drinking water, 0.2 mg/ml in 0.1% weight:volume sucrose. 
Control cohort obtained drinking water with 0.1%  sucrose. Vemurafenib was supplemented daily by 
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oral gavage in concentration of 25 mg/kg/day as freshly prepared formulation in 25%  Kolliphor ELP 
(61791-12-6, Sigma-Aldrich) with 2.5%  DMSO. Animals not treated with vemurafenib received the 
same formulation without inhibitor. Mice were sacrificed when tumors reached approximately 1000 
mm3. Tumor samples were analyzed by western blot, and the times to reach the experimental end 
point was compared.

16. Software and statistics
Statistical significance was confirmed by two-tailed paired or unpaired Student’s t-tests. Survival was 
analyzed by Mantel–Cox test. Correlation between RNF43(HA) protein level and its targets in the in 
vivo experiments was tested by one-tailed Spearman correlation test. Statistical significance levels 
were defined as *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. All statistical details including the 
number of biological or technical replicates can be found in each figure legend. Statistical analysis and 
data visualization were performed in GraphPad Prism 8.0 software. Graphs are presented with error 
bars as ± SD if not stated differently in the figure legends.
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Appendix 1

Appendix 1—key resources table 
Reagent type 
(species) or 
resource Designation Source or reference Identifiers Additional information

Strain, strain 
background (Mus 
musculus) NOD-Rag1null IL2rgnull Jackson Laboratory RRID:BCBC_1261 9 -week-old males

Cell line (Homo 
sapiens) T-REx 293

Thermo Fisher 
Scientific

R71007; RRID:CVCL_
D585

For TetON system using pcDNA4-TO 
backbone

Cell line (Homo 
sapiens) T-REx 293 RNF43 TetON This publication Cells inducibly overexpressing RNF43

Cell line (Homo 
sapiens) T-REx 293 RNF43 Mut1 TetON This publication

Cells inducibly overexpressing inactive 
RNF43

Cell line (Homo 
sapiens) T-REx 293 RNF43/ZNRF3 dKO This publication

Cells lacking RNF43/ZNRF3; CRISPR/
Cas9

Cell line (Homo 
sapiens)

T-REx 293 RNF43/ZNRF3 dKO 
RNF43 TetON This publication

RNF43/ZNRF3 dKO inducibly 
overexpressing RNF43

Cell line (Homo 
sapiens) T-REx 293 DVL1/2/3 tKO

Paclíková et al., 
2017

Cells lacking all DVL isoforms; CRISPR/
Cas9

Cell line (Homo 
sapiens) T-REx 293 WNT5A/B KO This publication

Cells lacking WNT5A/B isoforms; 
CRISPR/Cas9

Cell line (Homo 
sapiens) T-REx 293 ROR1 KO This publication Cells lacking ROR1; CRISPR/Cas9

Cell line (Homo 
sapiens)

A375 (amelanotic malignant 
melanoma)

Kucerova et al., 
2014 RRID:CVCL_0132

BRAF V600E; GFP constitutive 
expression

Cell line (Homo 
sapiens) A375 RNF43/ZNRF3 dKO This publication

Cells lacking RNF43/ZNRF3; CRISPR/
Cas9

Cell line (Homo 
sapiens) A375+ RNF43 This publication Stable overexpression of RNF43

Cell line (Homo 
sapiens) A375 RNF43 TetON This publication Cells inducibly overexpressing RNF43

Cell line (Homo 
sapiens) A375 TetON ctrl This publication Control cells for A375 RNF43 TetON

Cell line (Homo 
sapiens)

A375 IV (amelanotic malignant 
melanoma)

Kucerova et al., 
2014

BRAF V600E; GFP constitutive 
expression

Cell line (Homo 
sapiens) A375 IV RNF43/ZNRF3 dKO This publication

Cells lacking RNF43/ZNRF3; CRISPR/
Cas9

Cell line (Homo 
sapiens) A375 IV + RNF43 This publication Stable overexpression of RNF43

Cell line (Homo 
sapiens) A2058 (metastatic melanoma) ECACC

91100402; 
RRID:CVCL_1059 BRAF V600E

Cell line (Homo 
sapiens) A2058 RNF43 TetON This publication Cells inducibly overexpressing RNF43

Cell line (Homo 
sapiens) MelJuso

Laboratory of Stjepan 
Uldrijan RRID:CVCL_1403 NRASQ61L/WT HRASG13D/G13D

Cell line (Homo 
sapiens) MelJuso RNF43 TetON This publication Cells inducibly overexpressing RNF43

Peptide, 
recombinant 
protein

Recombinant human R-
Sponidin-1 PeproTech 120-38 Final concentration 50 ng/ml

Peptide, 
recombinant 
protein Recombinant human WNT3A R&D Systems 5036-WN Range 40–80 ng/ml

Peptide, 
recombinant 
protein Recombinant human WNT5A R&D Systems 645-WN Range 40–80 ng/ml

https://doi.org/10.7554/eLife.65759
https://identifiers.org/RRID/RRID:BCBC_1261
https://identifiers.org/RRID/RRID:CVCL_D585
https://identifiers.org/RRID/RRID:CVCL_D585
https://identifiers.org/RRID/RRID:CVCL_0132
https://identifiers.org/RRID/RRID:CVCL_1059
https://identifiers.org/RRID/RRID:CVCL_1403
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Appendix 1 Continued on next page

Reagent type 
(species) or 
resource Designation Source or reference Identifiers Additional information

Chemical 
compound, drug LGK-974, Porcupine inhibitor PeproTech 1241454 1 μM

Chemical 
compound, drug C-59, Porcupine inhibitor Abcam ab142216 0.5 μM

Chemical 
compound, drug

Dansylcadaverine, inhibitor of 
clathrin-dependent endocytosis Sigma-Aldrich D4008 50 µM

Chemical 
compound, drug

Chloroquine, inhibitor of 
lysosomal hydrolases Sigma-Aldrich C662 10 μM

Chemical 
compound, drug MG-132, proteasome inhibitor Sigma-Aldrich C2211 10 μM

Chemical 
compound, drug

Vemurafenib BRAF V600E 
inhibitor MedChem Express HY-12057 Up to 5 μM

Chemical 
compound, drug Cobimetinib, Mek1 inhibitor MedChem Express HY-13064 Up to 0.5 μM

Antibody β-actin (rabbit monoclonal)
Cell Signaling 
Technology

CS-4970; 
RRID:AB_2223172 WB (1:3000)

Antibody DVL-2 (rabbit polyclonal)

Cell Signaling 
Technology 
Mentink et al., 2018 CS-3216; 

RRID:AB_2093338 WB (1:1000)

Antibody DVL-3 (rabbit polyclonal)

Cell Signaling 
Technology 
Mentink et al., 2018 CS-3218; 

RRID:AB_10694060 WB (1:1000)

Antibody DVL-3 (rabbit monoclonal)

Santa Cruz 
Biotechnology 
 Kaiser et al., 2019 SC-8027; 

RRID:AB_627434 WB (1:1000)

Antibody

Phospho-p44/42 MAPK 
(Erk1/2) (Thr202/Tyr204) (rabbit 
polyclonal)

Cell Signaling 
Technology 
 Radaszkiewicz 
et al., 2020

CS-9101; 
RRID:AB_331646 WB (1:1000)

Antibody
Total MAPK (Erk1/2) (rabbit 
monoclonal)

Cell Signaling 
Technology 
 Radaszkiewicz and 
Bryja, 2020

CS-4695; 
RRID:AB_390779 WB (1:1000)

Antibody ROR1 (rabbit polyclonal)
Kind gift from Ho 
et al., 2012 WB (1:3000)

Antibody ROR2 (mouse monoclonal)

Santa Cruz 
Biotechnology 
Ozeki et al., 2016

sc-374174; 
RRID:AB_10989358 WB (1:1000)

Antibody WNT5A (rat monoclonal)
R&D Systems 
 Kaiser et al., 2019

MAB645; 
RRID:AB_10571221 WB (1:500)

Antibody WNT11 (rabbit polyclonal)

LifeSpan BioSciences 
 Kotrbová et al., 
2020 LS-C185754 WB (1:500)

Antibody VANGL2 2 G4 (rat monoclonal)

Merck 
 Mentink et al., 
2018 MABN750; 

RRID:AB_2721170 WB (1:500)

Antibody MITF (rabbit monoclonal)

Cell Signaling 
Technology 
 Lavelle et al., 2020 CS-12590; 

RRID:AB_2616024 WB (1:1000)

Antibody HA-11 (mouse monoclonal)

Covance 
 Paclíková et al., 
2017

MMS-101R; 
RRID:AB_291262 WB (1:2000); IF (1:500); IP (1 µg)

https://doi.org/10.7554/eLife.65759
https://identifiers.org/RRID/RRID:AB_2223172
https://identifiers.org/RRID/RRID:AB_2093338
https://identifiers.org/RRID/RRID:AB_10694060
https://identifiers.org/RRID/RRID:AB_627434
https://identifiers.org/RRID/RRID:AB_331646
https://identifiers.org/RRID/RRID:AB_390779
https://identifiers.org/RRID/RRID:AB_10989358
https://identifiers.org/RRID/RRID:AB_10571221
https://identifiers.org/RRID/RRID:AB_2721170
https://identifiers.org/RRID/RRID:AB_2616024
https://identifiers.org/RRID/RRID:AB_291262
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Reagent type 
(species) or 
resource Designation Source or reference Identifiers Additional information

Antibody HA (rabbit polyclonal)

Abcam 
 Paclíková et al., 
2017

ab9110; 
RRID:AB_307019

WB (1:2000); IF (1:500); IP (1 µg); FC 
(1:1000)

Antibody
c-Myc (9E10) (mouse 
monoclonal)

Santa Cruz 
Biotechnology 
 Hanáková et al., 
2019

sc-40; 
RRID:AB_2857941 WB (1:500); IF (1:250); IP (1 µg)

Antibody GFP 3 H9 (rat monoclonal)
Chromotek 
 Harnoš et al., 2019 3 H9 WB (1:2000); IP (1 µg)

Antibody GFP (rabbit polyclonal)

Fitzgerald 
 Hanáková et al., 
2019

20R-GR-011; 
RRID:AB_1286217 WB (1:2000); IP (1 µg)

Antibody FLAG M2 (mouse monoclonal)

Sigma-Aldrich 
 Paclíková et al., 
2017

F3165; 
RRID:AB_259529 WB (1:2000), IF (1:500)

Antibody FLAG (rabbit polyclonal)

Sigma 
 Paclíková et al., 
2017

F7425; 
RRID:AB_439687 WB (1:2000); IF (1:500)

Antibody V5 (mouse monoclonal)

Thermo Fisher 
Scientific 
Kaiser et al., 2019

R96025; 
RRID:AB_159313 WB (1:1000), IF (1:1000); IP (1 µg)

Antibody Cortactin (mouse monoclonal)

Santa Cruz 
Biotechnology 
Weeber et al., 2019

sc-55579; 
RRID:AB_831187 IF (1:250)

Antibody Golgin-97 (mouse monoclonal) Invitrogen
A-21270; 
RRID:AB_221447 IF (1:500)

Antibody
a-mouse IgG HRP (goat 
polyclonal) Sigma-Aldrich

A4416; 
RRID:AB_258167 WB (1:4000)

Antibody
a-rabbit IgG HRP (goat 
polyclonal) Sigma-Aldrich

A0545; 
RRID:AB_257896 WB (1:4000)

Antibody a-rat IgG HRP (goat polyclonal) Sigma-Aldrich
A9037; 
RRID:AB_258429 WB (1:4000)

Antibody Streptavidin-HRP conjugate Abcam ab7403 WB (1:4000)

Antibody Ror1-APC (mouse monoclonal)

Miltenyi Biotec 
 Kotašková et al., 
2016 30-119-860 FC (1:25)

Antibody
a-mouse Alexa Fluor 488 (goat 
polyclonal) and 568 (donkey 
polyclonal)

Thermo Fisher 
Scientific

A-11001 
(RRID:AB_2534069) 
and A10037 
(RRID:AB_2534013)

IF (1:600)

Antibody
a-rabbit Alexa Fluor 488 (donkey 
polyclonal) and 568 (goat 
polyclonal)

Thermo Fisher 
Scientific

A21206 
(RRID:AB_2535792) 
and A11011 
(RRID:AB_143157)

IF (1:600)

Antibody Streptavidin, Alexa Fluor 488 
conjugate

Thermo Fisher 
Scientific

S-32354 IF (1:600)

Antibody
Phalloidine Alexa Fluor 594

Thermo Fisher 
Scientific

A12381 IF (1:600)

Antibody
Phalloidine 4 Alexa Fluor 488

Thermo Fisher 
Scientific

A12379 IF (1:600)

Recombinant DNA 
reagent

pcDNA4-TO-RNF43-2xHA-
2xFLAG

Kindly gifted by Bon-
Kyoung Koo (Koo 
et al., 2012)

Inducible expression of RNF43; 
backbone for cloning

Recombinant DNA 
reagent pcDNA4-TO-RNF43Mut1-2xHA-

2xFLAG

Kindly gifted by Bon-
Kyoung Koo (Koo 
et al., 2012)

Inducible expression of inactive RNF43-
HA-FLAG

https://doi.org/10.7554/eLife.65759
https://identifiers.org/RRID/RRID:AB_307019
https://identifiers.org/RRID/RRID:AB_2857941
https://identifiers.org/RRID/RRID:AB_1286217
https://identifiers.org/RRID/RRID:AB_259529
https://identifiers.org/RRID/RRID:AB_439687
https://identifiers.org/RRID/RRID:AB_159313
https://identifiers.org/RRID/RRID:AB_831187
https://identifiers.org/RRID/RRID:AB_221447
https://identifiers.org/RRID/RRID:AB_258167
https://identifiers.org/RRID/RRID:AB_257896
https://identifiers.org/RRID/RRID:AB_258429
https://identifiers.org/RRID/RRID:AB_2534069
https://identifiers.org/RRID/RRID:AB_2534013
https://identifiers.org/RRID/RRID:AB_2535792
https://identifiers.org/RRID/RRID:AB_143157
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Reagent type 
(species) or 
resource Designation Source or reference Identifiers Additional information

Recombinant DNA 
reagent pcDNA4-TO-RNF43-BirA*-HA This publication

Inducible expression of RNF43 with 
BirA* and HA tags

Recombinant DNA 
reagent pcDNA3-RNF43-HA This publication

Expression of RNF43-HA

Recombinant DNA 
reagent pCW57-RNF43 This publication

Lentiviral plasmid allowing inducible 
expression of HA/FLAG tagged RNF43

Recombinant DNA 
reagent

myc-Vangl1, GFP-Vangl2, GFP-
Vangl2ΔN, GFP-Vangl2ΔC, GFP-
Vangl2ΔNΔC Belotti et al., 2012

Expression of VANGL1 and VANGL2 
and their variants

Recombinant DNA 
reagent

pLAMP1-mCherry

Addgene #45147  
Van Engelenburg 
and Palmer, 2010

RRID:Addgene_45147 Expression of lysosomes marker

Recombinant DNA 
reagent pEGFP-C1-Rab5a Chen et al., 2009

Expression of early endosomes marker

Recombinant DNA 
reagent

GFP-rab11 WT

Addgene #12674 
 Choudhury et al., 
2002

RRID:Addgene_12674 Expression of recycling endosomes 
marker

Recombinant DNA 
reagent His-ubiquitin Tauriello et al., 2010

Tagged ubiquitin for His-Ub pulldown 
assay

Recombinant DNA 
reagent pcDNA3-Flag-mDvl1 Tauriello et al., 2010

Expression of Dvl1 with Flag tag

Recombinant DNA 
reagent

pCMV5-3xFlag Dvl2

Addgene #24802 
 Narimatsu et al., 
2009

RRID:Addgene_24802 Expression of DVL2 with Flag tag

Recombinant DNA 
reagent pCDNA3.1-Flag-hDvl3 Angers et al., 2006

Expression of DVL3 with Flag tag

Recombinant DNA 
reagent pcDNA3.1-hROR1-V5-His

gifted by Kateřina 
Tmějová

Expression of ROR1 with V5 tag

Recombinant DNA 
reagent

pcDNA3-Ror2-Flag; pcDNA3-
Ror2-dCRD-FLAG Sammar et al., 2004

Expression of ROR2 with FLAG tag and 
its mutant lacking CRD domain

Recombinant DNA 
reagent

pRRL2_ROR1ΔCYTO and 
pRRL2_ROR1ΔTail Gentile et al., 2011

Expression of ROR1 and its truncated 
versions

Recombinant DNA 
reagent hCas9

Addgene #41815  
Mali et al., 2013

RRID:Addgene_41815 Humanized Cas9

Recombinant DNA 
reagent gRNA_GFP-T1

Addgene #41819  
Mali et al., 2013

RRID:Addgene_41819 gRNA expression plasmid

Recombinant DNA 
reagent PiggyBack-Hygro; Transposase

Gifted by Bon-
Kyoung Koo

RRID:Addgene_64324 PiggyBack transposase system for 
stable cell lines generation

Recombinant DNA 
reagent

pU6-(BbsI)CBh-Cas9-T2A-
mCherry

Addgene #64324  
Chu et al., 2015

RRID:Addgene_64324 All-in-1 Cas9 plasmid

Recombinant DNA 
reagent pSpCas9(BB)-2A-GFP (PX458)

Addgene #48138  
Ran et al., 2013

RRID:Addgene_48138 All-in-1 Cas9 plasmid

Sequence-based 
reagent RNF43 gRNA This publication

gRNA ​TGAG​TTCC​ATCG​TAAC​TGTGTGG

Sequence-based 
reagent ZNRF3 gRNA This publication

gRNA ​AGAC​CCGC​TCAA​GAGG​CCGGTGG

Sequence-based 
reagent WNT5A gRNA This publication

gRNA ​AGTA​TCAA​TTCC​GACA​TCGAAGG

Sequence-based 
reagent ROR1 gRNA This publication

gRNA ​CCAT​CTAT​GGCT​CTCG​GCTGCGG

Sequence-based 
reagent RNF43 gRNA This publication

gRNA ​AGTTACGATGGAACTCATGG

Sequence-based 
reagent ZNRF3 gRNA This publication

gRNA ​CTCC​AGAC​AGAT​GGCA​CAGTCGG

https://doi.org/10.7554/eLife.65759
https://identifiers.org/RRID/RRID:Addgene_45147
https://identifiers.org/RRID/RRID:Addgene_12674
https://identifiers.org/RRID/RRID:Addgene_24802
https://identifiers.org/RRID/RRID:Addgene_41815
https://identifiers.org/RRID/RRID:Addgene_41819
https://identifiers.org/RRID/RRID:Addgene_64324
https://identifiers.org/RRID/RRID:Addgene_64324
https://identifiers.org/RRID/RRID:Addgene_48138
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Reagent type 
(species) or 
resource Designation Source or reference Identifiers Additional information

Sequence-based 
reagent B2M_F This publication

qPCR primer ​CACCCCCACTGAAAAAGATG

Sequence-based 
reagent B2M_R This publication

qPCR primer ​ATAT​TAAA​AAGC​AAGC​AAGCAGAA

Sequence-based 
reagent GAPDH_F This publication

qPCR primer ​GACAGTCAGCCGCATCTTCT

Sequence-based 
reagent GAPDH_R This publication

qPCR primer ​TTAAAAGCAGCCCTGGTGAC

Sequence-based 
reagent HSPCB_F This publication

qPCR primer ​TCTG​GGTA​TCGG​AAAG​CAAGCC

Sequence-based 
reagent HSPCB_R This publication

qPCR primer ​GTGC​ACTT​CCTC​AGGC​ATCTTG

Sequence-based 
reagent RPS13_F This publication

qPCR primer ​CGAA​AGCA​TCTT​GAGA​GGAACA

Sequence-based 
reagent RPS13_R This publication

qPCR primer TCGAGCCAAACGGTGAATC

Sequence-based 
reagent RNF43_F This publication

qPCR primer ​TTTCCTGCCTCCATGAGTTC

Sequence-based 
reagent RNF43_R This publication

qPCR primer ​CAGG​GACT​GGGA​AAAT​GAATC

Sequence-based 
reagent ZNRF3_F This publication

qPCR primer ​GCTTTCTTCGTCGTGGTCTC

Sequence-based 
reagent ZNRF3_R This publication

qPCR primer ​GCCT​GTTC​ATGG​AATT​CTGAC

Sequence-based 
reagent DVL2_F This publication

qPCR primer
​TCCT​TCCA​CCCT​AATG​TGTCCA

Sequence-based 
reagent DVL2_R This publication

qPCR primer ​CATG​CTCA​CTGC​TGTC​TCTCCT

Sequence-based 
reagent DVL3_F This publication qPCR primer ​ACCTTGGCGGACTTTAAGGG

Sequence-based 
reagent DVL3_R This publication

qPCR primer ​TCACCACTCCGAAATCGTCG

Sequence-based 
reagent WNT5A_F This publication

qPCR primer ​GCAG​CACT​GTGG​ATAA​CACCTCTG

Sequence-based 
reagent WNT5A_R This publication qPCR primer ​AACT​CCTT​GGCA​AAGC​GGTAGCC

Sequence-based 
reagent ROR1_F This publication

qPCR primer ​TCTC​GGCT​GCGG​ATTA​GAAAC

Sequence-based 
reagent ROR1_R This publication

qPCR primer ​TCCA​GTGG​AAGA​AACC​ACCTC

Sequence-based 
reagent ROR2_F This publication

qPCR primer ​GTGC​GGTG​GCTA​AAGA​ATGAT

Sequence-based 
reagent ROR2_F This publication

qPCR primer ​ATTC​GCAG​TCGT​GAAC​CATATT

Sequence-based 
reagent MITF_F Su et al., 2020

qPCR primer TGCCCAGGCATGAACACAC

Sequence-based 
reagent MITF_R Su et al., 2020

qPCR primer ​GGGA​AAAA​TACA​CGCT​GTGAG

WB: western blot; IF:immunofluorescence; IP: immunoprecipitation.

https://doi.org/10.7554/eLife.65759
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