Table 1.
iso-I | Solvent | λmax [nm] | Attenuation at λmax | E1/2 [V] (V vs Fc/Fc+) | Exciton binding energycalc. [eV] | ||
---|---|---|---|---|---|---|---|
Exp | Calc | fcalc | εexp [M−1 cm−1] | ||||
25 | Toluene | 508 | 508 | 0.1422 | 2882 | ||
MeCN | 503 | 508 | 0.1366 | 2596 | − 1.12a | 4.30 | |
MeOH | 512 | 526 | 0.0932 | 1936 | |||
27 | Tolueneb | 400 | 449 | 0.1733 | 12,006 | ||
MeCNb | 396 | 451 | 0.1655 | 10,865 | − 1.01a | 4.18 | |
MeOHb | 402 | 459 | 0.2239 | 13,313 | |||
30 | Toluene | 484 | 492 | 0.1748 | 4962 | ||
MeCN | 485 | 497 | 0.1496 | 5277 | − 1.13 | 4.30 | |
MeOH | 494 | 504 | 0.1650 | 4046 | |||
31 | Toluene | 485 | 490 | 0.1999 | 3985 | ||
MeCN | 482 | 493 | 0.1712 | 3501 | − 1.11 | 4.69 | |
MeOH | 483 | 497 | 0.174 | 2783 | |||
35 | Toluene | 487 | 486 | 0.1995 | 4689 | ||
MeCN | 483 | 490 | 0.1783 | 4773 | − 1.15a | 4.64 | |
MeOH | 482 | 497 | 0.1821 | 2780 | |||
36 | Toluene | 474 | 487 | 0.3019 | 9935 | ||
MeCN | 472 | 487 | 0.2727 | 10,695 | − 0.90 | 4.82 | |
45 | Toluene | 484 | 482 | 0.3967 | 5105 | ||
MeCN | 478 | 487 | 0.1884 | 4208 | − 1.16a | 4.74 | |
MeOH | 481 | 496 | 0.1870 | 4473 | |||
46 | Toluene | 489 | 496 | 0.1492 | 5198 | ||
MeCN | 483 | 501 | 0.1286 | 4440 | − 1.19 | 4.63 | |
MeOH | 485 | 509 | 0.1256 | 4067 | |||
47 | Toluene | 493 | 501 | 0.1594 | 4154 | ||
MeCN | 493 | 507 | 0.1361 | 3784 | − 1.20 | 4.56 | |
MeOH | 495 | 515 | 0.1330 | 3671 |
The experimentally obtained λmax and the corresponding molar attenuation coefficient (εexp) are compared to the calculated S0 → S1 transition properties at the TD-PBE0/cc-pVDZ level of theory. The value of E1/2 obtained by cyclic voltammetry in acetonitrile are referenced versus Fc/Fc+. The exciton binding energy was obtained from the analysis of obtained data with the Multiwfn software. A complete list of computed optical and electrochemical data can be found in the SI
aDetermined from computational results, corrected by the parametrisation scheme described below
bλmax as S0–S2 transition band, since the S0–S1 transition does not build up to a local maximum, leading to a formal increased error