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Abstract

Phylogenetic, developmental, and brain-imaging studies suggest that human personality is the integrated expression of three
major systems of learning and memory that regulate (1) associative conditioning, (2) intentionality, and (3) self-awareness.
We have uncovered largely disjoint sets of genes regulating these dissociable learning processes in different clusters of
people with (1) unregulated temperament profiles (i.e., associatively conditioned habits and emotional reactivity), (2)
organized character profiles (i.e., intentional self-control of emotional conflicts and goals), and (3) creative character profiles
(i.e., self-aware appraisal of values and theories), respectively. However, little is known about how these temperament and
character components of personality are jointly organized and develop in an integrated manner. In three large independent
genome-wide association studies from Finland, Germany, and Korea, we used a data-driven machine learning method to
uncover joint phenotypic networks of temperament and character and also the genetic networks with which they are
associated. We found three clusters of similar numbers of people with distinct combinations of temperament and character
profiles. Their associated genetic and environmental networks were largely disjoint, and differentially related to distinct
forms of learning and memory. Of the 972 genes that mapped to the three phenotypic networks, 72% were unique to a single
network. The findings in the Finnish discovery sample were blindly and independently replicated in samples of Germans and
Koreans. We conclude that temperament and character are integrated within three disjoint networks that regulate healthy
longevity and dissociable systems of learning and memory by nearly disjoint sets of genetic and environmental influences.

Introduction

An individual’s unique pattern of behaviors, feelings, and
thoughts is the expression of his or her personality, which is
a strong predictor of the physical, mental, and social aspects
of current and future health across the lifespan [1-3]. Per-
sonality is defined briefly as the way a person learns to
adapt to experience, or, more specifically, as the dynamic
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organization within the individual of the psychobiological
systems by which a person both shapes and adapts uniquely
to an ever-changing internal and external environment [4].

Different genetic and neurobiological systems are
involved in regulating distinct aspects of personality, which
are traditionally described as temperament and character
[5-8]. Temperament refers to innate biological predisposi-
tions that influence automatic emotional reactivity and
habits; it is moderately stable throughout the lifespan, but
can develop with aging and behavioral conditioning
[1, 9, 10]. Put another way, temperament refer to the form
or style of automatic behavior: How do you act and express
yourself spontaneously [11, 12]? In contrast, character
refers to mental self-government (i.e., what people make of
themselves intentionally and creatively) [13], which devel-
ops in a saltatory manner throughout life [6, 14]. Learning
to self-govern can be further partitioned by the basic
questions that distinguish self-control and self-actualization.
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For self-control, we must answer the question “What do you
intend to do?”, which involves the executive (intrapersonal)
and legislative (interpersonal) functions of intentional self-
control based on more-or-less logical calculation and ana-
lysis of personal goals, facts, beliefs, and social conven-
tions. For self-actualization, we must answer a question
about meaning in a transpersonal context: “Why, Where,
When are you going to do it?”, which involves the judicial
(transpersonal) functions of self-aware evaluation and
intuitive appraisal of values and relationships as a theory or
narrative with contextual insight into its meaning (why) at a
particular place (where) and time (when) [4, 15]. Thus the
architecture of human personality may correspond to the
structure of human learning with its distinct systems for
procedural, semantic, and self-aware learning and memory
[16, 17]. Unfortunately, remarkably little is known about
how the underlying genetic and environmental influences
for these dissociable systems are integrated to express the
complex phenotypes that we recognize as the self-organized
profiles that describe personality and learning.

Human personality provides a highly instructive example
of the challenges that must be faced in efforts to identify the
molecular mechanisms involved in the causes and devel-
opment of complex phenotypes [18-20]. In previous work,
we found that the genetic variants associated with person-
ality do not operate independently; rather they are organized
as clusters of particular single-nucleotide polymorphisms
(SNPs) that co-occur in subgroups of subjects, which we
call SNP sets [18-20]. The SNP sets were each comprised
of SNPs in many coding and noncoding genes that are
distributed throughout the genome [21, 22], presumably due
to the need for multiple genes to act in concert, not inde-
pendently [20]. In general, geneticists must expect that each
gene affects many traits and many genes affect each trait
because evolutionary selection operates on whole organ-
isms, not individual genes or traits [23]. Our specific find-
ings confirmed consistent prior evidence from studies of
twins and their families and from genome-wide association
studies [24] that many genes act in concert with one another
to influence human personality [25-28]. Thus the high
heritability of personality expected from twin studies
[25-28] was not missing, but was distributed into several
disjoint components in which the subjects had distinct
genotypic and phenotypic features [18-20].

Specifically, we found three clusters of people who were
distinguished by heritable configurations of the tempera-
ment traits related to individual differences in procedural
learning of habits and skills [19]. The three clusters were
also characterized by individual differences in automatic
behavioral activity and emotional expression, and corre-
sponded closely to temperament clusters described as
“easy”, “difficult”, and “slow to warm-up” [8, 11, 29]
(Supplementary Information, see Tables S1, S2, and

reference [8] for review). People in our “reliable” cluster
resembled children with an “easy temperament” and adults
who were conscientious extraverts because they were well
controlled in activity and were warm and calm emotionally;
put another way, they were high in Reward Dependence
(i.e., sentimental, friendly, and approval seeking), low in
Novelty Seeking (i.e., deliberate, thrifty, and orderly), low
in Harm Avoidance (i.e., optimistic, confident, outgoing,
and vigorous), and high in Persistence (i.e., determined).
People in our “sensitive” temperament cluster resembled
children with a “difficult temperament” and adults who are
neurotic and unstable because they were under-controlled in
activity and emotionally hypersensitive: in other words,
they were high in Harm Avoidance (i.e., pessimistic, fear-
ful, shy, and fatigable), high in Novelty Seeking (i.e.,
impulsive and extravagant), and high in Reward Depen-
dence (i.e., sentimental and friendly), so they frequently had
approach-avoidance conflicts, rejection sensitivity, and
disorganized attachments. People in our “antisocial” tem-
perament cluster resembled children with a “slow to warm-
up” temperament and adults who are socially detached,
careless, and impulsive: that is, they were low in Reward
Dependence (i.e., cold, detached, and independent), low in
Persistence (i.e., easily discouraged), and high in Novelty
Seeking (i.e., extravagant, rule-breaking but not inquisi-
tive), which is frequently associated with maladaptive
antisocial conduct. Furthermore, the genes associated with
each of these three temperament profiles were largely
unique to that profile.

Likewise, we identified five heritable clusters of people
with distinct profiles of character traits involving various
combinations of high versus low scores on Self-directed-
ness, Cooperativeness, and Self-transcendence [18]. Three
of these profiles were usually associated with physical,
mental, and social well-being, and were described as
resourceful (i.e., high in Self-directedness only), organized
(i.e., high in both Self-directedness and Cooperativeness,
but not Self-transcendence), or creative (i.e., high in all
three character traits). The other two were usually asso-
ciated with poor physical, mental, and social functioning,
and were described as “dependent” (high in Cooperative-
ness but low in Self-directedness and Self-transcendence) or
“apathetic” (low in all three character traits). As with tem-
perament, the genes associated with each of the five char-
acter profiles were largely different.

We found that personality depends on sets of genes that
regulate and coordinate the dynamic functions required for
people to learn to adapt to changing circumstances,
including molecular processes for neurodevelopment, neu-
roplasticity, neurogenesis, neurotransmission, stress reac-
tivity, energy metabolism, neuroprotection, resilience, and
healthy longevity [18, 19]. The genes we found to be
associated with personality were nearly always expressed in
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the brain, but these brain functions depended on interactions
with variability in genes regulating pathways that are par-
ticularly important in brain but involve general house-
keeping functions that occur in most or all cell types, such
as the regulation of energy metabolism, circadian rhythmi-
city, and cellular repair [30, 31].

Furthermore, we found that the genes that encode
variability in human temperament are enriched in highly
conserved molecular pathways, the Ras-MEK-ERK and
PI3K-AKT-mTOR pathways, which are activated in
experimental animals by stress reactivity and associative
conditioning (i.e., psychobiological system 1 for classical
and operant conditioning) [32-35]. For example, the
responses of these pathways to patterns of reward and
punishment regulate neuroplasticity in the striatum, thereby
modulating the integration of frontocortical and mesolimbic
signaling during associative conditioning in humans and
other amniotes (i.e., reptiles, birds, and mammals) (see
Supplementary Information, Vignette 1) [36-38].

In contrast, the genes we found encoding human char-
acter are associated with two brain systems for higher
cognitive processes involving intentional self-control or
self-awareness [16, 17, 39]. Specifically, a second network
(psychobiological system 2) involves specialized bipolar
neurons in the anterior insular cortex, frontal operculum,
and anterior cingulate cortex that are present in great apes
and humans, but not in other primates [40, 41]. These Von
Economo neurons are functionally connected to temporal
and parietal neocortical regions in brain circuits that support
saliency detection, resolution of emotional conflicts, and
social cooperation for mutual benefit in great apes and
humans [40-43]. This system also supports intentional self-
control of voluntary behavior and purposeful use of sym-
bols with further development of the inferior parietal cortex
as a convergence area for touch, hearing, and vision in
humans (see Supplementary Information, Vignette 2)
[40, 44]. Another network (psychobiological system 3)
involves regions of late-myelinating neocortex in frontal,
parietal, and temporal regions found only in humans, and is
associated with the emergence of human capacities for self-
awareness, insight (i.e., immediate, accurate, and deep
intuitive understanding), creative imagination, altruism, and
autobiographical memory (see Supplementary Information,
Vignette 3) [40, 44-46]. These three brain networks nor-
mally interact in a coordinated manner [47-49], but they are
dissociable developmentally [17, 46, 50] and functionally
[17, 48, 49, 51-54].

Our previous findings also suggest the hypothesis that
different molecular processes may regulate associative
learning, intentionality, and self-awareness. Specifically, we
uncovered largely disjoint sets of genes regulating these
three distinct learning processes in different clusters of
people with unhealthy temperament profiles (network 1
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with associative conditioning), organized character profiles
(network 2 with intentionality), and creative character pro-
files (network 3 with self-awareness), respectively [18, 19].
However, little is known about the molecular processes by
which temperament and character are organized into inte-
grated networks, how such integrated networks are asso-
ciated with specific genetic and environmental influences,
or how crucial such integration is for health and well-being.

Our computational approach to genome-wide association
study (GWAS) is an extension of the efforts of many
geneticists to analyze GWAS in terms of sets of multiple
markers that are significantly and reproducibly related to
complex phenotypes, rather than single markers that neglect
the complex interactions among multiple variables
[18, 19, 21], or polygenic risk scores that depend on mul-
tiple markers neither significantly nor consistently related to
the phenotype [55-58] (See Supplementary Information for
a review). There are a wide range of possible models that
may account for the missing heritability in GWAS by
consideration of interactions among multiple genetic, cul-
tural, and environmental variables [59—-62]. At one extreme,
polygenic risk scores are computed as the sum of the effects
of many genes acting independently in a linear regression
model [20]. In contrast, the omnigenic model assumes a
more structured architecture in which there are core genes
with large effects on phenotype [63, 64], as well as per-
ipheral genes distributed throughout the genome with weak
individual effects [65].

Rather than assume any particular model, in this study we
have used unsupervised learning to uncover the genetic,
environmental, and phenotypic architecture of complex per-
sonality clusters and then replicate our findings in indepen-
dent samples from different cultures. As in our prior work
[18, 19], we use data-driven methods to uncover the joint
organization of deep networks of temperament and character
profiles, as well as the genetic and environmental architecture
of their joint relationship. We hypothesize that the genetic
networks associated with the joint relations of temperament
and character networks may reflect the three different sys-
tems of learning and memory that emerged separately in the
long phylogeny of human beings as incrementally more
conscious and flexible ways of adapting to changing external
environmental conditions and internal aspirations [40]. We
test this hypothesis in a data-driven analysis so that our
hypotheses do not bias or restrict our results.

Subjects and methods
Description of the samples

Our discovery sample was the Young Finns Study, an
epidemiological study of 2149 healthy Finnish subjects. All
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subjects had thorough standardized genotypic, environ-
mental, and phenotypic assessments, including administra-
tion of the Temperament and Character Inventory (TCI)
[10, 66]. We replicated the results in two independent
samples of 902 healthy adults from Germany [67] and 1052
from Korea [68, 69] in which comparable genotypic and
phenotypic features were available [18, 19].

Personality assessment

All subjects completed the TCI to assess seven heritable
dimensions of personality [13] (see Supplementary Infor-
mation, Table S1).

Personality health indices

People at risk of poor adaptive functioning were identified
as the bottom decile of the sum of TCI Self-directedness
and Cooperativeness [3]. In contrast, people with strong
adaptive functioning were identified as the top decile of the
product of all three TCI character traits, as in prior work
[3, 70]. We confirmed the validity of these indicators of
health in our discovery sample with independent measures
of positive affect balance, perceived social support, physical
behaviors (exercise, smoking, and diet), and objective
laboratory findings for ideal health recommended by the
American Heart Association [71-73] (Supplementary
Tables S3A, B). Our indices provided a consistent measure
of health status in all three samples.

Environmental assessments

The environmental variables measured for the Finns inclu-
ded reports by the main caretaker (usually the mother) of
parental tolerance (i.e., acceptance of the child), emotional
warmth (i.e., nurturance of the child), strict disciplinary
style, as well as the parent’s education, income, and the
family’s urban/rural residency during childhood in 1980
and 1983 [18, 19], and stressful life events and urban versus
rural residency during adulthood in 2001 [18, 19]. Com-
parable environmental data about the German and Korean
subjects were not available.

Computational procedures

Our machine-learning approach [74, 75] uses the non-
negative matrix factorization (NMF) method, which iden-
tifies multidimensional patterns within different types of
data. Our deep unsupervised NMF process uncovers natu-
rally occurring associations between patterns across differ-
ent types of data. This algorithm is described in
Supplementary Fig. S1 and elsewhere [18, 19].

Our web server application for phenotype—genotype
many-to-many relations analysis (PGMRA) in GWAS is
published [76] and online at http://phop.ugr.es/fenogeno.

Replications

PGMRA was wused to uncover the complex
genotypic—phenotypic associations in two replication sam-
ples (Germans and Koreans) independent of information
about the discovery sample. The process used in the dis-
covery sample was blindly and independently repeated in
each replication sample without assuming homogeneity
within or across samples [20]. We accounted for ethnicity in
each sample by using the first three principal components
for ancestral stratification of SNP genotypes, as in prior
work [18, 19]. Then matching of genotypic—phenotypic
associations across samples was identified using parsimo-
nious models that balance accuracy with model complexity,
thereby avoiding overfitting [77]. Models were learned
independently in diverse samples to provide a stringent test
of reproducibility despite complexity that might result from
possible genetic, ethnic, cultural, and environmental het-
erogeneity [18-20].

Results

Identifying phenotypic networks of temperament
and character

We identified 44 fine-grained sets of subjects with distinct
configurations of TCI character subscales regardless of their
temperament (i.e., character sets or biclusters) using
PGMRA, as we have previously reported [18]. The char-
acter sets varied in personality features (TCI subscales),
numbers of subjects, and health status (well- or ill-being,
Supplementary Table S4). The character sets were grouped
into five deep clusters (i.e., character profiles) by recurrently
applying PGMRA for convolutive NMF, minimizing the
Cophenetic correlation coefficient [18]. These five clusters
were labeled as Resourceful (i.e., self-directed only),
Organized (i.e., self-directed and cooperative), Creative (i.e.
self-directed, cooperative, and self-transcendent), Depen-
dent (i.e., cooperative only), or Apathetic (low in all three
character scales) using traditional labels [18] (Supplemen-
tary Table S1).

Likewise we identified 55 fine-grained sets of subjects
with distinct configurations of TCI temperament subscales
(i.e., temperament sets) using PGMRA, as we have pre-
viously reported [19] (Supplementary Table S4). The tem-
perament sets were grouped in three deep clusters (i.e.,
temperament profiles) by recurrently applying PGMRA for
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convolutive NMF, minimizing the Cophenetic correlation
coefficient [19]. These distinct temperament profiles were
labeled as Reliable (i.e., low in Novelty Seeking and Harm
Avoidance, high in Reward Dependence and Persistence),
Sensitive (high in Harm Avoidance, Novelty Seeking, and
Reward Dependence), or Antisocial (High in Novelty
Seeking, and low in Reward Dependence and Persistence)
using traditional labels [19].

Next we tested for associations among the temperament
and character sets sharing the same individuals. We found
265 deep phenotypic associations among 39 temperament
sets and 46 character sets by recurrently applying PGMRA
for convolutive learning. These associations were statisti-
cally significant by Fisher’s exact test SE—14 <p < 1E—05,
Supplementary Table S4 and Fig. S1) and by a permutation
test (empirical p<5E—04). To assess the phenotypic
architecture of these relationships, we identified subgroups
of subjects with distinct joint temperament—character fea-
tures using PGMRA. These associations were organized as
three deep phenotypic networks that were nearly disjoint
(i.e., shared few subjects between different temperament—
character associations), as shown in Fig. la.

Despite the three phenotypic networks being nearly
disjoint from one another, the associations among the
temperament and character sets within each network were
highly complex. In other words, within each network the
same character set was associated with multiple tempera-
ment sets, and different character sets could be associated
with the same temperament set (Fig. 2). The networks are
represented at different levels of granularity in Fig. 2d. In
order to make terminology clear, the deep organization of
the personality networks is displayed in Fig. 2d as a hier-
archy of deep descriptive complexity ascending from (i)
separate scales and subscales of temperament and of char-
acter, (ii) sets of multiple subscales of temperament and of
character, (iii) profiles of temperament sets and of character
sets, and (iv) joint networks of temperament and character
profiles.

Specifically, the healthiest phenotypic network is pri-
marily comprised of subjects with a Creative character
profile associated with a Reliable temperament profile (66%
of 56 character—temperament set combinations) (see
Figs. la and 2a, Supplementary Fig. S2A, D). Therefore, we
called it the Creative-Reliable network, but it also includes
some subjects with Organized characters (2 of 14 character
sets in network) and/or Sensitive temperaments (3 of 12
temperament sets in network) as a result of the complex
relations within the network (see Fig. 2a). The second
phenotypic network was largely comprised of individuals
with an Organized character profile associated with a
Reliable temperament profile (72% of 72 character—
temperament set combinations) (see Figs. la and 2b,
Supplementary Fig. S2B, D). It was named the Organized-
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Reliable network but included some individuals with a
Resourceful character (2 of 12 character sets in network)
and/or antisocial temperament (3 of 13 temperament sets in
network) (see Fig. 2b). The least healthy phenotypic net-
work was named the Emotional-Unreliable network because
it was comprised of emotionally reactive, injudicious, and
maladapted individuals with Dependent characters (8 of 15
character sets in network) or Apathetic characters (6 of 15
characters sets in network) associated with Sensitive tem-
peraments (12 of 23 temperament sets in network) or
Antisocial temperaments (11 of 23 temperament sets in
network) (see Figs. 1a and 2c, Supplementary Fig. S2C, D).
Both the dependent and apathetic character profiles were
usually combined with the sensitive temperament: 82% of
72 combinations for the dependent profile, and 58% of 45
combinations for the apathetic character profile (see
Fig. 2c¢).

The three networks were similar in terms of numbers of
constituent sets and subjects: there were 674, 801, and
603 subjects for networks 1 (emotional-unreliable), 2
(organized-reliable), and 3 (creative-reliable), respectively
(Supplementary Table S5). In total 4.6% of subjects were
not assigned to a network because they did not reach the
threshold for significant association with a particular net-
work. A prototypical vignette for each network is presented
in Supplementary Information.

The health status of subjects also strongly distinguished
the networks. The Creative-Reliable network had the
highest levels of well-being, but also had a slightly higher
risk of ill-being than the Organized-Reliable network
(Fig. 3a—d, Supplementary Fig. S3). As expected, the
Emotional-Unreliable network had the highest level of ill-
being and the lowest level of well-being (p <1.06E—23,
ANOVA, Fig. 3a, d—f). Overall, the three networks differed
significantly from each other in the well-being and ill-being
indices (ANOVA, p <2.29E—26).

We observed that the effect size on the well-being of
subjects in different temperament—character configurations
did not depend on the strength of the temperament—
character association or number of subjects in their inter-
section. We also estimated the effect size of differences
between the sets in each of the three networks by comparing
their means and standard deviations for well-being and ill-
being. The differences in the means of well-being for the
sets in the creative-reliable (0.87 = 0.21), organized-reliable
(0.23+£0.012), and emotional-unreliable (0.022 +0.030)
networks were highly significant (One-Way ANOVA, F =
7388.04, df =2, p<0.0001). The differences in the means
for ill-being for the sets in the creative-reliable (0.63 +
0.14), organized-reliable (0.018 +0.039), and emotional-
unreliable (0.62 +0.21) networks were also highly sig-
nificant (one-way ANOVA, F=12651.63, df=2, p<
0.0001). For well-being, the differences between the means
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Creative-Reliable (violet), Organized-Reliable (blue), and Emotional- tivity (orange)
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Fig. 2 Relationships among Temperament and Character Sets com-
posing the three networks shown in Fig. 1. a The Creative-Reliable
subnetwork (light violet, violet) contains primarily Character Sets with
creative subjects, who also display a reliable temperament. b The
Organized-Reliable subnetwork (blue, violet) primarily contains
Character Sets with organized subjects, who also display reliable

of the sets in each pair of networks were two to four times
their standard deviations, which was significant (p <0.01)
for each pair using Tukey’s range HSD test. For ill-being,
the differences between the means of the sets that made up
the creative-reliable and emotional-unreliable networks was
four standard deviations, larger (15 standard deviations) for
the differences between the means of organized-reliable and
emotional-unreliable networks, and smaller (0.33 standard
deviation) for the differences between the means of
creative-reliable and organized-reliable networks. Although
the differences in mean levels of ill-being between networks
varied in size, they were all significant (p <0.01) by Tur-
key’s range HSD test. In brief, there were large differences
in the size of the differences in means of each pair of net-
works for both well-being and ill-being, except that the
greater risk of ill-being in the creative-reliable network
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Character Temperament

temperament. ¢ The Emotional-Unreliable subnetwork (green, black,
and orange) contains Character Sets with dependent and apathetic
subjects, who also display sensitive and antisocial temperaments.
d The hierarchical organization of personality: temperament and
character scales and subscales, sets of subscales (see Table S3), pro-
files, and networks

compared with the organized-reliable network was small, as
illustrated in Fig. 3.

Identifying genetic networks associated with the
phenotypic networks

We identified 66 SNP sets associated with at least one joint
temperament—character association (Fig. 1b and Supple-
mentary Tables S6 and S7). Fourteen SNP sets were pre-
viously deeply related to both character and temperament
sets [18, 19]. Another 24 SNP sets were previously directly
associated with character sets and indirectly with other
temperament sets. Another 28 SNP sets were directly
associated with temperament sets and indirectly with other
character sets. Thus there were 66 SNP sets associated with
at least one joint temperament—character relationship.
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Fig. 3 Evaluation of the probability of health measured for Tem-
perament and Character associations in the three phenotypic subnet-
works using ANOVA statistics (p value < 1IE—20), and 7-test among
the three subnetworks. The three networks, Creative-Reliable, Orga-
nized-Reliable, and Emotional-Unreliable, significantly differ from
each other (p value < 1E—04) in their probability of well-being (a) and
ill-being (d). b, e Evaluation of probability of health in Temperament
and Character Sets and their relationships with SNP Sets using
ANOVA statistics. b Well-being and e Ill-being evaluated for Tem-
perament and Character Sets with respect to their profiles. ¢, f Surfaces

Nearly disjoint clusters of these 66 SNP sets dis-
tinguished the three phenotypic networks, as shown in
Fig. 1b. In other words, the SNP sets associated with joint
character—temperament relations were organized as three
genotypic networks (Figs. 1b and 4a). Based on their dis-
tinguishing molecular processes (Supplementary Tables S6
and S7), the genotypic networks were labeled “emotional
reactivity”, “self-control”, and “self-awareness” to describe
the basic functional process of each briefly.

Each of the phenotypic networks was strongly associated
with only one of the genotypic networks, as shown in
Fig. 4a: the Creative-Reliable network with the genotypic
network for self-awareness, the Organized-Reliable network
with the genotypic network for intentional self-control, and
the Emotional-Unreliable network with the genotypic net-
work for emotional reactivity and associative conditioning.
There was little genotypic overlap among the three pheno-
typic networks: that is, few of the SNP sets associated with
character (0-3%) or temperament (4.6—-10.6%) were shared

Antisoc si
Organized Dependent Resourceful Dependent Organized Dependent

ial

/ Sensitive
Reliable

Antisocial

Creative
Apathetic

representing the health function of the uncovered relationships
between Temperament and Character Sets. The probability of health
(z-axis; red high; green: low) was calculated based on the distribution
of the status of subjects within each relationship, and the surface was
plotted interpolating the relation domains. The order adopted for
plotting relationships are calculated based on clustering shared sub-
jects in Character (x-axis) and in Temperament (y-axis) Sets using
Hypergeometric statistics (see “Method” section). (Close-located sets
in an edge share more subjects than those located far away.) ¢ Well-
being surface. f Ill-being surface

by any of the possible combinations of the three phenotypic
networks (Supplementary Table S8).

In addition to the SNP sets associated with the integrated
phenotypic network, we identified 759 genes that were
associated with one or more of the three phenotypic sets in a
robust way (i.e., the gene was present in multiple network-
associated SNP sets). Another 213 genes were associated with
the phenotypic networks, but were recognized in only one
SNP set. All 972 genes are listed in Supplementary Tables S9
and S10 along with the gene’s name, type, known functions,
and associated phenotypic network. The types of genes
and their chromosomal locations are shown in Fig. 4b, c,
Supplementary Figs. S4 and S5, Tables S9 and S10.

Among the 759 genes robustly associated with one or
more of the three phenotypic networks, we found that
67.2% were unique to a single-phenotypic network: 265 for
the Creative-Reliable network, 211 for the Organized-
Reliable network, and 34 for the Emotional-Unreliable
network. Among all 972 genes associated with one or more

SPRINGER NATURE



3866 . Zwir et al.
A C Character &
90 . Temperament
Emotional . 80 . Only Temperament
TERETLY . Only Character
%) 70 l
~
—
g ., 60
z ] I
(4] c
< Self-control 8 50
= 5 I
= X 40
F
o
c
[}
(U] Self-
awareness ] ‘[ ‘|‘
Reliable- Reliable- Unreliable- I N I
Creative Organized Unregulated
Phenotypic networks
6E-52 1

[z
focs?
IR

Unreliable-Unregulated Reliable-Creative Reliable-Organized

Fig. 4 a Correlation between the phenotypic (Fig. 1a) and the geno-
typic (Fig. 1b) networks (p < 6E—52, Hypergeometric statistics). Color
codes indicate low (red) to high (green) statistical significance. The
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(blue), and emotional reactivity (orange). (See AND/OR relationships
in Fig. S5.) ¢ Types of genetic variants mapped by SNP sets associated

of the three phenotypic networks, we found that 72.4% were
unique to a single-phenotypic network: 327 for the
Creative-Reliable network, 273 for the Organized-Reliable
network, and 106 for the Emotional-Unreliable network.
Examples of the various types of genes that are unique to
each of the phenotypic networks are displayed with their
names in Fig. 4b. The full list of genes and their functions is
available in Supplementary Fig. S5, Supplementary
Tables S9 and S10.

Identifying environments that distinguished the
phenotypic networks

We also tested sets of environmental variables for their
ability to distinguish the three phenotypic networks. The
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with character: specific molecular consequences [genes related only to
character sets (green) were less often protein coding and more often
RNA genes than those also associated with temperament sets (red
color), or genes related to both character and temperament exhibit
higher proportion of protein-coding genes. See subtypes in Fig. S4B].
d Relationships among environmental sets associated with Genotypic
subnetworks (Fig. 1). Environmental sets can belong to one or more
networks

Environmental sets are clusters of subjects with particular
measured environmental experiences. There were 22
Environmental sets directly and deeply associated with the
temperament and/or character components of the three
networks (Table 1 and Supplementary Table S11). Another
24 Environmental sets were indirectly related with the
networks as a result of gene—environment interactions (i.e.,
with network-associated SNP sets as mediators) (Table 1).
Eight environmental sets were both directly and indirectly
related to the three networks (Table 1, Supplementary
Fig. S6 and Table S11).

Environmental sets were associated with 18.5% of the
265 temperament—character relationships. They were
directly associated with 7.6% of 265 temperament—
character relationships on average in any network, but most
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direct relations occurred with only the Organized-reliable
network (26%, Supplementary Table S12). Environmental
sets were, on average, indirectly associated with 10.9% of
all temperament—character relationships, and there were
substantial numbers of associations with each phenotypic
network: 5.3% with the creative-reliable network, 11.0%
with the organized-reliable network, and 13.3% with the
emotional-unreliable network (Supplementary Table S12).

We found the environmental sets distinguished the three
phenotypic sets in a nearly disjoint fashion, as shown in
Fig. 4d and Supplementary Fig. S6. The features of the
environmental sets are detailed in Table 1, Fig. 4d, and
Supplementary Table S11.

Genotypic-phenotypic relationships influence
health

The probabilities of well-being and ill-being were evaluated
in each of the phenotypic networks using phenotypic
information alone (Fig. 3, Supplementary Fig. S3) and
together with genotypic information (Supplementary
Fig. S7). Combining genotypic and phenotypic information
provided more information than the phenotypes alone for
both well-being (Fig. 3b, ¢ vs Supplementary Figs. S3A,
S7A) and ill-being (Fig. 3e, f vs. Supplementary Figs. S3B
and S7B). When health indices were based on the joint
genotypic—phenotypic relationship instead of only the phe-
notype, all possible combinations of temperament and
character profiles were strongly distinguished by their
probabilities of well-being (ANOVA, p value <4.75E—31)
and ill-being (ANOVA, p value < 1.35E—49). Therefore
health status provided a general characteristic of the phe-
notypic networks that was shared by all subjects and com-
ponent sets. Consequently, health status provided a
continuous metric by which to compare the effects of gen-
otypic and environmental sets on the phenotypic networks.

We evaluated the effects of genotypic sets and environ-
mental sets on the three networks to provide rough bench-
marks of their relative contributions from a linear modeling
perspective despite the limitations of such approaches. We
estimated the effects of genotypic sets alone, environmental
sets alone, and their joint effects in separate linear regres-
sions on the phenotype specified as three phenotypic net-
works ordered by the values 1, 2, and 3 in correspondence to
their mean levels of well-being. To standardize the unit of
measurement for the different types of sets (genotypic,
phenotypic, and environmental), we used the average well-
being and/or ill-being status of their constituent sets of
individuals. This provided a general and continuous char-
acteristic of personality that could be compared for all
subjects in each network (Supplementary Information: Sec-
tion 10 and Tables S13 and S14). We used the R to compare
the results obtained by the regressions, which were estimated

by the average of tenfold cross-validation (Supplementary
Information, Section 10). For ill-being, genotypic effects
alone produced an R? of 0.58, environmental effects alone an
R? of 0.27, and their joint effects an R? of 0.68, showing the
importance of both genotypic and environmental influences
on ill-being. In contrast, for well-being, genotypic effects
alone produced an R* of 0.81, environmental effects alone an
R? of 0.23, and together an R? of 0.82, so environmental
influences did not add substantially to the explanatory
effects of the genotypes for well-being. The details about
specifying the phenotypic, genotypic, and environmental
variables in terms of health status of genotypic sets, envir-
onmental sets, and phenotypic sets (temperament sets,
character sets) is provided in the Supplementary Information
(Section 10, Tables S13 and S14). Significance testing of the
full model is detailed in Table S14.

Replication of results in two independent samples

We tested the replicability of our findings in the Finnish
sample by carrying out the same analyses of the genotypic
and phenotypic architecture blindly in the German and
Korean samples, thereby allowing for possible hetero-
geneity within and across independent samples from dif-
ferent cultures (Supplementary Information, Section 9). We
evaluated the matching between each replication sample
and the discovery sample of all aspects of the complex
genotypic—phenotypic architecture (genotypic sets, pheno-
typic sets, and their relations) by a permutation test. Of the
associations between genotypic sets and the phenotypic
character sets identified in the Finnish sample, 84% were
identified in the German sample and 94% in the Korean
sample [18]. The associations between genotypic sets and
the phenotypic temperament sets identified in the Finnish
sample closely matched those observed in the Korean
sample (89%) and in the German (76%) sample [19].
Finally, the replication between genotypic—phenotypic
relationships when both temperament and character were
considered were also replicated in the Korean (80%) and
German samples (64%) (Supplementary Tables S15 and
S16). The replication of the genotypic—phenotypic relations
was reduced in the Germans (Supplementary Fig. S8), as
expected because they were screened to exclude individuals
with psychopathology, including personality disorders, as
shown elsewhere [18, 19].

The strong replication across samples of all aspects of the
complex phenotypic architecture of the networks (i.e., the
matching of the temperament sets, character sets, and their
relations in each replication sample to that of the discovery
sample) was confirmed by a permutation test in both Kor-
eans (1.0E—14 <p < 1.0E—02, Fisher’s exact test, Supple-
mentary Table S17) and Germans (1.0E—11 p <1.0E—02,
Fisher’s exact test, Supplementary Table S18).

SPRINGER NATURE
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Discussion

We have uncovered three robust findings about human
personality for the first time. First, human personality is
organized as a hierarchy of deep descriptive complexity
ascending from (i) separate scales and subscales of tem-
perament and of character, (ii) sets of multiple subscales of
temperament and of character, (iii) profiles of temperament
sets and of character sets, and finally to (iv) joint networks
of temperament and character profiles. The genetic building
blocks of the phenotypic hierarchy encode the temperament
profiles and character profiles, not their constituent sets of
personality subscales and not the three learning networks.
Second, the three temperament—character networks are
nearly disjoint phenotypes despite the marked complexity
of temperament—character relationships within each of the
three networks. Third, nearly disjoint sets of genetic and
environmental variables strongly distinguish the three phe-
notypic networks. The strong association of both genetic
and environmental variables with these integrated networks
is surprising because the measured impact of the same
environmental variables on the constituents of the integrated
networks is weak, as we previously reported [18, 19].
Overall, we found that genes encode temperament profiles
and character profiles separately, and then these are inte-
grated by genetic—environmental interactions into complex
adaptive networks.

These findings together suggest that the major role of
environmental influences on personality development is the
organization of the relations among temperament and
character, not on the temperament and character profiles
themselves that are largely genetically independent. Despite
the novelty and surprising nature of these results, they are
robust because we have strongly replicated the phenotypic
and genotypic findings regardless of cultural and environ-
mental differences among three independent samples of
Finns, Germans, and Koreans. The replication was done in
an unbiased fashion and avoided overfitting by balancing
accuracy with model complexity while allowing for het-
erogeneity within and across independent samples, which is
not necessarily the case for other GWAS methods [20] (see
Supplementary Information, Polygenic Risk Scores). These
findings have several important implications for both
research and clinical practice.

Importance of both genetic and environmental
influences

Although genetic influences on temperament and character
are substantial and robust, the impact of measured envir-
onmental influences has been weak [78-80]. The herit-
ability of temperament and of character in the Finnish
sample was 48% and 57%, respectively, whereas the
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influence of the environmental covariates did not exceed
3% when temperament and character were considered
separately, as previously reported [18, 19]. Here we
explored wider four-dimensional sets of interactions
among temperament, character, genes, and environments
that allowed for both direct associations and gene—
environmental interactions associated with the phenotypic
networks. This data-driven approach allowed us to identify
many gene—environment interactions associated with the
phenotypic networks, which would not have been detected
in linear models of environmental influences on individual
personality traits [20]. In contrast, prior work focused on
individual traits rather than integrated profiles that char-
acterize the organization of self-regulatory processes within
a well-adapted person. This difference suggests that the
major role of environmental influences is to interact with
genetic predisposition in the activation of learning processes
that result in integrated adaptive networks. For example,
parental warmth and tolerance usually nurtures creativity in
children (Fig. 4d), particularly those with genotypic sets for
self-awareness and reliable temperaments (e.g., E_10_6 in
Table 1), but it can also enable dependence in individuals
with genotypic sets for emotional reactivity (e.g., E_8_8 in
Table 1).

Specifically, we found that environmental variables had
substantial influence on the risk of ill-being in particular;
specifically, environmental and genotypic variables together
explained an additional 10% of the phenotypic variance than
did genotypic variables alone for ill-being (Supplementary
Table S13). In contrast, genotypic variables had even larger
effects on both ill-being (58%) and well-being (81%).
Likewise well-being was most often high in people in the
creative-reliable phenotypic network (see Fig. 3), which had
the fewest proportion of associations with environmental
sets (directly 1.8%, indirectly 5.3%) (Supplementary
Table S12). Ill-being was frequently high in the other two
networks; the organized-reliable network had the most
environmental associations (directly 26%, indirectly 11%)
and the emotional-unreliable network was intermediate
(directly 0%, indirectly 13.3%) (Supplementary Table S12).
These findings indicate people with creative-reliable profiles
are usually resilient and healthy regardless of external con-
ditions (Supplementary Table S3), whereas others are more
vulnerable to stressful life events and social influences on
disease and mortality, such as limited education and socio-
economic opportunity (Table 1) [18, 81, 82].

Both our work on personality [18, 19] and other work on
the human exposome [83] converge on the idea that both
environmental perturbations and the emotional reactivity of
unregulated temperament networks lead to ill-health with
multiple chronic noncommunicable disorders as a result of
impaired regulation of gene co-expression, which has been
called regulatory decoherence [84]. That is, environmental
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perturbations and the unhealthy character profiles found in
the emotional-unreliable network impair the orchestration of
gene co-expression, as has been most directly supported in
other independent research by reduced correlations among
sets of particular mRNA transcripts [84] and related psy-
chophysiological processes that promote health, such as
heart rate variability [85], rather than by variation in the
presence or absence of particular genetic markers.

What are the molecular mechanisms by which genes
related to personality may regulate the co-expression of
genes that are far apart in the genome in coherent ways that
are adaptive and beneficial for health? An important clue is
that most of the genes associated with temperament are
protein coding whereas those for character have a pre-
ponderance of noncoding RNA genes, particularly long
noncoding (Inc) RNAs [18, 19]. LncRNAs have important
functions that influence complex patterns of adaptive
functioning and health by transcriptional and post-
transcriptional regulation of gene expression, coordination
of the co-expression of sets of genes, and chromatin
remodeling [86-89]. A reasonable next step for further
investigation is to examine patterns of co-expression of the
personality related genes (both coding and noncoding) we
have identified in blood and other tissues [84]. Then puta-
tive patterns of coherence versus decoherence can be tested
for association with indices of health versus ill-being under
a variety of conditions of physical, psychological and social
stress, or other environmental perturbations. The indices of
health may involve metabolic states, psychophysiological
processes like heart rate variability, or other indices of the
physical, mental, and social aspects of health. The indices of
ill-being may involve disorders of various types (physical,
mental, or social) with various patterns of comorbidity.
Such investigations may clarify the roles of coding and
noncoding genes in health and disease, as well as the
mechanisms of associations of personality with ill-being
and well-being via direct effects on gene expression and co-
expression versus indirect effects via life style choice or
environmental perturbation.

Implications of three systems of learning for health
promotion

We hypothesized that the disjoint sets of genes and envir-
onments associated with integrated temperament—character
networks may correspond to the stepwise emergence of
three different systems of learning and memory in the
phylogeny of human beings [40, 44]. In other words, the
integrated phenotypic networks are made up of people who
express the prototypical features of each of three major
systems of learning and memory present in modern human
beings: associative conditioning for emotional reactivity in
the Emotional-Unreliable network, intentional self-

regulation in the organized-reliable network, and self-
awareness of autobiographical memory in the creative-
reliable network. Put another way, the three phenotypic
networks are nearly disjoint prototypes of major systems of
learning and memory, which are known to be neurologi-
cally and developmentally dissociable [17, 46].

Our findings that people with the creative-reliable profile
were healthier than others confirm earlier work about how
to describe a healthy human personality [70, 90-93]. We
found that people with creative characters and reliable
temperaments have greater well-being, including objective
indicators of healthy longevity, such as optimal cardiovas-
cular health, when compared with others. We also found
that the genes for personality are expressed in most organ
systems, not only the brain (Supplementary Fig. S9), so the
physical, mental, and social aspects of health are expected
to be strongly interdependent. Consequently, norms for
healthy functioning need to consider the importance of self-
transcendent functions, such as spontaneous creativity [94],
altruism [95], and generosity [96], which are sometimes
neglected [70, 97].

Our finding that healthy human functioning involves the
integration of three systems of learning with qualitatively
distinct properties [5] has strong implications for the mod-
eling and use of artificial intelligence (AI) [98]. There is
growing evidence that effective promotion of health and
well-being depends on coordinated change in all three
networks for self-awareness, intentional self-control, and
behavioral conditioning, rather than any of these alone [99-
102]. Optimizing the utility of AI for health promotion is
likely to require it to recognize and address all three human
learning systems in an integrative manner that facilitates its
interaction with human beings in ways that are personalized
to be satisfying, meaningful, and harmonious.

Strengths and limitations

The strengths of this research are the use of unrestrictive
data-driven methods, and replication of genotypic and
phenotypic findings independently in samples that vary in
their cultural and environmental features. A potential
weakness of all clustering methods is that the number of
clusters and their content are uncertain, but the methods
adopted here addressed this carefully, as shown by the
robust replication in independent samples [18-20]. We have
shown that our methods are valid even in the presence of
epistasis, pleiotropy, and heterogeneity, which cannot be
accounted for by polygenic models that assume the inde-
pendence of genes and environmental influences [20]
(Supplementary Fig. S10). Our findings document the
robustness of unsupervised machine-learning methods that
allow the deconstruction and reintegration of the complex
architecture of human personality.

SPRINGER NATURE
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Nevertheless, there are limitations to our study. We did
not have comparable environmental data in the Korean and
German samples, so only the genotypic and phenotypic
findings were replicated here. The estimates of effect size
used linear regressions on sets of variables, which captured
interactions within the sets, but not between them. Also our
findings are based on cross-sectional associations, so no
causal inferences are justified.

Conclusions and recommendations

Our data-driven findings support the hypothesis that human
temperament and character are integrated as three nearly
disjoint phenotypic networks regulated by complex inter-
actions among nearly disjoint sets of genetic and environ-
mental influences. Furthermore, these phenotypic networks
are comprised of people who may express the prototypical
features of three major systems of learning and memory that
have previously been distinguished by their stepwise
emergence in phylogeny and by their dissociable brain
circuitry.

Our results show that the well-being of modern human
beings depends on the maturation and integration of func-
tions that interact to support healthy longevity, creative self-
awareness, and self-transcendent functions such as mod-
eration and altruism. In other words, physical, mental,
social, and spiritual aspects of health cannot be separated
because of the reciprocal interactions among the functions
that support the well-being of the whole person. Mental or
physical health cannot be adequately assessed, treated, or
promoted as a set of separate diseases or traits.
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