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Abstract

Older patients with severe physical trauma are at high risk of developing neuropsychiatric syndromes with global
impairment of cognition, attention, and consciousness. We employed a thoracic trauma (TxT) mouse model and thoroughly
analyzed age-dependent spatial and temporal posttraumatic alterations in the central nervous system. Up to 5 days after
trauma, we observed a transient 50% decrease in the number of excitatory synapses specifically in hippocampal pyramidal
neurons accompanied by alterations in attention and motor activity and disruption of contextual memory consolidation. In
parallel, hippocampal corticotropin-releasing hormone (CRH) expression was highly upregulated, and brain-derived
neurotrophic factor (BDNF) levels were significantly reduced. In vitro experiments revealed that CRH application induced
neuronal autophagy with rapid lysosomal degradation of BDNF via the NF-kB pathway. The subsequent synaptic loss was
rescued by BDNF as well as by specific NF-xB and CRH receptor 1 (CRHR1) antagonists. In vivo, the chronic application
of a CRHRI antagonist after TxT resulted in reversal of the observed histological, molecular, and behavioral alterations.
The data suggest that neuropsychiatric syndromes (i.e., delirium) after peripheral trauma might be at least in part due to the
activation of the hippocampal CRH/NF-xB/BDNF pathway, which results in a dramatic loss of synaptic contacts. The
successful rescue by stress hormone receptor antagonists should encourage clinical trials focusing on trauma-induced
delirium and/or other posttraumatic syndromes.

Introduction

The abrupt decline of mental function (termed delirium) is a
common neuropsychiatric syndrome, with a prevalence of
~20% in the general hospital setting [1, 2]. In comparison
with control patients, patients with delirium have a poorer
prognosis and experience an increased length of hospital
stay [3], and delirium has been recognized as an important
cause of the growing financial burden in an aging society.
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Delirium is characterized by a general disorientation
accompanied by cognitive impairment, changes in arousal
and in some cases hallucinations and delusions [4, 5].
The course of the illness is typically short, lasting only a
few days to weeks, and delirium is usually reversible [6].
In addition to physical trauma, common causes of delirium
include substance intoxication or withdrawal, hyperglyce-
mia, hyperthermia, infections, and brain lesions [7, 8].
Interestingly, advanced age is one of the most predictive
risk factors for delirium [9], and following physical trauma,
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a higher multiple organ failure score favors the occurrence
of postinjury delirium [7].

Because of the etiological complexity of delirium, the
unique disease course in different patients and the problem
of defining and operationalizing the syndrome, treatment
options, and interventions are limited [10]. Despite its clin-
ical relevance, basic research on trauma-related neu-
ropsychiatric syndromes is complex, and mouse models
must be carefully evaluated according to the different types
of validity [11]. Therefore, our understanding of the patho-
physiology that induces neuropsychiatric alterations after
trauma is sparse, and our knowledge on periphery—brain
interactions and communication after traumatic events is
limited. On the other hand, there have been important studies
on the effect of physical stress on the central nervous system
(CNS) and the role of stress hormones (especially
corticotropin-releasing hormone, CRH) in mediating mor-
phological alterations of hippocampal spines and synapses
via CRH receptor 1 (CRHRI1) activation [12-14]. The
authors introduce a CRH/calpain/RhoA-dependent mechan-
ism that mediates actin polymerization and depolymerization
at synaptic sites. Other lines of evidence support the
importance of neurotrophic factors (especially brain-derived
neurotrophic factor, BDNF) [15, 16] in modulating synaptic
and spine plasticity after peripheral stress [17] and/or
alterations in stress hormones [18]. Recently, the hypothesis
that delirium and hospital-acquired weakness are caused by
synaptic dysfunctions was proposed [19].

To elucidate some of the issues discussed above, we
employed a peripheral trauma model and searched for
morphological and molecular neurobiological correlates/
pathways of posttraumatic disturbances in the brain. To that
end, we made use of a blunt chest trauma (TxT) mouse
model that presents complex injury of the lung in combi-
nation with partial damage to connective and supporting
tissue [20]. We screened for structural and molecular
alterations in the CNS, especially at the synaptic level, and
compared the impact of trauma on young and aged mice at
different posttraumatic time intervals.

In this study, we found that ~50% of pyramidal neuron
excitatory synapses within the hippocampal formation were
lost, attention and motor activity were altered, and con-
textual memory in a fear conditioning paradigm was greatly
reduced 5 days after trauma in aged animals. Interestingly,
the amount of CRH released from hippocampal inter-
neurons was increased, while mature BDNF levels were
almost undetectable. Next, we identified and characterized
the neuronal CRH-CRHR1-NF-kB pathway, which induces
autophagy and rapid lysosomal degradation of BDNF, to
explain local transitional synaptic loss after peripheral
trauma. Finally, we rescued TxT-induced synaptic loss and
behavioral deficits by chronic treatment with a CRHRI1

antagonist. Since we used compounds that are already in
medical use, our findings should initiate clinical studies that
concentrate on central modulators of stress for the treatment
of delirium and other trauma-related insults.

Materials and methods
Animals

Male C57BL/6JRj mice (8—10 weeks old (body weight
25 + 1.5 g) and 22-24 months old (body weight 30 + 1.5 g))
were group-housed on a 12/12-h light/dark schedule (lights
on at 7:0 A.M.) with ad libitum access to food and water
before and after blast exposure. All animal experiments
were performed in compliance with the guidelines for the
welfare of experimental animals issued by the Federal
Government of Germany and approved by the Regierung-
spraesidium Tuebingen and the local ethics committee at
Ulm University; ID number: 1233.

Thoracic trauma

Thoracic trauma (TxT) was always induced during the
morning. Mice were anesthetized with a mixture 2.5%
sevoflurane (Sevorane™, Abbott, Wiesbaden, Germany)
and 97.5% oxygen at a continuous flow of 0.5 1 min~' and
a FiO2 of 1.0. The mice were fixed to an acrylic glass plate
in the supine position, and the abdomen and chest were
shaved. Before termination of anesthesia, buprenorphine
(0.03 mgkg ™! body weight) was injected subcutaneously
to provide suitable analgesia. TxT was induced by a single
blast wave centered on the thorax as previously described
by Ehrnthaller et al. [20]. One group was used as sham
controls, and these animals were subjected to the same
experimental conditions, but no blast wave was delivered.
Analysis was performed 6h (for a few experiments),
5 days, 10 days, and 18 days post injury (dpi); at these
time points, we collected the brains and blood to perform
subsequent analyses. To evaluate the general conditions
and estimate the degree of distress, mice were observed
every 2h after trauma in the operating room, twice a day
for the following week and once a day until the end of the
experiment.

Golgi staining procedures

Mice were sacrificed with an overdose of sevoflurane. The
brains were removed and prepared for Golgi—Cox staining
(FD Rapid GolgiStain™ Kit). They were then cut sagittally
into 150-pum-thick sections using a vibratome (Microm HM
650) and mounted on gelatin-coated slides.
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Imaging and quantification of dendritic spines

For the analysis, 9-10 neurons (pyramidal neurons and inter-
neurons) from the CAl and CA3 hippocampal subregions
were analyzed per experimental condition. The apical dendrites
in the stratum radiatum/lacunosum were analyzed. Cell types
were distinguished based on morphological differences; spines
from pyramidal neurons with cell bodies in the pyramidal layer
and interneurons with cell bodies in the stratum radiatum were
analyzed. Golgi-stained dendritic branches and spines were
documented using a BZ-9000 Fluorescence Microscope
(KEYENCE Corp.). Image Z-stacks (0.4-um focal steps over
the entire thickness of each dendrite) were collected with a
x100/1.4 oil lens and reconstructed using ImagelJ software. A
total of 5-8 dendrites per animal and three animals per group
were evaluated. Spine density was expressed as the number of
spines per 10 um of dendrite length.

Quantitative real-time PCR

Isolation of total RNA from mouse brain regions or rat
hippocampal cell culture was performed using the RNeasy
Mini kit (Qiagen) as described by the manufacturer.
Thermal cycling and fluorescence detection were per-
formed using the Rotor-Gene-Q real-time PCR machine
(model 2- Plex HRM) (Qiagen). Cycle threshold values
were calculated by Rotor-Gene Q software (version 2.0.2).
All gqRT-PCR reactions were run in triplicate for each time
point and condition. Real-time quantitative PCR was
carried out using oligonucleotides to investigate the
expression of CRH, CRHR1, CRHR2, BDNF, and TrkB
(validated primer pairs, Quantitect Primer Assay, Qiagen).

Primary antibodies

The primary antibodies used for immunocytochemistry are
described below. Shank2 (1:500) (“ppI-SAM pabSA5192”)
was previously characterized [21-23]. The following pri-
mary antibodies were purchased from commercial suppli-
ers: Vglutl (1:500, Synaptic Systems GmbH, #135304),
Gephyrin (1:500, Synaptic Systems GmbH, #147003), Vgat
(1:500, Synaptic Systems GmbH, #131011), Ibal (1:250,
Wako Chemical GmbH, #NCNP24), GFAP (1:500, Sigma-
Aldrich, #G3893), NeuN (1:1000, Millipore, #MAB377),
Clq (1:1000, Abcam, #182451), CRH (1:1000, Abcam,
#8901), p62 (1:500, Abcam, #56416), Map2 (1:500, EnCor
Biotechnology Inc., #CPCA-MAP2), Synaptotagmin-1
(1:500, Synaptic Systems, #105311C5), ATG5 (Abcam,
#AB108327), NF-xB p65 (1:500, Santa Cruz, #SC8008),
phospho-NF-kB (Thr435) (1:500, Thermo Fisher Scientific,
#PA5-37724), phospho-IxBa (Ser32) (1:500, Cell Signal-
ing, #2859), CRHR1 (1:500, Everest Biotech, #EB08035),
and ChAT (1:250, Synaptic System, #297015).
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The following primary antibodies were used for western
blotting: Shank2 (1:2000) (“ppI-SAM pabSA5192”),
Synapsin 1/2 (1:1000, Synaptic Systems GmbH, #160003),
Gephyrin (1:500, Synaptic Systems GmbH, #147003), Vgat
(1:500, Synaptic Systems GmbH, #131011), BDNF (1:500,
Abcam, #203573), C3b/iC3b/C3c (1:200, Hycultec GmbH,
#HM1065), Calpain-1 (1:500, Abcam, #39170), Actin
(1:250000, Sigma-Aldrich, #A2228), Beclin-1 (BCN-1)
(1:500, Novus Biologicals, #NB500249), LC3 (1:1000, Cell
Signaling, #4599), and Lamp-2 (1:500, Thermo Fisher
Scientific, #PA1655).

Secondary antibodies

The secondary antibodies used for immunocytochemistry
were coupled to Alexa Fluor® 488, 568, or 647 (1:500, all
from Life Technologies). The secondary antibodies used
for western blotting were HRP-conjugated (1:1000 Dako,
Glostrup, Denmark).

Slice preparation and immunohistochemistry

Animals were anesthetized (25% ketamine and 5% xylazine
solubilized in a NaCl solution) and perfused with 25 ml
cooled phosphate buffer saline (PBS) and 50 ml 4% PFA.
Then, the brains were treated as previously described by
Heise et al. [24]. Images of immunostained sections were
taken using an upright fluorescence microscope (Axioskop,
Zeiss) and Axiovision software (Zeiss). For in vivo studies,
a confocal microscope (Leica SP5 or Leica SPE confocal
microscope with a x40 or x63 objective) was used. For the
magnified images, Fiji ImageJ (National Institute of Health,
USA) and Bitplane Imaris software were used.

Immunocytochemical analysis

Qualitative immunocytochemical analysis was carried out
on three male mice. At least three coronal slices per animal
were stained with each antibody/antibody combination to
assure the representativeness of the staining. The intensity
of immunostaining and colocalization were then analyzed
using Fiji Image] and Bitplane Imaris software.

Western blotting

Mice were sacrificed with an overdose of sevoflurane.
Subcellular fractionation of brain tissue was performed as
previously described [25].

Transmission electron microscopy

Mice were perfused with 20 ml of solution 1 (0.5% hepar-
inized saline solution) followed by 50 ml of solution 2 (2%
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paraformaldehyde, 2.5% glutaraldehyde, and 1% sacchar-
ose in 0.1 cacodylate phosphate buffer, pH 7.4). After
perfusion, the mouse brains were dissected and postfixed in
solution 3 (2% glutaraldehyde and 1% saccharose in 0.1
cacodylate buffered saline) at 4 °C overnight. The regions
of interest (CA1 and CA3) were dissected in 1-mm? pieces
using a stereomicroscope. Then, the specimens were
washed in 0.1 M PBS, postfixed with 2% osmium tetroxide
for 1h and dehydrated in an ascending propanol series
(30%, 50%, 70%, and 90%). In addition, uranyl acetate
diluted in denatured ethanol was used to contrast the spe-
cimens for 30 min at 37 °C. The epon-embedded specimens
were cut into 0.5-um sections with an ultratome, and the
semithin sections were stained with toluidine blue. The
defined subregions were cropped from the epon-embedded
pieces, cut into ultrathin sections (70-80 nm) and collected
on 300 mesh copper grids.

For the hippocampal neurons, transmission electron
microscopy (TEM) was performed as previously reported [26].

Transmission electron microscopy analysis

All analyzed specimens were investigated on a Jeol JEM
1400 transmission electron microscope at 120kV. A
magnification of x25,000 was chosen to study synapses
and the density of postsynaptic densities (PSDs) within an
image section. Generally, synapses were counted within an
area of 35.8 um”. A magnification of x80,000 was further
applied to measure the PSD length and thickness. Only
artifact-free synapses with clearly identifiable PSDs and
presynaptic and postsynaptic terminals were selected for
analysis. Imagel] software was used to determine the
length, thickness, and volume of the PSDs. For the ana-
lysis of the SV density, membrane-associated vesicles and
presynaptic terminal size were manually traced in ImageJ.
Multivesicular bodies (MVBs) were identified as round-
shaped vesicles surrounded by a single membrane that
enclosed a variable number of small spherical vesicles
within a matrix, according to the published criteria [27].

Culturing and immunolabeling of rat hippocampal/
cortical neurons for conventional fluorescence
imaging

Primary rat embryo hippocampal/cortical cell culture and
immunolabeling procedures were previously described by
Schoen et al. [28].

Image acquisition and analysis of rat hippocampal
neurons

Images were obtained with an upright fluorescence micro-
scope (Zeiss Axioskop 2 and Zeiss Imager Z1 with an

apotome, Zeiss, Germany). Pictures were taken with Axiovi-
son 4.7.1 software (Zeiss, Germany). Three different dendrites
from three different neurons from three different wells were
analyzed for each condition using Bitplane Imaris software.

Experimental and pharmacological design

The CRH peptide (Bachem #H-2435) was maintained at a
stock solution of 100 uM in sterile water, and then diluted to
the desired concentration in NBM plus B27 just before use.
Dissociated neurons on glass coverslips were incubated in 6-
or 24-well plates at 36 °C for 30 min. The selective CRH
receptor blocker NBI30775 (Hycultec GmbH, #HY-14127)
and a selective GR blocker (Sigma-Aldrich, #RU38486)
were dissolved in sterile DMSO, sonicated and used at a final
concentration of 100 nM. BDNF (Peprotech #450-02) was
prepared to a final concentration of 10 pg/ml. The blockers
were applied alone for 5 min to allow the compound to bind
the receptors. This was followed by application of a solution
containing (1) NBI30775 and CRH or (2) NBI30775,
RU38486, and CRH, and BDNF was immediately applied in
combination with CRH for another 30 min.

Phospho-protein array

Screening of 1318 phospho-proteins (Phospho Explorer
Antibody Array #KAS02) was performed in hippocampal
neurons under two experimental conditions: vehicle and
100nM CRH. The detection of antibody arrays was per-
formed in a fluorescence slide scanner (Genepix 4000B
microarray scanner, Molecular Devices). The 16-bit images
were analyzed using GenePixPro 6.1 software. For quanti-
fication, four replicates for each antibody and values from
two independent experiments were used. The values were
calculated relative to the average value of the corresponding
control. Protein expression changes of >35% were con-
sidered relevant.

Synaptotagmin assay

After 30 min of incubation with CRH with or without
antagonist(s)/ BDNF, synaptotagmin-1 (1:500) was admi-
nistered for 30 min. Then, DIV14 neurons from all the
experimental groups were fixed for ICC or rapidly pro-
cessed for western blot analysis.

NF-kB activation blockage

After 30 min of incubation with CRH, JSH23 (Abcam,
#Ab144824) was added at a final concentration of 10 uM
for 30 min to prevent NF-kB translocation to the nucleus.
Then, neurons were fixed for ICC or rapidly processed for
western blot analysis. To demonstrate the validity of the
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system, two other NF-kB activation blockers were tested:
lactacystin (Abcam, #Ab141411) and SC-514, an IKKbeta
inhibitor (Abcam, #ab144415).

Lysosomal inhibition and reagents

DIV 14 rat hippocampal neurons were treated with 100 nM
CRH for 30min in triplicate. Then, 50 uM leupeptin
hemisulfate (Biomol, CAS #103476-89-7) and 5 uM E64
(Sigma-Aldrich, #E3132) were added for 30 min. Then,
neurons from all the experimental groups were rapidly
processed for western blot analysis.

Behavioral test

Fear Conditioning System 46103 from Noldus/Ugo Basile
was used to perform the trace cued and contextual test. The
fear conditioning procedure was conducted over 3 days.
During the first day (training day), the animals were placed
in a unique context (25x 17 x 17 box), and after 2 min
of acclimation, they were exposed to a mild foot-shock
(0.5mA, 2s) followed (20s later) by a tone (85dB,
2700 Hz, 20 s). The CS—US pairing was repeated five times.
During the second day (auditory memory), the animals were
placed in a different context, and after 2 min of acclimation,
they were exposed three times to a tone with 2-min intervals
(85 dB, 2700 Hz, 20 s). On the third day (contextual mem-
ory), the animals were exposed to the same context as that
used for the training day for 8 min. On the fourth day, TxT
was induced. Upon exposure to the same context or cue 5 or
18 days after TxT, animals exhibited a variety of fear
responses, including freezing behavior [29, 30]. Freezing
behavior was assessed as the percentage of time spent
freezing (measured 1 min after the tone using Ethovision
12 software). Freezing was defined as a complete lack of
movement, except for respiration [29, 30].

In vivo antagonist administration

The selective CRH receptor blocker NBI30775 (Hycultec
GmbH, #HY-14127) and a selective GR blocker (Sigma-
Aldrich, #RU38486) were dissolved into sterile 70% PEG.
NBI30775 (1 mg/kg) was administered subcutaneously
immediately and 2, 6, and 10 h after TxT trauma and twice a
day for 1 week. RU38486 (20 mg/kg) was administered
subcutaneously immediately and 12h after trauma and
twice a day for 1 week. The TCCF test was performed as
described above.

Statistical analysis

The results are presented as the mean+SEM. CRH/
synapse-related immunostaining and all immunoblots were
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normalized to the value of the sham group (equal to 1) or,
for the in vitro experiments, were normalized to the value of
the vehicle group (equal to 1). One-way ANOVA followed
by Bonferroni’s multiple comparison post hoc test was
performed for most of the experiments to determine sig-
nificant differences between experimental means. Some
experiments were analyzed using two-tailed unpaired 7-test
or one-way ANOVA followed by the Dunnett post hoc test.
The biological replicates from three mice were used for
experiments with 2-3 technical replicates, except for the
behavioral experiments, in which 6-8 mice were used. For
the in vitro experiments, the biological triplicates were
derived from 3-5 technical replicates. The 95% confidence
interval was considered statistically significant. GraphPad
Prism 7.0 was used to perform all statistical analyses.

Results

Thoracic trauma (TxT) leads to a selective loss of
hippocampal excitatory synapses but no memory
deficits in young mice

We analyzed the spine density of hippocampal pyramidal
neurons and interneurons in the CA1l and CA3 regions of
young mice on days 5, 10, and 18 after TxT (Fig. 1a). In
pyramidal neurons, the number of dendritic spines was
significantly lower (up to 50%) at 5 and 10 dpi, and there
were only moderate changes in spine morphology (Sup-
plementary Fig. 1). A general recovery of spine loss was
observed after 18 dpi (Fig. 1b). In contrast, no significant
changes in spine density were observed in hippocampal
interneurons (Fig. 1b). Co-immunostaining with antibodies
directed against the excitatory postsynaptic marker Shank2
and the presynaptic protein Vglutl revealed that spine
reduction was accompanied by a loss of synaptic contacts in
the CA1 and CA3 regions at 5 and 10 dpi and that this was
recovered at 18 dpi (Fig. 1c). This was observed along the
whole dorsal to ventral extent of the hippocampal structure
(see Supplementary Materials Section 1.3). The results were
confirmed by western blot analysis in homogenates and P2
hippocampal fractions; Shank2- and Synapsin 1/2-levels
were unchanged in the homogenates (Fig. 1d) but sig-
nificantly downregulated in synaptic P2 fractions at 5 and
10 dpi. Consistent with these findings, the analysis of
excitatory synapses in the hippocampal CA3 region by
TEM demonstrated a significant decrease in the number of
excitatory synapses. Interestingly, the gross morphology of
the remaining synapses after trauma was unchanged, as
revealed by the length, thickness, and volume (V = (length/
2)2xthickness><n) of the PSDs (Fig. le). In contrast to
these findings, the number of excitatory synapses in the
cortex (Fig. 1f) was unchanged, as revealed by the
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Fig. 1 Loss of hippocampal excitatory synapses after TxT.
a Schematic design of the experimental setup. b Analysis of spine
density using Golgi staining in (left) pyramidal neurons and (right)
interneurons (scale bar = 3 um). ¢ Immunohistochemical (IHC) stain-
ing and quantification of excitatory synapses in the hippocampus using
the postsynaptic marker Shank2 (green) and the presynaptic marker
Vglutl (red) (scale bar= 15 um, magnification scale bar= 1 um).
Arrowheads indicate synaptic colocalization. d Western blot analysis
and quantification of hippocampal homogenates and the P2 fraction
using antibodies directed against the postsynaptic protein Shank2 and
the presynaptic marker Synapsin 1/2. e The overall number and
ultrastructure of excitatory synapses within the CA3 region. Asterisks
indicate the postsynaptic density (PSD) (scale bar =0.5 um). f IHC
staining and quantification of excitatory synapses in the cortex using
Shank2 (green) and Vglutl (red) (scale bar = 15 um, magnification
scale bar = 1 um). Arrowheads indicate synaptic colocalization of the
proteins. g IHC to detect inhibitory synapses in the hippocampus using
the postsynaptic marker Gephyrin (red) and the presynaptic marker
Vgat (green). Relative quantification of coimmunostained synaptic
puncta (arrowheads) (scale bar=15um, magnification scale bar
1 um). h Western blot analysis and quantification of hippocampal
homogenates and P2 fraction for Gephyrin and Vgat. N = 3. The error
bars represent the SEMs; one-way ANOVA with Bonferroni’s post
hoc comparison test was performed (*P <0.05, **P <0.005, ***P <
0.0005, ****P<(.0001). i The trace cued and contextual fear con-
ditioning (TCCF) test protocol. The TCCF test was performed before
thoracic trauma, and an auditory and contextual memory test was
performed 5 and 18 days after trauma (the results of the auditory
memory test and contextual memory test were compared among each
group). N =8; the error bars represent the SEMs; one-way ANOVA
with Bonferroni’s post hoc comparison test was performed (P <0.05,
**P <0.005, **¥*P <0.0005, ****P<0.0001).

cue/contextual fear conditioning 5 and 18 days after TxT.
No significant differences were observed between the
experimental groups with respect to the freezing response
(measured 1 min after the tone) (Fig. 1i).

Screening for potential mechanism(s) involved in
synaptic loss reveals a potential role of trauma-
related alterations in hippocampal CRH and BDNF
expression

By using a broad screening approach to identify potential
mechanisms responsible for hippocampal synaptic loss, we
analyzed the potential loss of hippocampal neurons but did
not find any difference between the experimental through
(Supplementary Fig. 2A, G). Next, we explored the invol-
vement of local inflammation by histological analysis of
microglial (Supplementary Fig. 2B, H) and astroglial acti-
vation (Supplementary Fig. 2C, I). We observed a slight
increase in microglia in the motile stage in the CAl and
CA3 regions after 10 days; however, the number and
intensity of GFAP (glial fibrillary acidic protein)-positive
astroglia remained unchanged. Next, we investigated the
putative involvement of the complement system by using
Clq as a marker of the classical complement cascade and
C3b as a crucial marker of complement activation.
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Interestingly, Clq levels were downregulated at 5 dpi, while
C3b-positive structures remained unaltered (Supplementary
Fig. 2E, K). Moreover, since there is good evidence that
cholinergic hypoactivity might be involved in cognitive
dysfunction during delirium [31], we investigated the
expression of ChAT-positive neurons in the medial septum
and hippocampus (CA1l and CA3 regions). No difference
in terms of the number of ChAT-positive cholinergic neu-
rons was found between young and aged mice after TxT
(Supplementary Fig. 2D, J). In addition, vital parameters
after trauma did not show any significant changes, and the
expression of the hypoxia-induced factor (Hif-1alpha) was
not detected in the brain (data not shown). Finally, we
closely analyzed the stress axis in the hippocampus first by
analyzing the mRNA expression of CRH and its receptors
(Fig. 2a). Here, we found that CRH mRNA was highly
upregulated 10 and 18 days after trauma and CRHRI
mRNA was slightly increased at 5 dpi, while CRHR2
expression remained unchanged among the different
groups. Next, we investigated the expression of CRH by
evaluating the intensity of CRH-positive puncta by confocal
imaging (Fig. 2a) and found that CRH expression was
significantly enhanced 5 and 10 days after trauma. More-
over, we investigated the corticosterone plasma level in
sham and trauma-exposed mice and detected a significant
increase in the concentration (ng/ml) 6 h and 5 dpi (Sup-
plementary Fig. 2F). Since it has been demonstrated that
stress influences the expression of different neurotrophic
factors [32], we screened for alterations in neurotrophin
expression and found by western blot analysis that BDNF
was undetectable in the hippocampal region at 5 and 10 dpi;
on the other hand, there was only a slight decrease in BDNF
mRNA after 5 days and a strong increase in TrkB mRNA
after 10 days. In contrast, when we analyzed CRH and
BDNF expression in the cortex, we did not observe any
alteration in mRNA and/or protein expression (Fig. 2b).

Unraveling the direct CRH-NF-kB-BDNF autophagy
pathway that results in a rapid loss of excitatory
synapses

CRH induces BDNF downregulation and synaptic loss
in vitro

To study the in vivo findings in more detail, we employed a
primary hippocampal/cortical culture system in which the
expression of CRH and its receptors was comparable with
that on day 14 after plating (Supplementary Fig. 3A). First,
we tested the effect of CRH on the number of excitatory
synapses 30 min after treatment with CRH (100 nM) and
found a significant decrease of ~60% in the number of
synapses (Fig. 3a and Supplementary Fig. 3B). Next, we
analyzed whether these changes were also accompanied by



A CRHR1 antagonist prevents synaptic loss and memory deficits in a trauma-induced delirium-like syndrome

3785

Fig. 2 Upregulation of A
hippocampal CRH. a
Expression (left) of CRH,
CRHRI, and CRHR2 mRNA
relative to HMBS; IHC for CRH
(green) (scale bar = 15 um,
magnification scale bar =2 um)
and quantification of CRH-
positive puncta (right) in the
hippocampal formation. Western
blot analysis of BDNF (P2
fraction) and the relative
quantification of the expression
of BDNF and its receptor TrkB
relative to HMBS. b CRH,
CRHRI, and CRHR2 mRNA
expression, IHC for CRH
(green, scale bar = 15 um,
magnification scale bar =2 um),
immunoblot of BDNF (P2
fraction) and the relative
quantification of BDNF and
TrkB expression relative to B
HBMS in cortical tissue. One-
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a reduction in BDNF expression. To that end, we closely
analyzed proBDNF, BDNF, and BDNF-mRNA levels at
different time points after CRH application and found that
BDNF mRNA expression was highly upregulated within
the first hours, reaching steady state levels after 1 and/or
2 days of incubation. After 30 min, ProBDNF protein levels
were unaltered, but the BDNF concentration was sig-
nificantly downregulated, and it slowly recovered after 5h
in vitro (Supplementary Fig. 3C-E). Next, we determined
the timing of CRH-induced synaptic loss and the con-
centration required for this effect and tested different con-
centrations of CRH (30 min of incubation) as well as
different incubation times (with 100nM CRH) before
fixation (Supplementary Fig. 3J, G). We found a significant
decrease (20%) in the number of excitatory synapses start-
ing at a concentration of 10 nM and observed that 100 nM
CRH significantly reduced the number of synaptic contacts
after 5 min (loss of 13%). BDNF protein levels were clearly
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reduced after 30 min of CRH incubation (100 nM) (Sup-
plementary Fig. 3G). Next, we analyzed the recovery
time of hippocampal synapses by adding NBM plus B27 for
30min or 5h after incubation with 100nM CRH for
30 min. Both the number of excitatory synapses and the
BDNF protein expression were completely restored 5 h after
medium exchange and incubation with neurobasal medium
supplemented with B27, L-glutamine (2 mM, Gibco), and
100 units/ml penicillin/streptomycin (Invitrogen) (Supple-
mentary Fig. 3H).

To further elucidate these in vitro findings, we co-applied
BDNF as well as specific antagonists for CRHRI
(NBI30775) and corticosterone receptor (RU38486, mife-
pristone) with CRH (Fig. 3a). First, we found that the
additional application of BDNF rescues the loss of synapses
in comparison with CRH (100 nM) application (Fig. 3a).
Moreover, NBI30775 alone and in combination with
mifepristone rescued synaptic loss. Finally, we analyzed

SPRINGER NATURE
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BDNF protein levels under these treatment conditions and  under experimental conditions by the synaptotagmin assay
observed unaltered BDNF expression after blockage of  (Supplementary Fig. 3I) and quantified the percentage of
CRHRI1 (Fig. 3a). When we investigated synaptic activity  active synapses (positive for synaptotagmin-1) in relation to
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Fig. 3 Loss of excitatory synapses in hippocampal cell culture is
CRH/BDNF/NF-kB-dependent. a IHC for Shank2 (green), Vglutl
(red), MAP2 (magenta) (scale bar = 5 um), western blot analysis for all
different treatment regimens (CRH; the CRHRI1 blocker NBI30775;
the corticosterone receptor blocker RU38486; and BDNF) and the
relative quantification. b IHC for Shank2 (green), Vglutl (red), MAP2
(magenta) and CRHRI1 (white) with colocalization and trilocalization
analysis (scale bar =5um). ¢ IHC for phospho-NF-xB p65 (green,
scale bar =5 um) and the relative quantification of the signal within
the nuclear compartment. d IHC for phospho-IKB-a and the relative
quantification of the signal within the cytosolic compartment. e IHC
for and compartment analysis of p65. f IHC (left panel) for Shank2
(green), Vglutl (red), MAP2 (magenta) (scale bar =5 pum), WB of
BDNF (right panel) for all different treatment regimens blocking the
NF-xB pathway (JSH (the translocation blocker JSH- 23); SC (the
IKK-p inhibitor SC-514); and LAC (the NF-xB activation blocker
lactacystin)) and the relative quantification. g IHC for ATGS, immu-
noblot analysis of h BCN-1, i LC3, and j Lamp-2 and the relative
quantification normalized to p-actin. k TEM of acquired synapses after
15min of CRH treatment (arrows indicate membrane-associated
vesicles (scale bar=0.5um)) and the relative quantification of
docked vesicles and multivesicular bodies (MVBs)/synapses (a two-
tailed unpaired 7-test was used). 1 Quantification of the number of
excitatory synapses (left) by IHC and WB analysis of BDNF expres-
sion (right) after treatment with 100nM CRH for 30 min and Leu-
peptin hemisulfate +5uM E64 (CRH++) compared with control
treatment. N =3-5; the error bars represent the SEMs; one-way
ANOVA and Bonferroni’s post hoc comparison test were performed
(*P<0.05, ##P <0.005, ***P <0.0005, ****P <0.0001).

the total number of excitatory synapses, we did not observe
any differences among the different experimental groups,
indicating that the activity of the remaining synapses after
CRH application remained unchanged. Finally, we investi-
gated the expression of CRHRI1 in individual synapses and
found that ~50% of excitatory synapses were CRHRI
positive. Interestingly, after CRH treatment, CRHRI1-
positive synapses were no longer detectable (Fig. 3b),
indicating that CRHR1-positive synapses are targeted and
deleted by CRH.

CRH treatment induces autophagy activation via the
NF-kB pathway in hippocampal neurons

To identify the regulatory action of CRH on BDNF levels,
we employed a phospho-protein array that analyzed hip-
pocampal neurons after treatment with CRH (100 nM)
versus control. Among 1318 candidates, we found 40
phospho-proteins that were greatly upregulated or down-
regulated. Interestingly, the expression of NF-kB p65 itself
and a group of 20 NF-kB pathway-associated proteins was
upregulated after CRH treatment (Supplementary Fig. 3M).
To confirm these findings, we investigated the expression
and localization of phospho-NF-kB p65, NF-xB p65, and
phospho-IKB-a in neurons after CRH application. More-
over, we tested the effects of the CRHR1 blocker NBI30775
and JSH23 (a specific blocker of NF-«kB nuclear translo-
cation) on NF-kB activation. We found that CRH treatment

increased phospho-NF-kB p65 in the nucleus and elevated
phospho-IKB-a levels in the cytosol. Such translocation
was not observed after NBI30775 or JSH23 co-application
(Fig. 3c, d), and the overall expression of p65 did not
change after CRH administration (Fig. 3e). In addition, we
confirmed the ability of CRH to induce NF-kB nuclear
translocation via the canonical pathway by applying two
additional compounds that blocked the NF-kB pathway at
different steps of activation (SC-514 and lactacystin)
(Supplementary Fig. 3L). Finally, we demonstrated that the
blockage of the NF-xB pathway in combination with CRH
application maintained BDNF protein expression levels and
the number of excitatory synapses (Figs. 3f and 5).

Considering the rapid downregulation of BDNF protein
levels, we next analyzed specific cellular degradation
mechanisms that are known to be induced by the NF-xB
signaling system, in particular autophagy. To that end, we
tested the expression of several autophagy-related factors
in vitro and found that ATGS, BCN-1, LC3, and Lamp-2
were strongly upregulated after 30 min of CRH treatment,
an effect that was abolished by co-application of NF-kB and
CRHRI1 blockers (Fig. 3g—j). Moreover, TEM analysis of
synaptic contacts revealed a high number of presynaptic
terminals with MVBs and fewer membrane-associated
vesicles (Fig. 3k and Supplementary Fig. 3M) after
CRH treatment. Finally, we further investigated the role of
lysosomal degradation by applying leupeptin hemisulfate
(a reversible inhibitor of cysteine, serine, and threonine
proteases) and E64 (a protease inhibitor) together with CRH
and found that synapse number and BDNF levels remained
unchanged when CRH treatment was combined with both
inhibitors (Fig. 31).

The application of CRHR1 antagonists rescue
posttraumatic molecular, structural, and behavioral
alterations in old mice in vivo

In light of age-dependent alterations in synaptic plasticity
[33] and the enhanced susceptibility of elderly patients
to posttraumatic neuropsychiatric symptoms, we finally
investigated the effects of trauma in aged mice compared
with younger animals. Comparing the absolute number of
hippocampal excitatory synapses between young and older
mice showed that old animals had fewer excitatory synapses
before trauma. In particular, in the CA3 region, this dif-
ference reached ~50%. After the induction of TxT in the
older mice, a 50% reduction in the number of synapses was
observed (5 dpi), and this reduction slowly recovered after
18 dpi (Figs. 4a and 5). These data also indicated that
after TxT, old mice had only ~20-25% of the number of
hippocampal excitatory synapses that young WT mice had.
The concomitant upregulation of hippocampal CRH was
also observed to a similar extent in old animals (Fig. 4b).

SPRINGER NATURE
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Fig. 4 CRHR1 antagonists rescue autophagy-related hippocampal
synaptic loss and memory impairment after thoracic trauma.
a Comparison of the number of excitatory synapses in the hippo-
campal CA1 and CA3 regions of young and old (empty columns) mice
(Shank2 and Vglutl were used as post- and presynaptic
markers). b CRH expression (green, scale bar = 20 pum, magnification
scale bar =5 um) in the hippocampus of aged mice. ¢ IHC for Shank2
(green) and Vglutl (red) and colocalization analysis in the CAl and
CA3 regions of the treated groups (see internal legend) (scale bar = 15
um, magnification scale bar =1 pm). Arrowheads indicate synaptic
colocalization. d Immunoblot of BDNF in the P2 hippocampal fraction
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and the relative quantification of the treatment groups. e Schematic of
(left to right) the behavioral experiment, analysis of memory and
learning before trauma, and analysis of auditory and contextual
memory 5 and 18 days after TxT. £ IHC for p62 in young (left) and
old (right) mice in the hippocampal CA1 and CA3 regions (scale bar
=5 um). g Immunoblot of Beclin-1 and LC3 in hippocampal homo-
genates from young and old mice 5 days after trauma with or without
CRHRI blockage. N = 3-6; the error bars represent the SEMs; one-
way ANOVA and Bonferroni’s post hoc comparison test were always
performed (¥*P <0.05, **P <0.005, ***P <(0.0005, ****P <0.0001).
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Fig. 5 Summary of the main
findings of the study. a
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Based on these results and the in vitro results, we next
designed an experimental trial to evaluate the therapeutic
potential of CRHRI1 antagonists (and mifepristone) after
trauma in old (Fig. 4) and young animals in vivo (Supple-
mentary Fig. 4). We did not detect a reduction in the
number of excitatory synapses in trauma-exposed animals
that received the antagonists compared with trauma-
exposed animals (C), which exhibited 50-60% synaptic
loss at 5 dpi. In the trauma-exposed group at 18 dpi,
synapses naturally recovered so that no differences between
the treatment groups were observable when the CAl and
CA3 regions were analyzed (Fig. 4c and Supplementary
Fig. 4A). As proof of principle, we also analyzed BDNF
protein levels in the hippocampus under these experimental
conditions and observed unchanged BDNF levels (Fig. 4d

and Supplementary Fig. 4C). Finally, mice were exposed to
cue/contextual fear conditioning before trauma and on
5 days and 18 days after trauma (Fig. 4e and Supplementary
Fig. 4B). All groups showed an increase in freezing
responses during the auditory/contextual memory test in the
pre-TxT period. In older mice exposed to trauma and treated
with NBI30775 alone or in combination with mifepristone,
lesions of the hippocampus appeared to interfere with the
acquisition of contextual freezing responses but not cue-
elicited freezing responses 5 days after trauma (Fig. 4e and
Supplementary Fig. 4B). To further validate our model and
to make it comparable with other published delirium mod-
els, we expanded the phenotypical characterization of all
experimental groups by performing a battery of behavioral
tests (the open field test, Y maze, and elevated plus-maze)

SPRINGER NATURE
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[34-39] on young (Supplementary Fig. 5SA-C) and aged
mice (Supplementary Fig. SD-F) 24 h prior to TxT and 4 h,
24 h, 5 days and 18 days after trauma. We found a strong
impairment of locomotor activity, cognitive performance
and anxiety behavior in young and old trauma-exposed
mice at 4 h post injury. These alterations quickly recovered
in young animals but were still evident in older mice at 24
hpi and 5 days after trauma. Interestingly, the administration
of NBI30775 alone or in combination with mifepristone
reversed nearly all the observed behavioral alterations after
trauma in young and aged animals.

Finally, we analyzed the involvement of autophagy in
posttraumatic synaptic loss under in vivo conditions
and used antibodies directed against p62, BCN-1, and
LC3 (Fig. 4f, g). Regarding p62, we found an increase in
p62-positive puncta in the hippocampi of younger mice,
particularly after 10 days. In older mice, we observed the
same trend at 5 dpi. The hippocampal protein expression of
BCN-1 and LC3 after trauma was found to be significantly
upregulated in younger and aged mice at 5 dpi; this effect
was abrogated by NBI30775 administration (Fig. 4g).

Discussion

Physical trauma or complicated, long-lasting surgical
operations are closely associated with neuropsychiatric
syndromes that are subsumed as acute physical stress
response/disorder or delirium [40, 41]. In industrial coun-
tries, delirium affects ~15% of all inpatients [42, 43] and is
highly correlated with higher mortality and extended hos-
pital stays [44]. Despite the great efforts of scientists and
clinicians to unravel the pathophysiology of delirium and to
develop effective treatment options, this acute and mostly
transient neuropsychiatric disorder is still far from being
completely understood. This is also because the construct,
face and predictive validity of animal models of delirium is
very limited due to the multiple causes and broad spectrum
and variety of symptoms. In one of the first rodent delirium
models, the muscarinic receptor antagonist atropine was
administered and led to acute cognitive deficits in a blind
alley maze and EEG slowing reminiscent of delirium [45].
Animals with selective lesions of the basal forebrain cho-
linergic system have been shown to be susceptible to acute
cognitive dysfunction that is reversible upon inflammatory
resolution [31]. In fact, more recently, several delirium
models based on the induction of an inflammatory response
were introduced. Delirium-like behavioral alterations are
observed after the application of high doses of lipopoly-
saccharide (LPS) or cecal ligation and puncture leading to
polymicrobial sepsis [46]. For example, Chen et al. [47]
showed that compared with younger mice, old mice exhibit
an increased inflammatory response in the hippocampus
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after LPS challenge, and it was found that hippocampal
processing is more easily disrupted in old animals than in
younger ones. In line with these findings, in ME7 animals
(a mouse model of prion disease), the application of LPS
induces acute and transient working memory deficits, and
ME?7 animals show heightened and prolonged transcription
of inflammatory mediators in the CNS [48].

In this study, we wanted to mimic postoperative [39] and
posttraumatic cognitive dysfunction without primarily trig-
gering inflammatory responses. To that end, we induced
peripheral trauma (TxT) to analyze the molecular, cellular,
and behavioral features of delirium. Interestingly, in this
new rodent model, we observed a broad spectrum of
behavioral deficits (especially in aged animals) reminiscent
of delirium. We found that TxT has a significant impact on
the homeostasis of hippocampal excitatory synapses. In
aged animals, the transient 50% synapse reduction in the
hippocampus resulted in an impairment of memory forma-
tion (Fig. 5). The loss of synapses may have been attribu-
table to the autophagic degradation of BDNF that induced
by local hippocampal release of CRH through the CRHR1/
NF-xB pathway. Blocking CRHRI1 rescued delirium-like
symptoms in vivo. Our data suggest that the pathophysio-
logical basis of the rapid decline in cognitive function might
indeed be explained by synaptic loss and subsequent
functional impairment of local circuitries within the hip-
pocampal formation [19].

To exclude other putative mechanisms/factors that are
known to regulate synapse number, we closely analyzed
neuronal loss, hypoxia and complement cascade involve-
ment [49, 50] as well as severe signs of neuroinflammation.
As mentioned before, these mechanisms have also been
proposed to cause delirium (mainly based on clinical data
sets [4]). We especially focused on microglial and astroglial
activation [51-53] but we were unable to detect specific
signs of inflammatory responses after TxT.

Interestingly, the synaptic alterations that were found
were brain region- and neuron/synapse-specific, indicating a
selective vulnerability of the hippocampus to peripheral
trauma. This regional specificity was most likely due to the
local expression of CRH in hippocampal interneurons,
as in vitro data indicated that cortical neurons were
CRH-responsive in principle. Moreover, our experiments
on primary hippocampal neurons indicated that synapses
involving the dendritic trees of pyramidal neurons expres-
sing CRHR1 were specifically deleted. Of note, the
remaining excitatory synapses showed no morphological
differences compared with synapses under sham conditions
and showed no differences in functional properties in the
synaptotagmin assay.

It is well known that stress influences memory by
modulating the integrity and plasticity of synapses, which
are fundamental for memory processes [54-57]. Here, we
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propose a novel mechanistic concept of the development of
delirium based on the idea of hippocampal stress response
[12, 58-61] triggered by an elevation of posttraumatic
interneuronal CRH production and release [62].

There are important published data on the molecular
mechanisms by which a reduction in the number of spines
and synapses is induced by CRH release. The authors
proposed that CRH-CRHR1-mediated activation of a Rho-
GTPase induces actin depolymerization and subsequent
spine loss [61, 63]. Based on these data, we screened for
additional potential mediators of the action of CRH on
pyramidal neurons and found that BDNF [15], a prominent
signaling molecule that influences synaptogenesis and spine
formation [64], neuronal survival [65], LTP, neuronal
excitability [66], and adult hippocampal neurogenesis [67],
was almost entirely depleted in the hippocampus after TxT.

Eventually, we identified a novel pathway by which
CRH exerts its effect on BDNF and found that the NF-xB
signaling cascade is essentially involved. To our knowl-
edge, this is the first study that identifies a CRH-CRHR1-
NF-xB interaction in primary neurons (Fig. 5). However,
it has already been shown that CRH specifically activates
the NF-xB pathway via CRHRI in thymocytes [68, 69].
Furthermore, it has been shown that the activated NF-xB
pathway can induce autophagy by upregulating BCN-1
[70]. Indeed, we observed in our experimental setup that
BCN-1, LC3, and Lamp-2 were significantly upregulated by
elevated CRH levels in neurons (in vitro and in vivo)
and that signs of autophagy induction, especially in the
presynaptic compartment, appeared. Interestingly, recent
evidence of fine-tuned protein homeostasis regulated by
autophagy at synapses, especially in the presynaptic com-
partment, was reported [71-73]. We found that CRHRI1
activation was correlated with the rapid downregulation of
(presynaptic) BDNF and that BDNF degradation was res-
cued by CRHRI1 blockage as well as NF-kB pathway
inhibition. Finally, we tested the hypothesis that elevated
CRH levels induce rapid lysosomal/autophagic BDNF
degradation in hippocampal neurons [74] and applied pro-
teosomal inhibitors. We thereby stabilized BDNF levels as
well as synapse integrity in vitro, supporting the novel
concept of a direct regulatory link between CRH and
BDNF. The loss of synapses is therefore explained by the
local disruption of a proposed BDNF autocrine feed-
forward loop [75].

As already mentioned before, age is one of the stron-
gest predictors of the development of delirium after
trauma, and aged-related neurodegeneration has been
discussed as an additional predisposing factor (“second
hit”) for the development of delirium [48, 76]. When we
compared young and old animals, we did not observe
significant differences in the stress reaction in the brain
per se; however, the number of hippocampal synapses was

already reduced to ~50% before the traumatic event in the
aged mice. This might explain why behavioral deficits
after trauma are more severe in elderly patients; it appears
much more likely that the total number of synaptic con-
nections falls below a certain threshold, guaranteeing
hippocampal functionality. By applying CRHR1 antago-
nists, however, we successfully rescued synapse numbers
and reversed all accompanying histological, molecular
and behavioral changes observed after trauma in young
and aged animals. The results are also in very good
accordance with data obtained from CRHR1 KO mice,
which have fewer hippocampal spines than control ani-
mals and do not exhibit downregulated spines/synapses in
response to early life stress [77].

Based on our results, a posttraumatic delirium-like status
might be prevented by inhibiting the CRH-CRHR 1-NF-xB-
BDNF pathway. Several antagonists of the CRH receptor,
the best known of which are the selective CRHR1 antago-
nist Antalarmin and a newer drug pexacerfont, have been
developed and are widely used in research. A recent human
trial found that pexacerfont was not effective in alleviating
the symptoms of general anxiety disorder [78], although
additional research is still needed. In monkeys, Antalarmin
has been shown to be successful in lowering the stress-
induced CRF rise in CSF, suppressing anxiety-associated
behaviors, and increased exploratory behavior in stressful
situations, but human trials are necessary to test the clinical
efficacy of Antalarmin [79-82]. In our study, we applied the
CRHRI1 antagonist NBI30775, which has already been used
in clinical trials for depression/anxiety and has shown good
efficacy and safety [83, 84]. Moreover, there are trials using
various compounds that block the NF-xB pathway, espe-
cially for the treatment of cancer, that might also benefit
after trauma events [85].

In summary, our study provides a novel model of acute
physical stress responses and delirium as well as molecular
insights into posttraumatic (especially synaptic) changes in
the brain that are initiated by the elevation of hippocampal
CRH levels (Fig. 5). The therapeutic interruption of this
novel trauma-induced signaling cascade might therefore
prevent synaptic loss and eventually the occurrence of
delirium and reduce its severity.
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