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Abstract

Myeloproliferative neoplasms (MPNs) are a group of malignant disorders of the bone marrow 

where a dysregulated balance between proliferation and differentiation gives rise to abnormal 

numbers of mature blood cells. MPNs encompass a spectrum of disease entities with progressively 

more severe clinical features, including complications with thrombosis and haemostasis and an 

increased propensity for transformation to AML. There is an unmet clinical need for markers of 

disease progression. Our understanding of the precise mechanisms that influence pathogenesis and 

disease progression has been limited by access to disease-specific cells as bio-sources. Here, we 

review the landscape of MPN pathology and present blood platelets as potential candidates for 

disease-specific understanding. We conclude with our recent work discovering progressive platelet 

heterogeneity by subtype in a large clinical cohort of MPN patients.

Myeloproliferative neoplasms (MPNs) are a group of chronic haematological malignancies 

characterised by clonal over-production of mature cells of myeloid lineages1. They are 

defined by a combination of clinical, laboratory, morphological and molecular genetic 

features2. Three phenotypic subtypes, essential thrombocythemia (ET), polycythaemia vera 

(PV), and primary myelofibrosis (MF) constitute the ‘classical MPNs’. All have shared 

molecular genetic pathogenesis-somatic mutations in one of three driver genes (JAK2, 
CALR, MPL) that lead to constitutive JAK/STAT signalling in haematopoietic stem cells 

(HSC)3–7. Clinically they have distinct features, but abnormalities of haemostasis and 

thrombosis, and risk of progression to acute myeloid leukaemia (AML) are common to 

all 1. The chronic nature of MPNs and the accessibility of peripheral blood cells implies 

that these disorders could potentially serve as a generalizable model for events in cancer 

progression8. Furthermore, recent discovery that the mutational event precedes diagnosis by 

many years9, 10 highlights the opportunity MPNs present to investigate early detection and 

intervention strategies in cancer.

Our early work11 studying platelets in patients with MPNs established a methodological 

foundation for exploring subtype-specific signatures, not only of relevance to bleeding and 

thrombosis outcomes in these patients, but also of underlying disease pathobiology. More 

recently12, extended additional data in over 100 MPN patient samples across all three 
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MPN subtypes identify distinct platelet transcriptomic signatures associated with disease 

processes. Megakaryocytes, which produce platelets, are derived from HSCs, reside in the 

bone marrow and contribute to MPN pathogenesis13–16. Platelets therefore provide both a 

snapshot of the status of the megakaryocyte at the time of platelet release, and a window into 

the bone marrow microenvironment.

MYELOPROLIFERATIVE NEOPLASMS

Clinical features

The clinical phenotype of the three classical MPNs differ, although there are overlapping 

features1. ET is characterised by an elevated platelet count and PV by an elevated 

haematocrit. Myelofibrosis, the most severe disease in the group, is typified by cytopaenias 

and presence of reticulin fibrosis in the bone marrow2. All patients experience systemic 

symptoms such as fatigue that impair quality of life 17. In ET, life expectancy may be near 

normal, whereas in PV, median life expectancy is around 13 years. Median life expectancy 

in MF is around 5 years although this varies according to risk score, highlighting the 

heterogeneity within this disease 18. There is a risk of transformation to AML, which 

has a worse prognosis than de-novo AML19, 20. Significant problems in haemostasis and 

thrombosis occur in all three diseases.

There are challenges in gathering data about long term outcomes for patients with MPNs, 

and in designing trials in this patient group21. Firstly, the diseases are relatively rare, 

affecting the cohort size. Secondly, adverse outcomes in these patients occur over decades of 

chronic progressive disease3, 4, 22.

Genetic landscape

In around 90% of patients with MPNs, an acquired mutation that promotes JAK/STAT 

signalling is identified4, 23. The JAK/STAT pathway transduces signals from cytokines 

including erythropoietin, thrombopoietin and granulocyte colony stimulating factor 24. A 

point mutation that activates JAK2, JAK2V617F, is present in around 95% of patients with 

PV and 40–60% of patients with ET and MF 25–28. Many of the remaining patients with 

ET and MF have frameshift mutations in the endoplasmic reticulum chaperone protein 

calreticulin29, 30 which cause ligand-independent activation of the TPO receptor 31, 32.

In addition to driver mutations, recurrent mutations are seen in TET2, DNMT3A, IDH1 and 

2, ASXL1 and EZH24, 5, which contribute to disease initiation and progression by affecting 

DNA methylation and histone modification33. Profiling these mutations is used to refine 

prognosis amongst patients with MF18. Genes which acquire mutations in progression to 

AML include TP53 and transcription factors such as RUNX1 19, 20, 34.

Thrombosis and bleeding in MPNs

Patients with MPNs are paradoxically at risk of both thrombotic and bleeding complications. 

The risk of arterial and venous thrombosis is increased in patients with MPNs, with the time 

shortly after diagnosis being the period of highest risk. In the first three months following 

diagnosis, arterial thrombotic events are around three times commoner in patients with 

Thomas and Krishnan Page 2

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MPNs than they are in matched controls, and venous events are around ten times commoner. 

Rates are similar across PV, ET and MF 35 . Arterial events are more common than venous 

events in MPN patients, and in PV and ET cardiovascular disease is the most common cause 

of death36. Table 1 provides an overview of recent literature documenting clinical outcomes 

of patients with ET and PV.

The pathogenesis of thrombosis in MPN patients is complex. Contributory factors include 

cell counts, clonal haematopoiesis, specific effects of driver mutations, and effects of 

systemic inflammation on platelets, granulocytes and endothelial cells37–41. Evidence for the 

contribution of elevated haematocrit and platelet counts is mixed. Amongst patients treated 

for PV cardiovascular events are more frequent in those with less stringent haematocrit 

control 42, 43. Thrombosis occurs even in individuals with a normal haematocrit however 44. 

Studies in ET have not shown an association between platelet count and thrombosis45, 46, 

and differences in rates of thrombosis were observed in a trial where platelet count did not 

differ between arms47.

There are several indicators that platelet function is altered in MPNs. There is upregulation 

of genes associated with thrombosis in platelets of patients with PV and ET compared 

to controls48. Clinical platelet function tests show increased aggregation in response to 

several ligands in patients with ET compared to healthy individuals49. Examination of the 

specific effect of JAK/STAT activation by JAK2V617F in platelets has produced conflicting 

results in different models, that nonetheless corresponds to the thrombotic and bleeding 

risks in patients. There is evidence both for a pro-thrombotic tendency50 and for impaired 

haemostasis with reduced granule formation and impaired aggregation51.

Increased rates of cardiovascular disease are seen in individuals with clonal haematopoiesis 

of undetermined significance 52. Evidence for a specific role of the driver mutation 

influencing thrombotic risk comes from ET, where patients with CALR mutations have 

significantly lower rates of thrombosis than patients with JAK2 or MPL mutations, 

despite those with CALR mutations having higher platelet counts5354. Controversy over 

whether allele burden influences thrombotic risk 45, 55 also arises because peripheral blood 

measurements only partially reflect the cell populations9 in the bone marrow.

Inflammation is a risk factor for thrombosis, and in PV and ET an association is seen 

between C-reactive protein levels and occurrence of thrombotic events56. In addition to 

endothelial activation caused by systemic inflammation, there are reports of JAK2V617F 
in endothelial cells and a suggestion this may promote thrombosis57. Increased platelet 

activation and platelet-leucocyte complexes are seen in patients with MPNs and are thought 

to contribute to thrombosis58.

Bleeding problems can arise in patients with MPNs with thrombocytosis or 

thrombocytopaenia, for example in ET the relationship between major haemorrhage and 

platelet count is a U-shaped curve46. Around 6% of patients will experience bleeding 

complications at the time of diagnosis59. Thrombocytosis can cause acquired von 

Willebrand disease, with selective depletion of large von Willebrand factor multimers60 

although the bleeding risk associated with thrombocytsis may differ between MPN sub­
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types61. Bleeding related to anti-platelet drugs is an important consideration in this patient 

population.

Therapy

Controlling thrombotic risk is the main goal of therapy in PV and ET. In PV there is 

evidence that thrombotic risk reduction can be achieved with control of the haematocrit43, 

and aspirin62. In ET, treatment decisions are based on individualized thrombotic risk. The 

link between platelet count and thrombotic risk is less clear46, 47, although there is evidence 

that hydroxycarbamide reduces risk in high-risk patients63. Aspirin is recommended to 

reduce thrombotic risk64, although in ET there is a lack of prospective evidence for benefit. 

There is an unmet need for tools to personalise aspirin treatment in MPNs65 since some 

patients experience excessive bleeding related to aspirin, whereas others suffer thrombotic 

events despite taking standard doses of aspirin. In ET, higher platelet turnover is associated 

with increased rates of thrombosis66. There is evidence that rapid platelet turnover reduces 

the effectiveness of aspirin, and that this can be overcome by adjusting dose regimens67. 

The identification that platelet RNA is a biomarker for response to antiplatelet therapy is 

highly relevant68. Clopidogrel may be used as an alternative in patients who are intolerant of 

aspirin although evidence for this is lacking44. For patients with venous thrombotic events, 

anticoagulation treatment followed by long-term prophylaxis is recommended due to a high 

recurrence risk. Traditionally this is with heparins and vitamin K antagonists, although there 

is emerging evidence that direct oral anticoagulants may be effective and safe69, 70.

Drugs inhibiting JAK2, such as Ruxolitinib, have been designed to target the molecular 

cause of the disease and have been partially effective in MF71 and PV72, but less so in ET73. 

Interferons are also used, and there is evidence that they alter the balance between normal 

and malignant haematopoiesis74.

HAEMATOPOIETIC STEM CELLS AND THE BONE MARROW NICHE IN 

MPNS

The HSC population in patients with MPNs is heterogeneous, consisting of wild-type HSCs 

and sub-clones of HSCs with one or more mutations 8. Haematopoietic stem and progenitor 

cells reside within niches75, specialised microenvironments in the bone marrow that sustain 

the equilibrium between proliferation and differentiation76. Maintenance and progression of 

haematological malignancies is facilitated by reciprocal interactions between the malignant 

cells and surrounding niche cells 75. Inflammation in the microenvironment 77 and JAK/

STAT activation in wild-type cells 78 are important contributors to the niche changes in 

MPNs79.

PLATELETS IN MPNs

Platelet origin and function

Blood platelets are critical in multiple processes and diseases, from their traditional 

role in haemostasis and wound healing to inflammation, immunity, cancer metastasis 

and angiogenesis80–82. Platelets originate from bone marrow precursor megakaryocytes, 
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which themselves are differentiated from HSCs and the two cell types together play an 

important role in our understanding of MPN pathology. Megakaryocyte expansion is a 

diagnostic criterion in all three MPNs2. Populations of HSCs primed for megakaryopoiesis 

can be identified at an early stage of differentiation15, 83, 84. Megakaryocytes from 

patients with MF proliferate more than those from healthy controls and aberrantly 

overexpress myeloid transcription factors85. Megakaryocytes are a cellular component 

of the HSC niche75 and modulate HSC quiescence86, 87. In mice, expression of 

Jak2V617F in megakaryocyte lineage-committed cells triggers cell non-autonomous 

increased erythropoiesis 14. Megakaryocytes produce cytokines that promote fibrosis 

including IL6, CXCL4 and TGF-β14, 88, 89. Treatment with alisertib, an Aurora Kinase 

A inhibitor, that results in decreased megakaryocyte numbers and increased maturation led 

to a reduction in fibrosis in a mouse MF model16 and in five out of seven patients in a phase 

1 clinical trial90.

The platelet transcriptome

Platelets contain a complex transcriptional landscape of messenger RNAs, unspliced pre­

mRNAs, ribosomal RNAs, transfer RNAs and microRNAs13, 91–93. Most platelet RNA 

expression results from the transcription of nuclear DNA in the megakaryocyte, and 

thus reflects the status of the megakaryocyte at the time of platelet release into the 

circulation13, 91. This is overlaid with further complexities arising from splicing events 

triggered by receptor activation at the platelet surface94, 95 and inter-cellular transfer of 

RNA into megakaryocytes96 or circulating platelets97. The molecular signature of platelets is 

therefore changed in disease conditions80, 97, 98.

It is important to examine the transcriptome of megakaryocytes as well, given their centrality 

in the pathogenesis of MPNs; and identify the differential contributions to the platelet 

transcriptome from the parent megakaryocytes versus the peripheral disease environment. 

However, there are challenges to studying megakaryocytes from patient cohorts. Bone 

marrow biopsy is a required procedure and presents significantly more discomfort and risk 

to patients than a peripheral blood draw. Megakaryocytes are a relatively rare cell in healthy 

bone marrow though their transcriptomes have been examined99, 100 by enriching with 

density gradient centrifugation followed by positive selection for CD61 and identification 

in single cell analysis based on high expression of megakaryocyte-specific genes. For MF 

there is the added complication that fibrosis often prevents liquid bone marrow from being 

extracted by aspiration. The large size and fragility of megakaryocytes are also a concern. 

Single cell technologies can be used to identify and study megakaryocyte progenitors 

amongst haematopoietic stem and progenitor cells15, but it is unclear to what extent these 

reflect the transcriptomic profiles of mature megakaryocytes. In-vitro differentiation of 

megakaryocytes from stem cells or patient-derived HSCs, which can now be performed 

in large enough numbers to perform transcriptomic profiling101, 102, may be complicated 

by signatures reflecting the in-vitro differentiation process, and lack features conferred 

by the bone marrow microenvironment. Taken together, these challenges to studying 

megakaryocyte transcriptomes highlight the potential for exploring the platelet transcriptome 

as a feasible and viable alternative.
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Transcriptomic heterogeneity in MPNs

In the context of MPNs therefore, the platelet transcriptome represents a biomarker of 

megakaryocyte activity, thus capturing information on the HSC niche and providing a 

snapshot of the underlying thrombotic, haemostatic and inflammatory derangements. Figure 

1 illustrates the different potential influences on the platelet transcriptome in MPNs.

Our recent work103, 104 using RNA sequencing of purified platelets from two cohorts 

of patients with ET, PV, and MF (contrasted with healthy donors) confirms the intra­

disease heterogeneity and identifies novel therapeutic targets. The platelet transcriptome is 

significantly reprogrammed in the MPN setting, with a wealth of transcript associations that 

may be missed in using conventional tissue sources such as serum, plasma, whole blood, or 

bulk bone marrow (Table 2 summarizes MPN studies across these bio-sources and suggests 

potential for future investigations on assessing intersecting signatures/pathways). Our data 

also closely overlaps with two other recent platelet transcriptomic studies on select MPN 

subtypes: thrombo-inflammatory signatures in PV from Gangaraju and Prchal et al105 and 

fibrosis-associated signatures in MF from Guo and Erber et al106.

Distinctive signatures of over and under-expressed genes are seen for each disease entity, 

with the greatest differences from normal seen in MF. Of note, these are independent 

of driver mutation, highlighting the significance of other factors in disease pathogenesis 

and progression. The data corroborates the role of inflammation in MPN pathogenesis 

and identifies gene expression signatures reflecting activation of inflammatory signalling 

pathways. Characteristic changes are noted in MF patients treated with the JAK1/2 inhibitor 

ruxolitinib, both confirming known mechanisms of action as well as identifying potential 

new or combinatorial targets for MPN therapy.

Molecular pathways differentially activated between MPN subtypes identified expected 

immune modulatory responses (e.g. a consistent interferon alpha/gamma, and IL2 STAT5) 

in addition to robust (FDR<0.05) signaling in oxidative phosphorylation (OXPHOS), 

mTORC1, and reactive oxygen species (ROS) production pathways. Coagulation- and 

complement-associated gene sets were also expectedly enriched across ET, PV, and MF. 

Particularly in MF, cycle progression and proliferation pathways around c-MYC and E2F 

targets, and G2M checkpoint pathways emerged as highly significant (FDR < 0.001) and 

altogether pointing to a strong unfolded protein response as a key factor, likely attributed 

to a chronic integrated stress response (ISR)107. Together, these data demonstrate that in 

addition to immune factors such as type I/II interferons and dysregulation of interleukin­

dependent inflammatory responses, which have been linked to MPNs, platelet transcriptional 

signatures of proliferation, metabolic, and proteostasis signaling are a feature of MPN 

pathogenesis.

Most importantly, platelet gene expression profiling in MPN offers directions for prediction 

of myelofibrosis. Applying machine-learning algorithms of LASSO penalized regression 

under two conditions of external validation 108: temporal (using our two cohort design) 

and geographical (independently published datasets on healthy donors106, 109 and MF 106, 

we uniquely discriminate MPN subtypes from each other, and healthy controls using three 

model types and predict MF at high accuracy. The highest performing model used a set of 
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progressively differentiated MPN genes at an area under the (ROC) curve of 0.96 (temporal) 

and 0.97 (geographical); and rendered a core signature of <5 candidate markers as top 

predictors of disease progression.

Collectively, our work presents the platelet transcriptome as a proof-of-concept not only 

in understanding disease progression but also in deciphering mechanistic insights and 

developing predictive machine learning algorithms.

Single-cell technologies

Despite the wealth of insight gained from bulk RNA sequencing of purified platelets, this 

approach does not answer questions arising from heterogeneity of sub-populations of HSC 

and their progeny (Figure 1). Single-cell approaches applied to stem and progenitor cells are 

starting to offer this granular perspective.

Our understanding of normal and malignant haematopoiesis is being transformed by single­

cell transcriptomics, where expression of thousands of genes measured from individual cells 

is used to infer differentiation trajectories110–112. In MPNs, this has revealed heterogeneity 

in megakaryocyte progenitors in MF, where patients have a population resembling healthy 

controls, but also eight other distinct populations15. Methods that simultaneously determine 

the mutation status and transcript profile of single cells bring further resolution, including 

the potential to examine sub-clones with additional mutations113, 114. Surprisingly, driver­

mutated cells do not form novel clusters with unique gene expression profiles but are 

found across all the stem and progenitor cell populations114, 115. Emerging technologies 

that combine single cell and spatial information116 have the potential to enrich this with 

information on influences of the marrow microenvironment.

Challenges remain in deciphering heterogeneity within platelet populations, for example to 

identify the contribution of wild-type and driver-mutated megakaryocytes to the circulating 

platelet population and establish whether there are transcriptomic differences between them. 

It will be of interest to see whether single-cell transcriptomic technologies can be adapted to 

study single platelets, although low RNA yields may be a potential limitation.

Early detection of MPNs—Novel work10, 117 using somatic mutations as molecular 

clocks to calculate the timing of driver mutation acquisition in patients with MPNs has 

revealed a very long latency between mutation acquisition and presentation with overt 

disease. Furthermore, it was inferred that the mutations would have been detectable many 

years before disease presentation10, 115. Notably, rates of clonal expansion varied between 

individuals. Platelets are potential sources to investigate the multiple influences including 

inflammation and the bone marrow microenvironment which could be contributing to this 

trajectory. Future directions for personalised medicine in MPNs therefore encompasses not 

only risk prediction for patients already diagnosed with an MPN, but also early detection, 

risk stratification for progression to disease and potentially early intervention for individuals 

with low burden mutant clones10.
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CONCLUSIONS

Platelets play a central role in the haemostatic and thrombotic complication of MPNs 

and provide a window into the stem and progenitor cell populations and bone marrow 

microenvironment that are responsible for disease pathogenesis and progression. The platelet 

transcriptome offers markers of disease phenotype, disease progression and biological 

insights into potentially targetable aspects of disease biology - one step closer to 

personalising medicine in MPNs.
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AML acute myeloid leukaemia

CALR calreticulin

ET essential thrombocytosis

HSC haematopoietic stem cells

JAK2 janus kinase 2
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MPN myeloproliferative neoplasm

PV polycythaemia vera
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Highlights

• Myeloproliferative neoplasms (MPNs) arise when haematopoietic stem cells 

(HSCs) acquire driver mutations that cause abnormal blood counts.

• MPNs are a model for cancer progression broadly relevant to bone marrow 

biology.

• MPN disease phenotype is the consequence of a combination of factors 

including effects of driver mutations on HSCs and their progeny, non-cell­

autonomous effects in the bone marrow microenvironment, and systemic 

inflammation.

• Thrombosis and bleeding cause significant morbidity and mortality in MPN 

patients. Megakaryocyte populations are expanded in patients with MPNs and 

are particularly central to disease pathogenesis in myelofibrosis.

• The platelet transcriptome integrates disease-specific information from the 

parent megakaryocytes as well as the bone marrow microenvironment and 

the peripheral circulation. There is an unmet need for markers of disease 

progression in MPNs and therefore, platelets are ideal peripherally accessible 

biosources that also reflect underlying disease.
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Figure 1. The transcriptomic signature of circulating platelets provides a window into disease 
biology in MPNs.
Megakaryocytes are expanded in MPNs and comprise a mixture of wild-type cells and cells 

with driver mutations and sub-clones with additional mutations, reflecting the heterogeneity 

within the HSC pool from which they are derived. Megakaryocytes influence surrounding 

cells in the bone marrow niche through non-cell-autonomous effects and are themselves 

influenced by environmental factors including inflammation and fibrosis. As well as 

reflecting the status of the megakaryocyte at the time of platelet release into the circulation, 

the platelet transcriptome is further influenced by inter-cellular transfer of RNA and by 
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splicing events triggered by receptor activation. The transcriptome therefore gives insights 

into disease biology and carries signatures that distinguish between disease types and stages 

of disease progression.
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