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Abstract

Encoding and retaining novel sequences of sensory stimuli in working memory is crucial for 

adaptive behavior. A fundamental challenge for the central nervous system is to maintain each 

sequence item in an active and discriminable state, while also preserving their temporal context. 

Nested neural oscillations have been postulated to disambiguate the “what” and “when” of 

sequences, but the mechanisms by which these multiple streams of information are coordinated in 

the human brain remain unclear. Drawing from foundational animal studies1,2, we recorded local 

field potentials from the human piriform cortex and hippocampus during a working memory 
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task in which subjects experienced sequences of three distinct odors. Our data revealed a 

unique organization of odor memories across multiple timescales of the theta rhythm. During 

encoding, odors elicited greater gamma at distinct theta phases in both regions, time-stamping 

their positions in the sequence, whereby the robustness of this effect was predictive of temporal 

order memory. During maintenance, stimulus-driven patterns of theta-coupled gamma were 

spontaneously reinstated in piriform cortex, recapitulating the order of the initial sequence. Replay 

events were time-compressed across contiguous theta cycles, coinciding with periods of enhanced 

piriform-hippocampal theta phase synchrony, and their prevalence forecasted subsequent recall 

accuracy on a trial-by-trial basis. Our data provide a novel link between endogenous replay 

orchestrated by the theta rhythm and short-term retention of sequential memories in the human 

brain.
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INTRODUCTION

In the natural world, animals make use of a complex stream of olfactory inputs to guide 

essential behavior. For example, dogs can determine the direction of an odor trail based on 

information acquired from sequential sampling of multiple footsteps3. As another example, 

insects are able to localize the source of turbulent odor plumes in spite of the absence of 

concentration gradients, with flight patterns reflecting reactive odor responses as well as 

their modulation based on the history of odor encounters on the timescale of seconds.3,4 

Such behavior suggests that encoded temporal sequences of sensory stimuli are being 

maintained in working memory. Indeed, rodents can remember the temporal order of 

once-presented sequences of distinct odors1,2. Together, these observations underscore the 

ethological relevance of encoding both the content and temporal structure inherent in a novel 

sequence of odor stimuli.

Similarly, behavioral studies have established that humans can encode and maintain a 

sequence of odors in working memory5. However, a general challenge for ensuring the 

fidelity of a sequence is the fact that individual items may draw from shared cognitive 

resources in the same brain regions, giving rise to potential neural and perceptual 

misattributions6,7. In fact, distinct odors evoke distributed and highly overlapping patterns 

of population activity in the piriform cortex (PCx)8. In addition, without a mechanism to 

timestamp when each smell was encountered, sequence-related ordinal information becomes 

inaccessible. This dilemma of maintaining both the content and the temporal context of an 

odor sequence represents the “what” and “when” questions of olfactory sequence memory.

Neural oscillations have been hypothesized to disambiguate and sustain sequence 

representations9–12. Specifically, an influential theoretical framework13–17 focused on 

theta-nested gamma oscillations18–21 has generated two predictions about the oscillatory 
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mechanisms underlying sequence memory. First, interference between individual memory 

items is minimized by temporally segregating stimulus-specific gamma activity12,21–25 

within distinct phases of a theta cycle, or across separate theta cycles. Second, items 

are retained via the sequential reactivation of each memory trace, with replay of the 

entire sequence temporally compressed into theta timescales to allow multiple items to be 

maintained in working memory. Whereas the rodent hippocampus literature has provided 

evidence for coordination of spatial (environment) memory representations across multiple 

theta timescales26–29, there is limited support for such an organization in human memory.

The olfactory system represents a unique model for elucidating the mechanisms that shape 

and sustain sequence memory. Foundational work in rodents established that hippocampal 

lesions induce selective deficits in memory for the temporal context of odors, while sparing 

memory for individual odors1,2. On the other hand, suppression of odor-specific delay 

activity in the rodent PCx impairs odor object memory30. This functional dissociation 

suggests that these structures must work together to retain the content and context of odor 

sequences. Anatomically, the PCx and hippocampus are disynaptically linked in the medial 

temporal lobe31, and both animal32 and human33,34 studies have revealed oscillatory phase 

synchrony between the PCx and hippocampus during odor sampling, highlighting a potential 

mode for inter-regional communication35. In the current study, we utilized simultaneous 

local field potential (LFP) recordings from the human PCx and anterior hippocampus 

(AH) to test the hypothesis that coupled theta and gamma oscillations support mnemonic 

representations of the “what” and “when” of odor sequences (Figure 1, S1; Table S1).

RESULTS

Behavioral performance

Subjects (N = 8) took part in a novel olfactory variant of the Sternberg three-item working 

memory task36(Figure 1A, B). On each trial, subjects smelled a novel sequence of three 

distinct cue odors (encoding period), randomly selected from a set of ten distinct odor types. 

After a short delay period of 7–10 seconds (maintenance), subjects were presented with a 

probe odor (retrieval) and asked whether it had appeared in the sequence (identity match 

judgment; chance accuracy 50%). If a match was reported, they were then asked whether 

the odor had appeared in the first, second, or third position (sequence position judgment; 

chance 33%). All subjects performed well above chance on both probe judgments (Figure 

1D, E), with the exception of one subject (black dot) who was retained for analysis given 

above chance performance on the sequence position judgment.

Coupled oscillations during encoding and maintenance of odor sequences

The conceptual framework of this study is that nested oscillations support the encoding 

and maintenance of odor sequences. The basic idea is that coupling between the phase of 

a low-frequency modulating oscillation and the magnitude of a high-frequency modulated 
oscillation, i.e., phase-amplitude coupling (PAC), creates a multi-dimensional scaffold for 

parsing both stimulus content and temporal context. Visual inspection of single trials 

revealed high-frequency oscillations occurring in the form of temporally brief, narrow-band 

bursts (Figure 2A), similar to previous observations during olfactory37,38 or mnemonic 
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processing23,39. To determine whether these bursts had a systematic relationship to the phase 

of an underlying low-frequency rhythm, we utilized a PAC metric that treats modulated 

oscillations as discrete events40. First, we identified periods of enhanced high-frequency 

activity (>2 s.d. above mean power during the pre-encoding baseline, obtained from the 

fixation cross period shown in Figure 1A) that was sustained for more than three cycles. 

Second, these oscillatory events were used as trigger time points to compute the average, 

peri-event raw LFP signal (modulatory signal), from which we quantified the modulation 
strength as well as the predominant frequency of the modulating oscillation (see analysis 

schematic in Figure S2). Third, significance was assessed with respect to a surrogate 

distribution constructed from randomly sampled trigger time points.

In each subject, we evaluated PAC independently for each narrow-band oscillation whose 

center frequencies tiled a wide range of candidate modulated frequencies (i.e., 20–200 Hz). 

During encoding and maintenance, we found significant coupling (Bonferroni-corrected 

across modulated sub-bands, p < 0.025) between oscillatory bursts in the 20–100 Hz range 

and theta (3–8 Hz) phase, in both PCx and AH (Figure 2B). Although 20–100 Hz includes 

frequencies that have been referred to as high beta or gamma, similar frequency ranges have 

been reported in past human studies of sequence memory18,41. For simplicity, we refer to 

this range as gamma. Moreover, in line with prior intracranial recordings41–43, each subject 

exhibited a diversity in the specific frequencies within the theta and gamma bands that 

were coupled (see e.g. in Figure S2A). From a theoretical perspective, such diversity is 

thought to be critical for a physiological substrate capable of representing multiple streams 

of information9,12.

To further demonstrate the task-dependent emergence of these nested oscillations, we 

conducted two additional analyses. First, using data from the power spectra of each task 

period44 (see single-subject e.g. in Figure S3A-B), we confirmed that there was a clear 

theta-band peak in both regions of interest (Figure S3C). Consistent with previous human 

data45, theta power during encoding (paired-sample t-test; PCx, t6 = 2.97, p = 0.03; AH, t5 = 

2.94, p = 0.03) and maintenance (PCx, t6 = 2.46, p = 0.049; AH, t5 = 2.86, p = 0.035) were 

each increased relative to the pre-encoding baseline (Figure 2C). Within subjects, the center 

frequencies of theta-band peaks were congruent with the modulating frequency at maximal 

coupling with gamma bursts (Figure S3D).

Second, we assessed for task-dependent changes in the strength of theta-gamma coupling 

during encoding and maintenance over baseline. To account for the fact that each subject had 

multiple theta-modulated sub-bands within the gamma frequency range, we combined data 

from task periods and baseline to identify the specific sub-band (for each subject) associated 

with the strongest modulation by theta phase (see Methods). In this way, we found that the 

modulation strengths of theta-coupled gamma bursts during encoding and maintenance were 

increased compared to during baseline (paired-sample t-test; PCx, t6 = 5.16, p = 0.002; AH, 

t5 = 7.57, p < 0.001; Figure 2D). Using a similar approach, we found that this task-related 

upregulation was further stratified based on behavior, with increased theta phase modulation 

of gamma bursts during identity match-correct vs. incorrect trials (PCx, t6 = 4.66, p = 0.004; 

AH, t5 = 5.74, p = 0.002). In contrast, there was no difference in the prevalence of gamma 

bursts for either of the above two contrasts (paired-sample t-test, p > 0.05; see Methods). 
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These results suggest that the strength of modulation of gamma bursts by the underlying 

theta oscillation, rather than the prevalence of gamma bursts per se, is more relevant for 

encoding and maintenance.

Encoding the “when” of odor sequences

Having established the task-dependent emergence of nested theta and gamma oscillations, 

we next investigated how these dual oscillations may underlie multiplexed representations 

of odor sequences during their initial encoding. Mechanistically, theta-gamma PAC opens 

up the possibility that the occurrence of gamma bursts at distinct phases of theta, could 

constitute representations of sequence position (i.e., “theta phase coding”)12,42. We expected 

to observe theta phase coding in PCx, where it would serve to mitigate interference between 

cue odors during their sequential encoding6–8, as well as in AH, given its involvement in 

mapping the temporal succession of events10,46,47.

First, we asked whether there was a consistent theta phase preference, across trials, for cue 

odors presented in each of the three sequence positions (independent of odor identity). To 

test this, for each cue odor trial, we binned stimulus-driven gamma power across theta phase 

(60 bins spanning [-π, π]) to generate a phase distribution of gamma. We then computed the 

trial-averaged phase distributions for each sequence position and identified significant phase 

clusters with respect to time-shuffled surrogate data (cluster-corrected across phase bins, p 
< 0.025). At the single-subject level, we found that odor-induced gamma activity for each 

sequence position was confined to phase-specific clusters of the theta cycle, in both PCx 

and AH (Figure 3A). Importantly, this effect was conditional on subsequent temporal order 

recall. At the group level, the number of sequence positions with significant phase clusters 

for each subject ([0, 1, 2, or 3]) was greater for sequence position correct vs. incorrect trials 

(Figure 3B): in PCx, 2.2 ± 0.3 (mean ± s.e.m.) vs. 0.8 ± 0.2 (paired-sample t-test, t5 = 

4.00, p = 0.01); in AH, 2.5 ± 0.2 vs. 0.8 ± 0.4 (t5 = 2.71, p = 0.04). Note that subjects had 

correctly answered the identity match judgment in both subsets of trials, and so the only 

behavioral difference was performance on the sequence position judgment.

Second, we asked whether preferred theta phases were sufficiently separable between the 

three sequence positions, which would be necessary to serve as robust representations of 

sequence position. For this analysis, we determined the overall phase preference of each 

single-trial gamma response to cue odors from the largest cluster of the corresponding theta 

phase distribution (see Methods). For each subject and region of interest, the separability of 

preferred theta phases was assessed between each unique pair of sequence positions (i.e., 

position 1 vs. 2, 2 vs. 3, 1 vs. 3). As in the above phase consistency analysis, the number 

of significant phase difference tests (Watson-William test, p < 0.05) per subject was greater 

during successful vs. unsuccessful sequence memory formation (Figure 3C): in PCx, 2.2 ± 

0.3 vs. 0.3 ± 0.3 (paired-sample t-test, t5 = 5.97, p = 0.002); in AH, 2.8 ± 0.2 vs. 0.3 ± 0.3 

(t5 = 7.32, p < 0.001). In sum, we showed that the position-dependent theta phase preference 

was both consistent across trials as well as separable in phase space. These data provide 

compelling evidence that theta phase coding is critical for encoding behaviorally relevant 

representations of olfactory temporal context, dissociated from odor object coding.
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Encoding the “what” of odor sequences

Next, we focused on whether coupled theta and gamma oscillations support the encoding of 

odor identity in PCx. PAC occurred not only at a variety of theta phases but also at a variety 

of modulating/modulated frequency combinations (within the theta and gamma bands, 

respectively), providing a multi-dimensional physiologic substrate for neural coding9,12. 

We hypothesized that both the frequency and phase specificity of odor-induced nested 

oscillations would be important for odor coding in PCx (i.e., a frequency and phase code). 

To test this, we used a machine learning approach to decode odor identity from each 

single-trial oscillatory response to cue odors.

To do this, each trial was represented by the overall pattern of theta-coupled gamma, in 

which the distribution of gamma power was computed across three axes (see single-trial e.g. 

in Figure S4A): (i) 20 sub-bands of the modulated gamma oscillation; (ii) 11 sub-bands of 

the modulating theta oscillation; and (iii) 60 phase bins of the modulating theta oscillation. 

We implemented a non-linear support vector machine48 (SVM) classifier (ten odor types, 

resulting in chance-level accuracy of 10%), using a leave-one-out cross-validation technique 

on the set of all cue odor trials. In this way, we found that odor-induced patterns of 

theta-coupled gamma in PCx were stimulus specific, with significant decoding achieved (p 
< 0.05 relative to surrogate distribution constructed by shuffling odor labels) in five of the 

seven subjects (dashed bars in Figure 4). We emphasize that odor identity could be decoded 

from PCx irrespective of specific sequence positions in which the cue odors were presented. 

In contrast, in parallel analyses, odor identity could not be reliably decoded from AH, with 

significant decoding limited to one out of six subjects.

To further corroborate that odor identity was represented in PCx with a frequency and 

phase code, we performed two control analyses. First, we systematically reduced the 

dimensionality of the original feature space (see Methods) to construct five alternative 

feature spaces depicting the pattern of theta-coupled gamma (see summary table in Figure 

4): for example, information on theta phase specificity (axis iii) was removed, leaving a 

feature space describing only the frequency specificity of theta-gamma PAC (Figure S4B); 

as another example, information on both gamma and theta frequency specificity (i and 

ii) were removed, resulting in a single theta phase distribution of gamma power (Figure 

S4E). To control for differences between feature spaces, surrogate distributions were built 

independently for each format, which were used to z-score normalize the observed raw 

decoding accuracies. At the group level, the normalized decoding accuracies with the full 

three-dimensional feature space were greater than for each of the reduced-dimension feature 

spaces (paired-sample t-test, p < 0.02; Figure 4), suggesting that both the frequency and 

phase specificity of theta-gamma PAC contribute to PCx odor coding.

Second, to demonstrate that the pattern of gamma with respect to theta carried the most 

relevant information for PCx odor coding, classification was attempted using the temporal 

pattern (relative to stimulus onset) of odor-induced gamma activity (see Methods). We also 

performed classification with the temporal pattern of theta, as well as of both theta and 

gamma (but without any explicit reference to cross-frequency relations). Model performance 

was likewise worse than with the three-dimensional feature space depicting theta-coupled 

gamma (paired-sample t-test, p < 0.05; Figure S4F).
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Finally, note that odor identity could not be decoded in any subject using a one-dimensional 

distribution of gamma power across theta phase, devoid of information on the specific 

sub-bands within theta and gamma that are coupled. In contrast, the demonstration of a 

consistent and separable theta phase preference depending on sequence position suggested 

a theta phase code of temporal order. In parallel decoding analysis, we found congruent 

evidence that, in both PCx and AH, sequence position could be decoded with the feature 

space depicting only the theta phase specificity of theta-gamma coupling (Figure S4G). 

Moreover, the addition of information on theta frequency and gamma frequency specificity 

(i.e, the three-dimensional feature space of theta-coupled gamma) did not lead to a 

significant difference in model performance (two-tailed paired-sample t-test; in PCx, t6 

= 1.33, p = 0.2; AH, t5 = 1.30, p = 0.3), suggesting that the pertinent features driving 

classification of sequence position was the theta phase specificity of theta-coupled gamma.

Reactivation of experienced odors during maintenance

Insofar as the identity of cue odors could be distinguished based on stimulus-driven patterns 

of theta-coupled gamma in PCx, we next asked whether these odor-specific patterns would 

be spontaneously reinstated during the delay period. Hence, in the following classification 

analyses, odor-induced spectral patterns from the encoding period continued to serve as the 

training set (using all cue odor trials irrespective of behavior), whereas theta-coupled gamma 

patterns extracted from the delay period served as the test set.

In an initial analysis, we computed the pattern of theta-coupled gamma for each 

maintenance trial using data from the entire epoch. Given that each sequence comprised 

three odors, model performance was compared for the three in-trial odors retained during 

the delay period vs. the remaining seven out-of-trial odors. Across all maintenance trials, 

we observed higher decoding accuracy for in-trial vs. out-of-trial odors (raw accuracy 12.5 

± 0.8% vs. 9.9 ± 0.4%; paired-sample t-test, t6 = 3.37, p = 0.01; Figure 5). Note that 

decoding of the out-of-trial odors was at chance level of 10%. Furthermore, if odor-specific 

delay activity is important for behavior, then on a subject-by-subject basis, a higher level 

of representational precision (as indexed by decoding accuracy) should be associated with 

enhanced performance on the odor identity match judgment. Indeed, decoding accuracy 

during successful odor identity maintenance (15.0 ± 0.7%) was greater than during all 

maintenance trials (t6 = 3.79, p = 0.009).

To ensure that these results were not driven solely by reverberations of the oscillatory 

response to the third cue odor (see legend of Figure 1A), decoding was performed for odors 

in each of the three positions separately (using the set of identity match correct trials), 

all of which resulted in higher accuracy compared to the out-of-trial odors (paired-sample 

t-test; first sequence position, t6 = 2.56, p = 0.04; second, t6 = 3.53, p = 0.01; third, t6 = 

3.55, p = 0.01). Decoding accuracies across the three positions were also no different from 

each other (p > 0.2). Together, these data suggest that experienced cue odors are reactivated 

in PCx during memory maintenance, with direct relevance for subsequent memory-guided 

judgments.
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Replay of experienced odor sequences during maintenance

Next, we tested whether the convergence of odor coding and temporal order coding would 

give rise to mnemonic representations that preserve both the “what” and “when” of odor 

sequences. In formulating this hypothesis, we drew from the rodent literature26–29, and 

from recent findings in humans49–52, showing endogenous reactivations of past sequential 

experiences in a temporallycompressed format, i.e., memory replay. We assessed for replay 

in PCx via time-resolved decoding of delay activity, whereby the classifier was again trained 

on cue odor-induced patterns of theta-coupled gamma, but now applied to each test instance 

(200-ms sliding windows with 90% overlap) spanning the maintenance period to depict the 

time course of reactivations for each of the three experienced cue odors. Visual inspection of 

these reactivation time series in individual trials revealed discrete neural events, temporally 

compressed across multiple successive theta cycles, in which spectral patterns specific to 

each of the recently encoded sequence odors were replayed in the same order as in the 

original experience (Figure 6A).

To provide statistical evidence for the presence of replay, we used the “sequenceness” 

metric49,53 to quantify the degree to which reactivations of each memory item reiterated 

the original 3-item sequence, in either the forward or reverse direction. Sequenceness was 

quantified across a range of potential time lags between successive cue odor reactivations 

([20, 600] ms), and significance was assessed relative to surrogate data generated from the 

four permuted 3-item (non-sequential) sequences (see Methods). At the group level, we 

found evidence for forward sequenceness with an inter-reactivation time lag of 160–260 

ms (Bonferroni-corrected across time lags, p < 0.05; Figure 6B). Insofar as cue odors were 

presented at 4–5 s intervals during encoding, replay demonstrated a 15–30 fold temporal 

compression. To validate that these effects were task-related, we repeated this analysis 

on data from the pre-encoding baseline period, immediately prior to experiencing odor 

sequences, and found no evidence for sequenceness (Figure 6C).

Although replay events could be identified in maintenance trials across all behavioral 

conditions, we asked whether the prevalence of replay events would be predictive of 

subsequent memory. Pooling trials across subjects, we found that replay events were more 

common prior to a correct performance on both the identity match and sequence position 

judgments (75% vs. 53%, Fisher’s exact test, p < 10−4). We assessed the robustness of this 

finding using a bootstrapping approach. Across 10,000 bootstrapped subsets of trials, we 

correlated the number of replay events with the percentage of correct trials. This procedure 

was repeated 1,000 times, generating a distribution of Pearson’s r (across repetitions, p < 

10−26; Figure 6D). We found that there was a positive correlation between the two variables, 

which was stable across repetitions (95% CI of r [0.12, 0.15]), confirming the statistical 

significance of the behavioral correlation.

Odor sequence replay is coordinated by the theta rhythm

During replay, the time lag between individual cue odor reactivations was concordant with 

the duration of a single theta cycle, indicating cycle-specific packaging of the “what” of odor 

sequences (as illustrated in Figure 6A). To address prior work showing that stimulus-specific 

neural activity during the delay period is also locked to distinct phases of theta19,21,54,55, 
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we asked whether the theta phase preference of cue odor-induced gamma during their 

encoding would be preserved during their cycle-specific replay. Note that these two effects 

can co-exist, as evidenced by organization of spatial memories in rodents across both phase 

and cycles26,28,29.

In order to determine the preferred theta phase of each cue odor reactivation, we first 

identified individual replay events for an inter-reactivation time lag of 200 ms (see Methods; 

Figure S5A). Each 600-ms replay event ([−100, 500] ms with respect to replay onset) 

was then partitioned into three 200-ms epochs, from which we derived the overall phase 

preference of each cue odor reactivation, closely mirroring the phase separability analysis 

during encoding (see illustration in Figure S5B-D). We found that the preferred theta phases 

of reactivations were separable for all three pairwise tests (position 1 vs. 2, 2 vs. 3, 1 vs. 

3) in six out of seven subjects (Watson-William test, p < 0.05). To confirm that this was 

not a trivial result of sampling theta phase values across the three contiguous epochs, we 

confirmed significance relative to a surrogate distribution of test statistics constructed from 

randomly sampled time windows throughout the included maintenance trials, which gave 

qualitatively identical results (p < 0.05; Figure S5E). These data suggest that during replay, 

memory items were separated across multiple theta timescales, i.e., across both phase and 

cycles.

On the other hand, information on the “when” of odor sequences was preserved by linking 

the three cycle-specific constituents across consecutive theta cycles, while recapitulating 

the original sequence order. The presence of replay, therefore, implies a degree of control 

over neural processing spanning multiple oscillatory cycles. Given the essential role of the 

hippocampus in temporal order memory1,2, we examined whether replay identified in the 

PCx would be associated with enhanced cross-structural theta-band synchrony with the AH, 

as a potential mode of inter-regional communication35.

We quantified theta synchrony during individual replay events with the phase-locking 

value56 (PLV). We generated a baseline distribution for each maintenance trial by computing 

PLV for randomly sampled time windows of the same 600-ms duration, which was then 

used to z-score normalize the observed PLV during replay events. The normalized PLV was 

greater than zero in all five subjects (one-sample t-test; PLV, t4 = 8.68, p < 0.001). These 

temporally specific increases in theta synchrony were independent of changes in theta power 

in either region: within-subject, cross-trial Pearson’s r of PLV vs. PCx theta power was 

not significant (r [−0.21, 0.12], p > 0.1), and likewise for AH theta power ([−0.12, 0.08], 

p > 0.3). Furthermore, to confirm that PCx-AH synchrony was not a general effect, we 

quantified theta phase synchrony between PCx and an anatomic control region, for which we 

used the lateral temporal cortex (LTC; Figure S1). At the group level, PCx-LTC synchrony 

was no different from zero (PLV, t6 = 0.45, p = 0.6). Finally, we confirmed the robustness 

of these results with an alternative measure of phase synchrony that is thought to be less 

sensitive to spurious increases from volume conduction, phase lag index57, which gave 

qualitatively identical results.
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DISCUSSION

The encoding and maintenance of a newly encountered temporal sequence of stimuli in 

working memory (say, the aroma of honeysuckle, followed by pine, followed by mint) 

poses unique challenges for the brain. Both the individual stimuli and their relative timings 

within the sequence need to be represented, while mitigating interference between memory 

items. Here we show that nested theta and gamma oscillations within and between PCx 

and AH independently code for both the content (“what”) and temporal context (“when”) 

of odor sequences. Moreover, we found that theta oscillations, widely implicated in both 

olfactory32,33,58 and mnemonic processing10,11,35,59, separate odor information across theta 

phase, as well as across consecutive cycles during their short-term retention. Critically, the 

robustness of this segregation across multiple theta timescales was predictive of subsequent 

recall performance.

Theta-gamma PAC as a multiplexed coding scheme for sequence representations

Theta-gamma PAC has been well documented in human intracranial studies of memory, 

both for individual items55,60–62 as well as for sequences18–20,63–65. Alongside these 

studies using visual stimuli, our data demonstrate that the functional significance of theta­

gamma PAC generalizes across sensory modalities. During encoding of individual items, 

the pattern of stimulus-induced spectral power (across one dimension, namely frequency) 

has been shown to convey information on the category, and even the identity of memory 

items24,25,42. Although substantial experimental and theoretical work has focused on nested 

oscillations as a basis of multi-item sequence memory, how they contribute to sequence 

coding per se remains unclear. From a computational perspective, cross-frequency PAC 

allows for a dramatic increase in neural coding space across multiple dimensions (e.g., 

modulating phase, modulating frequency, and modulated frequency), which may be critical 

for representations of more complex memories9,12. Indeed, we found that coupled theta and 

gamma oscillations serve as a physiologic substrate for multiplexed representations of odor 

sequences: sequence position was represented with a theta phase-based code, independent 

of odor type, whereas odor identity information was conveyed by both the frequency and 

phase-specific patterns of theta-coupled gamma, independent of sequence position.

Moreover, in PCx, odor-specific oscillatory patterns from the encoding period (used to train 

our classifier) generalized to delay period data, implying that mnemonic information can 

be represented in limbic-based cortical areas in a sensory-like format. Our data accord 

well with the broader human neuroimaging literature demonstrating that neural regions 

and representations engaged during online processing of visual and auditory streams also 

contribute to their working memory maintenance66–68. Furthermore, the precision (i.e., 

discriminability) of odor-specific delay activity in PCx had direct relevance for subsequent 

identity recall, which aligns well with recent work in rodents showing that piriform delay 

activity is causally important in short-term retention of olfactory content30.

Organization of odor information across theta phase and cycles

Our results build on accumulating evidence that theta oscillations have a central role in 

the coordination of neural activity such that multiple memory items sharing a common 
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neural substrate can be maintained in an active and discriminable state10,11. The underlying 

theoretical framework is that items are disambiguated by temporally separating the 

corresponding neuronal groups in theta phase space as well as across cycles13–17. Empiric 

support comes from rodent single-unit studies of spatial navigation, in which phase-specific 

spatial memory representations are concatenated across different phases within an individual 

theta cycle, giving rise to “theta sequences” that represent segments of the environment27. 

In turn, distinct cycle-specific representations are further organized across successive theta 

cycles26,28,29, which has been proposed to underlie memory maintenance of an extended 

experience by linking its constituent segments together in time10,11.

In humans, while segregation of memory items in theta phase space has been 

demonstrated19,20,54,55, there has been limited evidence for organization across multiple 

theta timescales. In our study, individual odor representations during replay were 

compressed into timescales concordant with a single theta cycle, which were in turn 

concatenated across consecutive theta cycles while preserving the temporal structure of 

the original perceptual experience. In this way, our data provide unique human evidence 

for segmentation of mnemonic information across theta cycles, suggesting that individual 

theta cycles may be a functional unit in organizing neural representations, conserved across 

species and across information domains11,69. It remains unclear what advantages this theta 

timescale organization confers on brain function and, ultimately, behavior. Answering such 

questions will require experiments probing their downstream implications. For example, in 

rodents, disruption of theta-timescale dynamics of head direction cells (without changing 

their tuning) is associated with loss of spatial periodicity in downstream grid cells26.

Our data are consistent with computational models in which sequential reactivation of 

memory items occurs at the timescale of theta cycles13–15. However, we note that our 

findings do not preclude the possibility that aspects of the encoded odor sequences are 

also being replayed within each theta cycle. As the feature space for odor identity was 

derived, in part, from the distribution of gamma with respect to theta phase, we identified 

replay using decoding time bins of 200 ms; hence, our methods were likely not optimal 

to resolve intra-cycle dynamics. Indeed, other models16,17 have proposed that individual 

mnemonic items are reactivated during single gamma cycles, with the entire sequence being 

replayed across multiple gamma cycles nested within a single theta cycle. These models 

predict that the ratio between the frequency of the modulated gamma oscillation and the 

frequency of the modulating theta oscillation would increase with memory load, ostensibly 

to accommodate more memory items. However, empiric studies have not consistently 

established this effect18,64,65. Additionally, it is important to note that the demonstration 

of memory item-specific neural activity occurring at distinct theta phase ranges19,21,54 does 

not necessarily imply replay of the entire sequence of items within individual theta cycles, as 

the phase preference can be expressed by neural activity within a single cycle or distributed 

across multiple cycles.

Replay in piriform coincides with cross-structural theta synchrony with hippocampus

A key question centers on how the brain is able to preserve the temporal context of 

sequentially-encoded odors during their replay. The hippocampus has long been implicated 
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as a major source of top-down signals that contribute to sequential reactivation of cortical 

representations46,47,70. In fact, coordinated sequential activity between the hippocampus and 

various cortical regions (entorhinal, visual, auditory)71–73 has been observed in rodents, 

whereby neural activity in each structure reflects the same awake experience, preserving 

the original spatio-temporal sequence of events. Critically, hippocampal activity has been 

shown to be predictive of subsequent cortical activity during coordinated replay, suggesting 

a direction of information flow from hippocampus to cortex72.

Phase synchrony constitutes a plausible physiologic mechanism supporting such long-range 

neural communication35. In particular, cross-structural synchrony in the theta band has been 

widely implicated during tasks in which information about objects/events must be integrated 

with information about their temporal or spatial contexts. For example, hippocampal­

PCx theta synchrony correlated positively with performance on an odor identification 

task requiring rodents to keep track of inter-stimulus time intervals32. Similarly, during 

spatial-memory guided tasks, hippocampal-prefrontal cortex (PFC) theta synchrony peaks 

as rodents approach choice points, and was predictive of subsequent performance74,75 

(see also, ref59). Taken together, our data highlight the important binding role of phase 

synchronization, whereby representations stored in specialized cortical regions (e.g., PCx for 

sensory objects, PFC for abstract task-related variables) are embedded in a task-dependent 

contextual map, allowing for flexible memory-guided behavior.

Online replay supports working memory maintenance

During spatial navigation, two types of sequential activity are generated in the rodent 

hippocampus, either during periods of pronounced theta oscillations26–29 or sharp-wave 

ripples (SWR)71,72,76. Theta sequences are observed while the animal is actively engaged 

in spatial navigation, i.e., in the online state. In contrast, SWR-related sequences, which 

are generated over even more compressed timescales (50–120 ms), have been observed in 

both online and offline states (i.e., during sleep or quiet rest). Furthermore, whereas the 

former has been mainly described as forward oriented, the latter exhibits both forward 

and reverse directionalities. While further research is needed to confirm any potential cross­

species homologies, three features of the online replay identified in our study provide strong 

parallels and convergence with rodent theta sequences: first, replay emerges at the timescale 

of theta; second, replay exhibits forward directionality; and third, replay coincides with 

periods of enhanced synchrony with the hippocampal theta rhythm.

Although theta sequences in rodents have classically been proposed to support sequential 

memory encoding10,17, they can also reflect future goal trajectories28,77, suggesting a role 

in planning and prediction. Hence, it remains unclear whether the behavioral impairment 

observed in rodents during spatial navigation tasks with disruption of theta sequences is 

primarily related to a deterioration in memory processes, in decision making, or both78. 

Human research represents an opportunity to generate complementary data as subjects 

are able to verbally report their perceptions and experiences. Notably, the emerging 

human replay literature has demonstrated sequential reactivations of past experiences 

primarily in the offline state, following complex planning tasks49–52. In our study, online 

replay identified during working memory maintenance was predictive of subsequent recall 
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performance on a trial-by-trial basis, providing a novel link between endogenous replay and 

short-term memory retention in the human brain.

STAR METHODS

RESOURCE AVAILABILITY

Lead contact—Andrew I. Yang (iyang.and@gmail.com).

Materials availability—This study did not generate unique materials.

Data and code availability—Data are uploaded to a public repository (see Key 

Resources Table). Algorithms and codes used in analysis are available as open source 

as indicated in the STAR Methods (see Key Resources Table). Additional information is 

available upon reasonable request from the lead contact.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We recorded electrophysiological data from eight subjects (three males, five females; age 35, 

34, 35, 27, 28, 40, 57, 39 yo) with intractable epilepsy who were implanted with intracranial 

depth electrodes for pre-surgical localization of seizure foci. Data were recorded from 

Northwestern Memorial Hospital (NMH) and Hospital of the University of Pennsylvania 

(HUP). Informed consent was obtained from all subjects in accordance with the local 

Institutional Review Boards.

METHOD DETAILS

Data acquisition—Electrode placement decisions were made exclusively on clinical 

grounds, and typically focused on areas in the medial temporal lobe. Overall, three 

subjects had bilateral medial temporal lobe electrodes, four subjects had right-sided 

electrodes only, and one had left-sided electrodes only. Depth macro-electrodes implanted 

at NMH (Integra LifeSciences, Plainsboro, NJ; Model 15819D508) and HUP (Adtech AG, 

Frankfurt, Germany; Model SD10R-SP05X-000) had similar dimensions. Each lead had 

8–12 cylindrical platinum electrode contacts, with 2.4–2.5 mm of exposed surface, and a 

2.5–2.6 mm gap between contacts. Data were acquired using a 128-channel Nihon Kohden 

recording system (Tokyo, Japan) at NMH and a 256-channel Natus recording system (Natus 

Medical Incorporated, Pleasanton, CA) at HUP. Signals were sampled between 500–2000 

Hz at the physician’s discretion for each subject across sites. Respiratory airflow data were 

simultaneously collected using a piezoelectric pressure sensor attached to a nasal cannula 

(Salter Labs, Vista, CA).

Recording locations—In addition to the human olfactory cortex (i.e., piriform cortex 

[PCx]), we recorded from the anterior hippocampus (AH). Overall, seven subjects had 

PCx electrode coverage, six had AH coverage, and five had coverage in both regions. 

Our choice to focus on the anterior, as opposed to posterior, hippocampus was based 

on the following considerations: 1) converging evidence suggests that the anterior/ventral 

hippocampus in primates/rodents are selectively involved in non-spatial cognitive processes, 

including higher-order relational memory79,80; 2) this sub-region is also selectively involved 
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in processing odor information33,34,81,82; 3) previous empiric support for oscillations 

underlying human sequence memory were based on recordings primarily from the AH18.

Electrode selection—After co-registering the pre-operative high-resolution MRI with 

the post-operative CT using a linear affine registration83, electrodes were localized in 

native space, and then transformed to Montreal Neurological Institute (MNI) space for 

across-subject visualization on an average MNI-152 brain. Electrodes in PCx or AH were 

first determined based on visual comparison with manually-drawn regions of interest in 

MNI space. Subsequently, to control for variability in electrode coverage, for each subject 

we chose two PCx electrodes closest to the sub-region of greatest activation during odor 

processing, as identified in a meta-analysis of human neuroimaging studies81. We likewise 

chose, in each subject, two AH electrodes with the largest theta-gamma PAC strength 

during task periods (see Phase-amplitude coupling). Previous recordings in the human 

hippocampus have shown theta-gamma PAC during working memory processes18,20,62,64. 

Although primarily observed in the anterior aspect of the hippocampus, this measure has 

not been further localized to any specific anatomic sub-region. Finally, we chose the lateral 

temporal cortex as an anatomic control region, for which we selected, in each subject, the 

most superficial electrode on the same lead as for the PCx/AH electrodes (Table S1).

Behavioral paradigm—We devised an olfactory version of the three-item Sternberg 

working memory task36, in which three odor items (cues) were presented serially, followed 

by a brief delay, and concluded with a test odor (probe). Odors were selected pseudo­

randomly from a set of ten unique and discriminable odor stimuli (anise oil, cinnamon, 

coffee, honeysuckle, mint, orange, peanut butter, pine, strawberry, vanilla) and were 

administered via a custom-built, twelve-channel olfactometer, with two additional channels 

delivering clean air. The olfactometer was controlled using a computer equipped with 

MATLAB (MathWorks, Natick, MA), and the experiment was designed and administered 

using the MATLAB package PsychToolbox84.

Each trial began with a fixation cross lasting 4–5 seconds (pre-encoding baseline). 

Subsequently, three different odor cues were presented sequentially (encoding). For each 

odor, subjects were cued to sniff, sampling each odor for one second, with 3–4 seconds 

between odor deliveries to allow enough time for natural expiration. After presentation of 

the third cue odor, a retention period lasting 7–10 seconds was observed (maintenance), after 

which subjects received the probe odor (retrieval). In 50% of trials, the probe matched one 

of the three cues, for which the probe matched the cue odors in each of the three sequence 

positions in roughly equal proportions. In the remaining 50% of trials, the probe was a novel 

odor not matching any of the in-trial cues. Moreover, across the experiment, each unique 

odor type was presented in roughly equal numbers in each of the three cue positions, as well 

as across probes.

Subjects performed up to two judgments on the probe odor. First, subjects selected whether 

the probe odor was novel or previously encountered (identity match judgment), where an 

accuracy of 50% would suggest no recollection/random guessing. The behavioral outcomes 

for the first probe judgment were: 1) hit (stating “yes” when the probe was in the sequence); 

2) false alarm (FA; “yes” when the probe was not in the sequence); 3) correct rejection (CR; 
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“no” when the probe was not in the sequence); or 4) miss (“no” when the probe was in the 

sequence). Second, if subjects responded that the probe matched one of the cues (hit or FA), 

they then reported whether the first, second, or third cue odor in the sequence matched the 

probe (sequence position judgment; chance level accuracy 33%). As there was no ground 

truth for the sequence judgment after a FA response, there were two behavioral outcomes 

after the second probe judgment: 1) hit trials with correct sequence position judgment; or 2) 

hit trials with incorrect position judgment. If the subject reported that the probe was novel 

(CR or miss) the experiment moved to the next trial. Each subject performed a total of 50–60 

trials.

Identity match accuracy was defined as the percentage of hit or CR responses across all 

trials, and sequence judgment accuracy as the proportion of hit + sequence correct responses 

among all hit trials. To determine identity match accuracy across subsets of trials in which 

the probe odor matched the cue odor presented in the first, second, or third sequence 

positions, we calculated, within each subset of trials, the percentage of hit responses 

among all hit or miss trials. Consistent with prior human behavioral data5, two subjects 

demonstrated a recency effect on the odor identity match judgment (accuracy for trials in 

which the probe matched the first or second cue odors vs. the third; S7, 31% vs 78%, 

Fisher’s exact test, p = 0.04; S8, 44% vs 100%, p = 0.008), whereas no subject demonstrated 

recency on the sequence position judgment. Notably, the one (and only) subject who 

performed near chance level in the odor identity match judgment (S7) demonstrated recency, 

suggesting that this subject was not merely guessing. Moreover, electrophysiologic data 

from S7was limited to AH, i.e., this subject had no electrode coverage of PCx.

Data pre-processing—All data were analyzed offline in MATLAB using custom scripts 

in conjunction with functions from the EEGLAB toolbox85. Data were down-sampled to 

500 Hz (after an anti-alias filter), and then high-pass filtered at 0.1 Hz using a two-way 

least-squares zero phase-lag finite impulse response (FIR) filter (eegfilt.m from EEGLAB). 

Data were then notch-filtered at 60 Hz and its harmonics to remove line noise using a 

second-order infinite-impulse response (IIR) filter. All channels were visually inspected. 

Noisy and flat channels in which the mean magnitude of the signal (mean of the absolute 

value of raw amplitudes) was 3 s.d. above or below the mean across channels were 

rejected, as well as channels with abnormal or interictal spikes. We also eliminated all 

extra-parenchymal electrodes based on visual inspection in native space. After electrodes 

rejection, each remaining electrode’s LFP signal was then referenced to the common average 

(i.e., average signal across all electrodes) to reduce common noise (e.g., from volume 

conduction and remote field effects). While bipolar referencing is superior to common 

average referencing in reducing inter-electrode signal correlation from common noise, our 

choice of common referencing was motivated by the fact that bipolar referencing can lead to 

phase distortion, signal mixing, and signal cancellation86,87.

Data during the encoding and retrieval periods were aligned to the onset of sniff in the 

presence of odor stimuli to three seconds after. Data from the maintenance period were 

aligned from one second after the end of the inhalation phase in response to the third 

cue odor to four seconds after. An equivalent-length baseline period was defined for each 

trial, from the time period prior to presentation of the first cue ([−3.5, −0.5] s relative to 

Yang et al. Page 15

Curr Biol. Author manuscript; available in PMC 2022 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



onset of first cue odor). All analyses were conducted with the 3-s epochs defined above, 

unless otherwise noted. We then performed artifact rejection at the trial level, using 100-ms 

sliding windows (with 50% overlap). Any trials containing a bin in which the mean signal 

magnitude exceeded 5 s.d. above or below the mean across bins and trials (within electrodes) 

were rejected. Across subjects, 86.7% ± 2.7% [77, 95.5] % (mean ± s.e.m. [range]) of trials 

were retained after trial rejection from PCx electrodes, and 92.2% ± 1.9% [85, 97.3] % of 

trials were retained from AH electrodes.

Respiratory data were low-pass filtered at 10 Hz and manually inspected. Odor stimulus 

trials (cue and probe odors) in which inspiration was sub-optimal were rejected if any of 

the following conditions were met: 1) overlap between odor and inhalation < 100 ms; 2) 

peak velocity of inspiration < 5th percentile of the distribution of peak velocities across all 

odor trials (within subjects); 3) two successive rapid sniffs taken during the 1-s odor delivery 

period.

QUANTIFICATION AND STATISTICAL ANALYSIS

As noted above in Recording locations, data were acquired from a relatively small number 

of subjects. Therefore, we focused our analyses on demonstrating the consistency of our 

findings across subjects, with the use of within-subject statistical tests. Furthermore, all 

group-level results were based on one data point from each subject. Trials were combined 

across the pair of electrodes in each region of interest for within-subject analyses, unless 

otherwise noted. Finally, all statistical tests were two-tailed with α = 0.05 or one-tailed with 

a corrected α.

Oscillatory power—Theta-band power was computed from the spectrograms (pwelch.m) 

of each task period (cue odors 1, 2, 3, maintenance, probe odor), using a published method 

“fitting oscillations & one over f”, which iteratively identifies oscillatory peaks and extracts 

their height with respect to the aperiodic 1/f component44 (see Figure S2A-B). This data­

driven method does not require any a priori assumptions regarding the frequency bands 

of interest. First, the aperiodic portion was approximated with a least-squares linear fit in 

log-log space, with a fitting range of 0.1 to 40 Hz to exclude 60 Hz line noise, as well 

as to stay below the bend in the aperiodic signal at 70 Hz identified in human intracranial 

data88. The aperiodic portion was then removed, and the residual signal (assumed to be 

mix of oscillatory peaks and noise) was z-score normalized with respect to itself. From the 

residual signal, an oscillatory peak was identified at the local maximum only if it met a 

threshold criterion of 2 s.d. greater than the mean. The oscillatory peak, if any, was then 

fitted with a Gaussian, which was removed from the residual signal. This process is repeated 

until all supra-threshold oscillatory peaks were identified and removed. We then returned to 

the raw spectrogram, from which all Gaussian fits of oscillatory peaks were removed, and 

the final fit of the aperiodic component was repeated in log-log space. Finally, we repeated 

the procedure to identify oscillatory peaks with the final fit of the aperiodic component. The 

overall fit of the spectrogram (both the aperiodic portion and any oscillatory peaks) was 

statistically assessed with the F-test, which were highly significant for all task periods in all 

subjects (PCx, p < 10−16; AH, p < 10−11). From the spectrograms of each task period, we 

reported the power (local maximum of residual signal) and center frequency of the largest 
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oscillatory peak, if any. Three subjects had secondary peaks: in PCx, S3 had a 12 Hz peak 

during cue 2, and S4 had 8–9 Hz peaks during cue 2/3/probe; in AH, S6 had 6–7 Hz peaks 

during all task periods. Importantly, in each of these instances, there was a primary peak in 

the theta frequency range.

For single-trial depictions of spectral power across time and frequency, raw traces were 

filtered between 1 and 200 Hz at 60 center frequencies increasing logarithmically (50% 

overlapping bandwidths), again using a zero phase-lag FIR filter. Subsequently, the Hilbert 

transform was applied to extract the instantaneous amplitude at each time point and 

frequency bin. We then z-score normalized power in each frequency with respect to the 

pre-encoding baseline.

Phase-amplitude coupling—Phase-amplitude coupling (PAC) was quantified with 

a published “oscillation-triggered coupling” method40,42 (see Figure S2), which offers 

the unique advantage of accounting for amplitudemodulated high-frequency oscillations 

occurring in the form of discrete neural events (as in our data; see Figure 2A). Specifically, 

the statistical relationship between the timing of such events to the phase of concurrent 

modulating low-frequency oscillations was quantified with the modulation strength metric. 

Additionally, this method allows identification of the predominant modulating and 

modulated frequencies across a broad range of candidate frequencies (1–10 Hz and 20–200 

Hz for modulating and modulated oscillations, respectively).

For each subject × region of interest, PAC was evaluated independently for each narrow­

band oscillation whose center frequencies spanned the modulated frequency range of interest 

(42 sub-bands from 22 to 186 Hz with 4 Hz steps; bandwidths linearly increased from 

6 to 50 Hz). Power was extracted from the bandpass-filtered signals of each trial, which 

were then z-score normalized with respect to the pre-encoding baseline. We then performed 

the following steps (for each evaluated modulated sub-band) to quantify the modulation 

strength and determine the frequency of the associated modulating oscillation. First, we 

identified periods of enhanced activity (max normalized power > 2 s.d. from mean power 

during pre-encoding baseline) that was sustained for more than three oscillatory cycles 

(onset/offset defined as 10% of max power). Second, the center times of all identified 

oscillatory events were used as trigger time points to extract the peri-event raw LFP signals 

([−1, 1] s), which were averaged across events to compute the modulatory signal. The 

max peak-to-trough distance of the modulatory signal was treated as the raw modulation 

strength. Third, surrogate data was generated by repeating the above procedure at trigger 

time points randomly selected throughout the experimental trace (N = 1,000), with statistical 

significance achieved if the observed raw modulation strength was > 99.94th percentile 

of the surrogate distribution (corresponding to a one-tailed threshold of p < 0.025 after 

Bonferroni correction across the 42 modulated sub-bands). PAC strength was reported after 

z-score normalizing the observed raw modulation strength with respect to the surrogate 

distribution. Forth, the spectrogram of the modulatory signal was inspected to identify the 

predominant modulating frequency, if present. To do this, we followed the same procedure 

used to identify oscillatory peaks in the power spectra of each task period (see Oscillatory 

power). After removal of the aperiodic portion across the fitting range of 0.1 to 40 Hz, 

a modulating frequency was determined if 1) the largest peak was within the modulating 
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frequency range of interest (1–10 Hz), and 2) if the maximum met the same threshold 

criterion (i.e., 2 s.d. greater than the mean of the normalized residual signal).

We performed the following comparisons of theta-gamma PAC strength: 1) encoding (cue 

1/2/3) and maintenance vs. pre-encoding baseline; 2) during encoding and maintenance, 

identity match-correct (hit + CR) vs. incorrect (FA + miss) trials. We combined trials 

across encoding and maintenance to ensure a sufficient number of events for non-parametric 

statistics using surrogate data, which for LFP data is ≈ 70 events per condition40. Moreover, 

as there were more than one significant theta phase-modulated sub-band within the gamma 

frequency range (for each subject × region of interest), we performed the above two 

comparisons for the modulated sub-band associated with the strongest modulation by 

theta phase (determined independently for each subject × region of interest). Importantly, 

selection of the modulated sub-band was conducted on the combined set of oscillatory bursts 

identified (with the power and duration criteria) across the two conditions being compared 

(i.e., baseline + task periods for the first comparison, or identity-correct + incorrect task 

periods for the second). The specific modulated sub-bands selected in this way were all 

within the gamma frequency range: in PCx, there were 115 ± 11, 293 ± 51, and 95 ± 15 

gamma bursts identified during baseline, identity-correct task periods, and identity-incorrect 

task periods, respectively; In AH, there were 138 ± 26, 377 ± 67, and 128 ± 25 gamma 

bursts. To compare modulation strengths of gamma bursts between the two conditions, we 

then re-computed modulation strengths (for the selected modulated sub-bands) separately 

for gamma bursts detected during each condition. For example, for the first comparison, 

modulation strength was computed separately for gamma bursts during task periods vs. 

during baseline. To control for differences in the number of gamma bursts across the two 

conditions, we used a resampling procedure (N = 1,000), whereby at each iteration we 

randomly sampled the minimum number of gamma bursts. Likewise, in generating surrogate 

data, we randomly sampled the same number of trigger time points at each iteration. Burst 

duration was reported based on the same set of modulated sub-bands, selected for each 

subject × region of interest as described above. Of note, the average prevalence of gamma 

bursts, quantified with the temporal rate of occurrence, was as follows: in PCx, 0.61 ± 0.04 

s−1, 0.59 ± 0.05 s−1, 0.59 ± 0.05 s−1, and 0.61 ± 0.05 s−1 during baseline, task periods, 

identity-correct task periods, and identity-incorrect task periods, respectively; in AH, 0.59 ± 

0.04 s−1, 0.58 ± 0.04 s−1, 0.58 ± 0.04 s−1, and 0.55 ± 0.04 s−1.

Theta phase coding of sequence position during encoding—We evaluated 

whether gamma activity induced by cue odors occurred at distinct phases of the underlying 

theta oscillations depending on its position within the 3-item sequence. For each cue 

odor trial, we computed the distribution of gamma power across theta phase (60 non­

overlapping phase bins spanning [−π, π]). To focus on stimulus-driven dynamics, we 

z-score normalized odor-induced gamma with respect to the pre-stimulus baseline ([−1, 

0] s), and used data from the first 1.5 seconds after stimulus onset. We then assessed both the 

cross-trial consistency of preferred theta phases within each sequence position, as well as the 

separability of preferred theta phases between each unique pair of sequence positions (i.e., 

position 1 vs. 2, 2 vs. 3, 1 vs. 3). We note that PCx data from one subject (S4) was excluded 
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for these analyses due to an insufficient number of trials (< 5 trials across sequence position 

× behavioral condition).

To assess cross-trial phase consistency, we averaged the theta phase distributions across cue 

odor trials within each of the three sequence positions. We then identified significant clusters 

of odor-induced gamma activity across contiguous theta phase bins, indicating a consistent 

theta phase preference across trials, using a surrogate data approach with cluster-level 

statistics89. Surrogate data was generated by shuffling the gamma power time series for 

each trial across time points while the theta phase time series was kept as is, allowing us 

to selectively alter the relation between gamma power and theta phase. This procedure was 

repeated 1,000 times, and the resulting surrogate distribution was used to z-score normalize 

the trial-averaged phase distribution of gamma power within each phase bin. Gamma power 

in each bin was then thresholded at 1 s.d., and positive cluster-level z-statistics were 

compared with respect to the surrogate distribution of maximum cluster-level z-statistics 

(one-tailed, p < 0.025). For behavioral correlations, we compared data for sequence correct 

(PCx, 18.14 ± 1.42 trials across all three sequence positions; AH, 19.06 ± 1.38) vs. incorrect 

trials (PCx, 12.81 ± 1.69; AH, 13.44 ± 1.79). To control for the different number of trials 

across behavioral conditions, we resampled the minimum number of trials 1,000 times to 

compute the trial-averaged phase distribution. We note that for each region of interest × 

behavioral condition, there was only up to one significant phase cluster for each subject × 

sequence position, with the exception of the following three instances: for sequence correct 

trials in AH, S2 had a secondary cluster for the second sequence position; for correct trials in 

PCx, S3 had a secondary cluster for the second position; for incorrect trials in PCx, S6 had a 

secondary cluster for the second position.

To assess the separability of preferred theta phases between sequence positions, i.e, how 

distinguishable the preferred phases were within theta phase space, the overall phase 

preference of odor-induced gamma was derived for each individual trial. To do this, we 

thresholded normalized gamma power in each single-trial theta phase distribution at 1 

s.d., and then computed the weighted circular mean of the phase cluster with the largest 

cluster-level z-statistic, the angle of which was treated as the overall preferred phase. We 

applied the Watson-William test (a circular analogue of the two-sample t-test90) to compare 

the preferred theta phases between each unique pair of sequence positions. To control 

for different trial numbers across sequence position × behavioral condition, we used a 

resampling procedure (N = 1,000), and performed a parametric test on the mean F-statistic 

obtained across resampled sub-sets of trials. Importantly, at each resampling, the Watson­

William test was only conducted if the mean resultant length of the phase values for each of 

the two sequence positions being compared was greater than a pre-specified threshold that 

was more stringent for smaller sample sizes (0.45 if ≥ 11 samples per sequence position, 0.5 

if 7–10 samples, 0.55 if < 5 samples90). This was necessary to prevent spurious detection of 

phase differences between sequence positions occurring in the absence of a consistent phase 

preference (across trials) for each sequence position.

Decoding odor identity from cue odor-induced patterns of theta-coupled 
gamma—To investigate whether patterns of cue odor-induced theta-coupled gamma in 

PCx were stimulus-specific, we performed decoding of odor identity from individual cue 
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odor trials. Each cue odor trial was represented by the overall pattern of theta phase-coupled 

gamma power, by computing the distribution of modulated oscillation power across phases 

of the modulating oscillation for all pairs of modulating and modulated frequency sub-bands 

spanning the theta and gamma frequency ranges, respectively (see Figure S4A). In this way, 

each cue odor trial was represented with 13,200 features describing gamma power across 

three axes: i. 20 sub-bands of the modulated gamma oscillation (same center frequency/

bandwidth as for the PAC analysis), ii. 11 sub-bands of the modulating theta oscillation 

(step 0.5 Hz, bandwidth 2 Hz), iii. 60 non-overlapping phase bins of the modulating theta 

oscillation. The resultant pattern was z-score normalized with respect to itself to control for 

absolute differences in gamma power across trials. Successful decoding of odor identity with 

this feature space would be consistent with a frequency and phase code for odor identity.

Decoding was performed using a multi-class (ten-way) non-linear support vector machine 

(SVM) with a radial basis function kernel48. As cue odors were randomly selected from 

a set of ten unique odor types, chance-level accuracy was 10%. Following our previous 

study33, we accounted for the variable electrode sampling, across subjects, of each region of 

interest, by developing classifier models independently for each electrode. For each subject 

× region of interest, we reported data from the electrode with the higher decoding accuracy 

(of the pair of electrodes in each region of interest). Model accuracy was determined using 

a leave-one-out cross-validation technique to train on all but one random set of trials from 

each of the ten cue odor identity types, and tested on the left-out set of trials. We repeated 

this procedure 1,000 times, and reported the mean of the resulting distribution of decoding 

accuracies. At each iteration, the minimum number of trials across odor identities was 

sampled for the training set to ensure that the classifier would not be biased by sample size.

To justify the format of our feature space, we compared model performance with alternate 

feature spaces depicting the pattern of theta-coupled gamma, in which information along 

one or two of the three axes were systematically removed (see Figure 4, S4B-E). The 

resulting four feature spaces depicted the pattern of theta-coupled gamma across: 1) gamma 

frequency (axis i) and theta frequency (ii), which was therefore devoid of information on 

the theta phase specificity of theta-gamma coupling; 2) gamma frequency (i) and theta 

phase (iii), without information on the theta frequency specificity of coupling; 3) theta 

frequency (ii) and theta phase (iii), without information on the gamma frequency specificity 

of coupling; 4) theta phase (iii), without information on both the theta frequency and gamma 

frequency specificity of coupling. Note that the feature space #4 corresponds to the theta 

phase distribution of gamma power utilized in the previous analysis of sequence position 

(see Theta phase coding of sequence position during encoding), which was also used to 

perform a similar decoding analysis of sequence position (detailed in the next section). 

Dimensionality was reduced in one of two ways. First, gamma power was averaged across 

the axis/axes that were removed. For example, for feature space #3, we averaged gamma 

power across the 20 sub-bands of gamma for each of the 660 pairs of theta frequency 

sub-band × theta phase bin. Note that the total number of features would be reduced with 

this approach. Second, specifically for feature space #1, we also constructed the feature 

space by shuffling gamma power across theta phase bins within each of the 220 phase 

distributions (for each pair of theta sub-band × gamma sub-band). Note that this method 

preserves the overall size of the feature space. Finally, as an additional control feature space, 
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we shuffled gamma power across all three axes in two steps: phase distributions were first 

shuffled within itself, and then these phase distributions were further shuffled across the 220 

pairs of theta sub-band × gamma sub-band.

Whereas each of the above feature spaces depicts the pattern of gamma power with respect 

to theta, we also performed classification with the temporal pattern of cue odor-induced 

oscillations. We extracted the pattern of spectral power across time and frequency in the 

theta band alone, in the gamma band alone, and in both the theta and gamma bands. We 

used the same frequency parameters as in the single-trial depictions of spectral power across 

time and frequency (see Oscillatory power), resulting in 12, 18, and 30 frequency sub-bands 

for theta, gamma, and theta + gamma, respectively. Note that in the third feature space, 

there was no explicit link made between the magnitude of gamma activity and theta phase. 

Following our previous study33, time-frequency features corresponded to the mean power in 

each frequency sub-band spanning theta and/or gamma, calculated across non-overlapping 

10-ms windows spanning the 3-s post-stimulus epoch.

For statistical testing, surrogate data was generated by shuffling odor identity labels across 

cue odor trials (N = 1000). Specifically, at each iteration, we built a classifier model with 

permuted labels, and then decoded for the permuted labels in the left-out set of trials. 

Importantly, in generating surrogate data, the feature space of each trial was not altered. 

Significance was assessed (within electrodes) by evaluating the proportion of accuracies 

from the surrogate distribution that exceeded the true model accuracy (one-tailed, i.e., 

significant if > 97.5th percentile of surrogate distribution). To control for differences across 

features spaces (e.g., the number of features), we constructed surrogate distributions for each 

feature space separately, which were used to z-score normalize the observed raw decoding 

accuracies, allowing us to compare classification results across features spaces.

We tested whether cue odor identity decoding accuracy was different across behavioral 

conditions. To assure a sufficient number of trials (≥ 5) across odor identity × behavioral 

condition with electrode-level analysis, we compared decoding accuracy for identity-correct 

trials vs. all trials. Across subjects, there were a total of 12.69 ± 0.84 cue odor trials per odor 

type, of which 9.76 ± 0.69 were correctly encoded. We found no statistical difference across 

behavioral conditions (paired-sample t-test, t6 = 0.5, p = 0.6), and therefore used the set of 

all cue odor trials for the current as well as subsequent odor decoding analyses.

Decoding sequence position from cue odor-induced patterns of theta-coupled 
gamma—We investigated whether sequence position could be decoded from single-trial 

oscillatory responses to cue odors in the PCx or AH (chance level = 33%), mirroring the 

previous odor identity classification analysis. For the set of sequence position correct cue 

odor trials, each trial was represented by the pattern of theta-coupled gamma across theta 

phase (axis iii) only (i.e., feature space #4 above). To provide further evidence for a theta 

phase code of temporal information, sequence position decoding was also performed using 

the full three-dimensional feature space depicting the pattern of theta-coupled gamma across 

gamma frequency (i), theta frequency (ii), and theta phase (iii)
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Decoding odor identity from theta-coupled gamma patterns during 
maintenance—We used the model trained with cue odor-driven patterns of theta-coupled 

gamma to assess for reactivations of oscillatory patterns specific to the experienced in-trial 

cue odors during maintenance. Specifically, the classifier was trained with data from all cue 

odor trials (irrespective of behavior), and then tested on patterns of theta-coupled gamma 

extracted from individual maintenance trials. As in the previous classification analysis, at 

each iteration, we resampled the minimum number of cue odor trials across odor types 

to construct the training set. We then tested on a random subset of maintenance trials 

comprised of the same number of instances for each odor identity × behavioral condition 

(identity-correct trials vs. all trials). As there were three in-trial odors that are retained 

during each individual maintenance trial, at each iteration, decoding was performed for 

the identity of cue odors presented in each of the three sequence positions separately. 

Classification was also attempted for the identity of one of the remaining seven out-of-trial 

odors, in which the odor identity label for each trial was chosen randomly at each iteration 

while keeping the total number of instances per odor identity the same as for decoding of 

in-trial odors. This allowed comparison of model performance with respect to the cue odors 

presented in each of the three sequence positions or with respect to all in-trial odors (by 

taking the average of the decoding accuracies obtained across the three sequence positions).

Statistical test of replay—We implemented a time-resolved decoding analysis of PCx 

delay activity to determine if cue odor reactivations reiterated the temporal order of the 

originally-experienced sequence. In the above classification analysis of delay activity, theta­

coupled gamma patterns for each maintenance trial were extracted from data across the 

entire 3-s epoch. In contrast, for the current analysis, we calculated features at time points 

spaced 20 ms apart, using time windows of 200 ms (90% overlap, resulting in 151 time 

windows). We used the SVM classifier to estimate the class membership probability91 

of each tested time instance for each of the odor identity classes of the three in-trial 

cue odors, which we refer to as reactivation strength (given ten total odor type classes, 

chance-level reactivation strength = 10%). Hence, for each maintenance trial, we obtained 

a 151 × 3 reactivation matrix X. Whereas the raw reactivations strengths were used in 

all analyses, for visualization of individual replay episodes, we z-scored normalized the 

reactivations strengths in X with respect to itself, for each of the three cue odors separately. 

All maintenance trials were used for the test set for this analysis.

We quantified “sequenceness,” or the degree to which neural representations followed a 

particular sequence, based on published methodology49,53, described here in detail. First, 

transition from a neural representation of the first cue odor to that of the second cue odor 

(S1→S2), and from that of the second cue to the third cue (S2→S3) can be represented with 

the transition matrix Tf:

Tf =
0 1 0
0 0 1
0 0 0
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The full-length original sequence (S1→S2→S3) can then be represented with a transition 

matrix that is simply the second power of Tf :Tff = Tf
2. We were also interested in the reverse 

sequence transitions (S3→S2, S2→S1), which can be represented by Tr as follows:

Tr =
0 0 0
1 0 0
0 1 0

The transition matrix Trr for the full reverse sequence S3→S2→S1 is again equal to Tr
2. 

Note that Tr and Trr are simply the transpose of Tf and Tff, respectively. As controls, we 

also computed sequenceness for the remaining four unique (non-sequential) permutations of 

length-3 transitions: S1→S3→S2; S3→S1→S2; S2→S3→S1; and S2→S1→S3.

The transition matrices were then applied to X:

Xf = X × Tf

Xff = X × Tff

If X contains forward sequences, then the decoding probability of S1 at time t should 

correlate with the decoding probability of S2 at t + Δt and S3 at t + 2Δt, where Δt is the time 

lag between reactivations. Hence, for a given Δt, we computed the cosine similarity between 

column i of X, column i of Xf, and column i of Xff. These three values were then averaged 

to obtain the overall forward sequenceness. Reverse sequenceness was similarly calculated 

using Tr and Trr in place of Tf and Tff. To control for auto-correlations in the underlying 

signals at short intervals, the final results were reported as the difference between forward 

and reverse sequenceness at each evaluated time lag (30 time lags spanning 20 to 600 ms).

As the number of non-sequential length-3 sequences was not sufficient to assess significance 

by direct comparison, we generated a surrogate distribution of sequenceness differences. To 

control for differences in the number of trials across subjects, we chose, at each iteration (N 

= 1000), the minimum number of trials. We then calculated the true sequenceness difference, 

as well as the difference between two randomly-selected permuted sequences. Significance 

was determined independently at each evaluated time lag, if the observed sequenceness 

difference was outside the 99.83th percentile of the surrogate distribution (corresponding 

to a two-tailed threshold of p < 0.05 after Bonferroni correction across the 30 time lags). 

The sequenceness difference at each time lag was reported after z-score normalizing the 

observed value with respect to the corresponding surrogate distribution.

Analysis during individual replay events—We followed published methodology to 

identify individual replay events49. Briefly, the onset of replay events was detected from 

each maintenance trial as time points at which a strong reactivation of the first cue odor 

was followed by strong reactivations of the remaining two cue odors in the sequence. For 

forward sequences, we time shifted the second and third columns of X by Δt and 2Δt, 
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respectively, resulting in XΔt, using the time lag Δt at which there was maximal evidence for 

sequenceness (namely, 200 ms). The second and third columns of XΔt were then element­

wise multiplied with the second column of Xf and third column of Xff, respectively. Finally, 

we summed over the three columns to obtain a vector R whose elements indicate the 

strength of sequenceness at each time point throughout an individual maintenance trial. To 

identify replay events, we thresholded R at the 95th percentile across its elements and across 

all trials.

To assess the impact of replay on subsequent memory on a trial-by-trial basis, we pooled 

all maintenance trials across subjects, and compared the prevalence of replay events (total 

number of replay events) in correct trials (on both the identity match and sequence position 

judgements) vs. all remaining trials. We then used a bootstrapping approach to demonstrate 

the robustness of this behavioral correlation. Across 10,000 bootstrapped subsets of trials, 

we computed a Pearson’s correlation between the total number of replay events and the 

percentage of correct trials (each variable was z-score normalized with respect to itself 

prior to computing the correlation). To determine the stability of the correlation, this 

bootstrapping procedure was repeated 1,000 times, resulting in a distribution of 1,000 r 
values.

Closely following the procedure used for the phase separability analysis during the encoding 

period (see Theta phase coding of sequence position during encoding), we evaluated the 

separability of preferred theta phases of each cue odor reactivation during replay. Based on 

results of the sequenceness analysis, each 600-ms replay event ([−0.1, 0.5] s with respect 

to replay onset) was divided into three 200-ms epochs corresponding to each of the three 

cue odor reactivations ([−0.1, 0.1], [0.1, 0.3], [0.3, 0.5] s). From each epoch we constructed 

a theta phase distribution of reactivation-associated gamma power (z-score normalized with 

respect to the pre-encoding baseline), and then computed the weighted circular mean of 

the largest phase cluster, the angle of which was treated as the preferred theta phase of a 

cue odor reactivation. Phase separability between each unique pair of sequence positions 

was tested parametrically, using the same procedure as previously detailed. We additionally 

performed a surrogate-based test to demonstrate that the findings were not a mere result of 

sampling theta phases across three contiguous 200-ms windows. To do this, we repeated the 

analysis on 1,000 randomly-sampled time windows (of the same duration as replay events) 

throughout the included maintenance trials, where significance was reached if the observed 

test statistic was > 97.5th percentile of surrogate distribution (one-tailed). The observed 

F-statistic was reported after z-score normalizing with respect to the corresponding surrogate 

distribution.

Finally, theta-band phase synchrony between PCx and AH during replay events was 

quantified from the distribution of phase differences across the two regions using two 

different metrics. First, we employed the phase locking value (PLV)56, which is quantified 

by the magnitude of the mean resultant vector of the cross-structural phase differences. 

To mitigate concerns of spurious phase locking resulting from volume conduction, which 

would be associated with a phase lag of zero92, we eliminated time points with a phase 

lag < 5˚ prior to calculating the PLV. We further confirmed these results using the phase 

lag index57 (PLI), which quantifies the asymmetry of the distribution of cross-structural 
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phase differences around zero, and is therefore unaffected by zero phase-lag volume 

conduction. To achieve a normal distribution, all PLV values were first transformed into 

Rayleigh’s z-statistics, and PLI values were Fisher z-transformed. We similarly constructed 

a baseline distribution for each corresponding maintenance trial, in which we calculated 

the two synchrony metrics in 1,000 time-shifted windows (of the same duration as replay 

events). The observed synchrony metrics were then z-score normalized with respect to 

baseline distributions from the corresponding maintenance trial, allowing us to assess for 

changes in cross-structural phase synchrony during replay events relative to the baseline 

level throughout the entire maintenance epoch.
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Yang et. al investigate neural oscillations during the encoding and maintenance of a 

sequence of distinct odors in working memory. Analogous to rodent theta sequences, 

replay of experienced odor sequences in the human olfactory (piriform) cortex is time­

compressed, forward-directed, and coincides with the hippocampal theta rhythm.
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• Nested oscillations underlie working memory representations of multi-odor 

sequences

• Theta oscillations disambiguate sequence odors across multiple timescales

• During memory maintenance, sequences are replayed across successive theta 

cycles

• Online replay in humans predicts subsequent recall performance
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Figure 1. Experimental approach.
(A) Task structure. Trials began with a fixation cross, after which subjects were sequentially 

presented with three distinct cue odors (encoding). Following a delay period (maintenance), 

subjects performed up to two judgments on a final probe odor (retrieval): an identity 

match judgment, and, as appropriate, a sequence position judgment. For encoding and 

retrieval, analyzed epochs began at sniff onset (illustrated with gray dashed lines). Analyzed 

maintenance epochs began one second after the end of the inhalation in response to Cue 3 

(solid arrow). Baseline epochs were extracted from the pre-encoding fixation cross period.

(B) Example trials of correct responses (top panel) to the identity match judgment (i.e., hit) 

and sequence position judgment, or correct rejection (bottom panel) of a novel probe odor.

(C) Electrode positions across all subjects. Recordings obtained from PCx in seven subjects, 

AH in six subjects, with simultaneous recordings from both regions in five subjects. Red, 

PCx; blue, AH. See also Figure S1, Table S1.

(D, E) Behavioral performance on (D) the identity match judgment or (E) the sequence 

position judgment for all trials, as well as for the subset of trials in which the probe odor 
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matched the first, second, or third cue odors. Colors indicate individual subjects; dashed 

lines indicate chance-level accuracy.
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Figure 2. Coupled theta and gamma oscillations.
(A) Single trial examples (from different subjects) show multiple, brief bursts of high­

frequency activity throughout encoding and maintenance, concurrent with theta oscillations. 

For each trial, we show the raw LFP, high frequency filtered signal, and theta filtered signal 

(relatively scaled for visualization) centered around one of the bursts. Note the diversity in 

the center frequencies of bursts, both within and across subjects. Across all subjects, burst 

duration was 107 ± 18 ms (mean ± s.e.m.) in PCx, and 98 ± 14 ms in AH (see Methods).

(B) PAC during encoding and maintenance was quantified across a wide range of candidate 

modulating frequencies (top panel) and modulated frequencies (bottom panel). Across 

evaluated frequencies, we show the percentage of subjects demonstrating significant 

modulation strength (surrogate test, corrected across modulated sub-bands, p < 0.025), 

separately for PCx and AH. See also Figure S2.
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(C) In both regions of interest, theta power during encoding and maintenance were 

individually greater vs. baseline (paired-sample t-test, *p < 0.05). Larger solid circles 

indicate supra-threshold theta power; smaller empty circles indicate sub-threshold power 

(see Methods). See also Figure S3.

(D) Modulation strengths of theta phase-coupled gamma bursts were increased during 

encoding and maintenance vs. baseline, which was further stratified for identity-match 

correct (hit + correct rejection [CR]) vs. incorrect (miss + false alarm [FA]) trials. Larger 

solid circles indicate significant modulation strength (corrected, p < 0.025). **p < 0.01; 

***p < 0.001. See also Figure S3D.

In (C-D), colors indicate individual subjects.

Yang et al. Page 35

Curr Biol. Author manuscript; available in PMC 2022 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Encoding the “when” of odor sequences.
(A-B) Cross-trial consistency of theta phase preference for each sequence position. (A) 

For each sequence position, we show single-subject trial-averaged theta phase distributions 

of cue odor-induced gamma power (PCx and AH data from different subjects). In both 

regions of interest, cue odors in each position induced gamma within specific phase ranges 

of theta during successful sequence encoding (solid circles; cluster-corrected p < 0.025). In 

contrast, in sequence-incorrect trials, odor-induced gamma did not demonstrate a consistent 

cross-trial theta phase preference (in PCx example subject, only Cue 1 was associated with 

a significant phase cluster). (B) At the group level, the number of sequence positions with 

significant phase clusters for each subject was greater during successful vs. unsuccessful 

sequence memory formation (paired-sample t-test, *p < 0.05).

(C) Separability of theta phase preference between sequence positions. The preferred theta 

phases of single trial responses to cue odors were compared between each unique pair of 

sequence positions (position 1 vs. 2, 2 vs. 3, 1 vs. 3). The number of significant pairwise 

phase comparisons per subject was greater during sequence-correct vs. incorrect trials (**p 
< 0.01, ***p < 0.001).

In (B, C), colors indicate individual subjects.
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Figure 4. Encoding the “what” of odor sequences.
Odor identity was decoded from single-trial PCx responses to cue odors, in which the 

pattern of stimulus-induced theta-coupled gamma was depicted across three axes: i. gamma 

frequency, ii. theta frequency, and iii. theta phase. To validate this feature space (1 in the 

table), classification was also performed with reduced-dimensionality feature spaces, in 

which the pattern of theta-coupled gamma was only depicted across the following axes: (2) 

gamma frequency + theta frequency; (3) gamma frequency + theta phase; (4) theta frequency 

+ theta phase; and (5) theta phase only. Finally, classification was also performed with a 

control feature space in which information along all three axes were disrupted (6). For each 

feature space, we show the number of subjects with significant decoding (surrogate test, p 
< 0.05; top panel), as well as subject-level decoding accuracies, normalized with respect 

to feature space-specific surrogate distributions (middle panel; colors indicate individual 

subjects; solid circles indicate significant decoding). Classification of odor identity with 
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the full three-dimensional feature space (dashed bars) was significant in five (out of seven 

subjects), and was more accurate than for the reduced-dimensionality feature spaces (paired­

sample t-test, *p < 0.05, **p < 0.01). Raw decoding accuracies were as follows (chance 

level accuracy = 10%): (1) 13.9 ± 0.4%; (2)12.5 ± 0.4% or 12.6 ± 0.4% (shuffled), (3) 

13.0 ± 0.3%, (4) 10.9 ± 0.2%, (5) 10.5 ± 0.2%, (6) 10.5 ± 0.1%. In the table, ✓ indicates 

that the distribution of gamma power across a specific axis was preserved; × indicates that 

information across a specific axis was discarded, by either taking the average gamma power 

or by shuffling their values across the axis being removed (see Methods). See also Figure 

S4A-E for visualizations of each feature space.
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Figure 5. Reactivation of individual cue odors during maintenance.
In PCx, working memory content during the delay period was decoded using a classifier 

trained on cue odor-induced patterns of theta-coupled gamma. When including all 

maintenance trials, classification accuracy for the three in-trial cue odors was higher than 

for the seven out-of-trial odors (paired-sample t-test, *p < 0.05). Model performance further 

improved when classification was limited to maintenance trials preceding a correct identity 

match judgment (hit or correct rejection [CR]; **p < 0.01). For the set of identity correct 

trials, decoding accuracies for cue odors presented in each of the three sequence positions 

were each higher vs. out-of-trial odors. Horizontal dashed line indicates chance-level 

accuracy; colors indicate individual subjects.
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Figure 6. Theta-timescale replay of odor sequences during maintenance.
(A) Memory replay examples (from different subjects) in PCx during working memory 

maintenance. Sequential reactivation of the three cue odors consistently emerged earliest for 

cue 1, followed by cue 2, and terminating with cue 3, whereby each reactivation took place 

in separate theta cycles. Theta-filtered signals overlaid in white.

(B, C) Statistical evidence for replay. (B) During maintenance, there was evidence for 

forward sequenceness at an inter-reactivation time lag of 160–260 ms (solid black circles; 

corrected across time lags, p < 0.05). (C) There was no evidence of sequenceness in the 

pre-encoding baseline period. Sequenceness is shown for the four permuted (non-sequential) 

length-3 sequences (dotted lines; see Methods); dashed lines indicate 99.83% CI of 

surrogate distribution constructed from these permuted sequences; shading indicates s.e.m. 

across subjects.

(D) Pooling all maintenance trials across subjects, replay events were more common prior to 

a correct (vs. incorrect) response on the identity match and sequence position judgments (see 

Results). The robustness of this finding was demonstrated with a bootstrapping approach, in 

which the prevalence of replay events was correlated with the percentage of correct trials. 
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Across 1,000 repetitions of this bootstrapping procedure, the distribution of Pearson’s r 
showed a stable positive correlation (*95% CI of r [0.12, 0.15]).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Human Epilepsy Patients Northwestern Memorial Hospital,
Hospital of the University of Pennsylvania

n/a

Deposited Data

Human Intracranial Data https://www.ieeg.org/

Software and Algorithms

MATLAB MathWorks https://www.mathworks.com/

PsychToolbox 84 http://psychtoolbox.org/

EEGLAB 85 https://sccn.ucsd.edu/eeglab/index.php

Fitting Oscillations & One Over F (FOOOF) 44 https://github.com/fooof-tools/fooof

CircStat 90 http://bethgelab.org/software/circstat/

LibSVM 48 https://www.csie.ntu.edu.tw/~cjlin/libsvm/

Sequenceness 49 https://github.com/YunzheLiu/FactorizedReplay
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