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Abstract

Background—Effectively utilizing disease-relevant text information from unstructured 

clinical notes for medical research presents many challenges. BERT (Bidirectional Encoder 

Representation from Transformers) related models such as BioBERT and ClinicalBERT, 

pre-trained on biomedical corpora and general clinical information, have shown promising 

performance in various biomedical language processing tasks.

Objectives—This study aims to explore whether a BERT-based model pre-trained on disease­

related clinical information can be more effective for cerebrovascular disease-relevant research.

Methods—This study proposed the StrokeBERT which was initialized from BioBERT and 

pre-trained on large-scale cerebrovascular disease related clinical text information. The pre-trained 

corpora contained 113,590 discharge notes, 105,743 radiology reports, and 38,199 neurological 

reports. Two real-world empirical clinical tasks were conducted to validate StrokeBERT’s 

performance. The first task identified extracranial and intracranial artery stenosis from two 

independent sets of radiology angiography reports. The second task predicted the risk of recurrent 

ischemic stroke based on patients’ first discharge information.

Results—In stenosis detection, StrokeBERT showed improved performance on targeted carotid 

arteries, with an average AUC compared to that of ClinicalBERT of 0.968 ± 0.021 and 0.956 

± 0.018, respectively. In recurrent ischemic stroke prediction, after 10-fold cross-validation on 

1,700 discharge information, StrokeBERT presented better prediction ability (AUC±SD = 0.838 

± 0.017) than ClinicalBERT (AUC±SD = 0.808 ± 0.045). The attention scores of StrokeBERT 

showed better ability to detect and associate cerebrovascular disease related terms than current 

BERT based models.

Conclusions—This study shows that a disease-specific BERT model improved the performance 

and accuracy of various disease-specific language processing tasks and can readily be fine-tuned to 

advance cerebrovascular disease research and further developed for clinical applications.
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1. Introduction

Cerebrovascular disease is an important cause of mortality worldwide and a major 

source of chronic morbidity and disability, affecting 16.9 million cases in 2010.[1] 

Cerebrovascular disease research relies on comprehensive clinical information, including 

images, laboratory data, and various clinical assessments and notes. Among these, clinical 

notes and radiology reports contain the most rich but under-utilized information; both are 

classified as unstructured electronic health records (EHR) data and usually contain jargon 

and abbreviations with a variety of writing styles. This presents challenges to the effective 

extraction and mining of meaningful clinical information to help advance medical research 

and improve health care. Recently, identification of various health conditions, detection of 

certain underlying diseases, and prediction of outcomes can be improved if unstructured 

EHR information showed promises using natural language processing (NLP) or similar 
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techniques. Many research efforts have been made to unleash the power of unstructured 

clinical data for cerebrovascular disease research. For example, Sedghi et al applied NLP 

techniques and support vector machines (SVM) to predict transient ischemic attacks from 

medical narrative descriptions.[2] Garg et al developed an automated NLP pipeline in the 

EHR platform, which showed an agreement with manual TOAST subtypes classification.[3] 

Chen et al constructed a conditional random fields model for automatically segmenting 

ultrasound reports of cerebrovascular disease in Chinese patients.[4]

Word representation is an essential component in NLP models. It aims to convert words into 

vectors for further algorithm evaluations. In comparison with fixed word representation 

that are content-free with no assumption about semantics and similarity of words, a 

contextualized word representation considers language polysemy and relationship of words, 

which means it is able to capture the semantics and syntactic dependencies of words in 

any context. BERT (bidirectional encoder representation from transformers) is a newly 

developed state-of-the-art language representation model that has achieved great success 

in performing many NLP tasks, such as named entity recognition (NER) and question 

answering.[5] Compared to classic word-level vector representations (i.e., word2vec[6] and 

GloVe[7]), BERT used one of the deep neural network architectures called bidirectional 

transformers to provide contextualized word representations.[8] BERT was mainly pre­

trained on general domain data like Wikipedia text and the BookCorpus dataset. Many 

studies have shown the effectiveness of BERT’s contextualized word representations in 

general domain NLP tasks.[9–12] However, NLP models designed for general purpose 

language understanding have shown poor performance in specific-domain text mining 

tasks. Therefore, Lee et al pre-trained BERT using PubMed and PubMed Central data to 

create BioBERT. BioBERT significantly outperformed BERT in biomedical NER, relation 

extraction, and question answering tasks.[13] In the clinical domain, two concurrent studies 

pre-trained and fine-tuned BERT-based models using the MIMIC-III database.[14] Alsentzer 

et al demonstrated that using clinical specific contextual embeddings (i.e. ClinicalBERT) 

improved upon general domain results obtained from BioBERT on clinical NER and 

medical natural language inference tasks.[15] In the recent work of Huang et al, their 

fine-tuned ClinicalBERT was superior to both the bag-of-words model and the BiLSTM 

(bidirectional long short-term memory network) model on 30-day hospital readmission 

prediction when using both discharge summaries and the first few days of clinical notes.[16] 

In addition, Li et al studied the effectiveness of EhrBERT, which pre-trained on 1.5 million 

electronic health records for biomedical or clinical entity normalization, and the results 

showed that EhrBERT performed better than BioBERT or BERT. Their work also found that 

domain-based information has an impact on the performance of BERT-based models.[17]

In this study, we explored whether a BERT-based model can be more effective in improving 

specific clinical tasks and advance disease research after being pre-trained on the real-world 

evidence (RWE) based on the disease-related clinical corpora. We developed StrokeBERT, 

which was initialized from the previously reported BioBERT model to inherit its previous 

build with diverse words and knowledge from internet and PubMed literature, and we 

pre-trained it with additional large-scale cerebrovascular disease-related clinical notes and 

reports from real world hospitals. We examined the efficacy of StrokeBERT on two 

challenging tasks in the cerebrovascular disease research from the real-world clinical 
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settings, they are, the detection of high-risk patients with advanced grades of extracranial 

and intracranial artery stenosis and the prediction of recurrent ischemic stroke.

2. Materials and Methods

2.1 Data Source

We used clinical notes and reports contained in the Chang Gung Research Database 

(CGRD) from 2007 to 2018, which collected multi-institutional standardized electronic 

medical records from the largest private hospital system, including two medical centers, 

two regional hospitals, and three district hospitals from northern to southern Taiwan. 

This database included and represented 6.1% of outpatients and 10.2% of hospitalized 

patients in the Taiwanese population.[18] The diagnosis codes of ischemic stroke in CGRD 

have been validated.[19] In this study, we retrospectively and randomly selected two 

cerebrovascular disease patient datasets from CGRD for BERT-based model pre-training and 

the downstream fine-tuning tasks. The sample sizes of these two independent datasets were 

172,051 patients for stenosis detection and 7,118 patients for the prediction of recurrent 

stroke. For external validation of stenosis detection in the new BERT-based model, subjects 

were selected from those who were admitted to Kaohsiung Veterans General Hospital 

(KSVGH) between 07/01/2018 and 06/30/2019 with a diagnosis of acute stroke and reports 

of magnetic resonance angiography (MRA). To conduct this study, ethical clearances were 

obtained from the Linkou Chang Gung Memorial Hospital Institutional Review Board (IRB) 

(201501857B0C606, 201900048B0) and from the IRB of Kaohsiung Veterans General 

Hospital (KSVGH20-CT3-08) in Taiwan.

2.2 Pre-training StrokeBERT

Figure 1 shows the StrokeBERT pre-training procedures. We included clinical information 

from the records of 77,334 patients who were admitted with cerebrovascular disease (ICD-9 

code: 430–438 or ICD-10 code: I60-I69) from the CGRD pre-training dataset. The patient 

dataset had a total of 113,590 discharge notes, 105,743 radiology reports, and 38,199 

neurological reports for ultrasonography, electroencephalograms, or psychophysiological 

function examinations. All clinical notes were preprocessed by removing Chinese 

characters/sentences (used for hospital administration), special characters (used as dividing 

sentences/lines), and multiple spaces. The SpaCy segmentation technique[20] was used to 

segment each clinical note. The final pre-training corpora contained 257,532 stroke-related 

clinical notes with 41,002,306 words.

Taking advantage of the previously developed pre-trained models, StrokeBERT was 

initialized with BioBERT. For all pre-training experiments, we leverage the implementation 

of ClinicalBERT with Pytorch 1.0 framework [21]. The size of StrokeBERT is the same 

as BERTbase, which has 12 layers and each layer has 12 self-attention heads. We used 

the same pre-training tasks with default parameters, masked language modeling, and next 

sentence prediction, as in the work of Devlin et al [5], to pre-train our StrokeBERT with 

default parameters (e.g. masked language model probability = 0.15 and max predictions 

per sequence = 22). For tokenization, we used the BERT tokenizer that was based on 

the WordPiece algorithm[22] without lower-casing. The new model was trained for a 
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batch size of 32, 150,000 steps with a learning rate of 5*10−5 and a maximum sequence 

length of 128. After pre-training, this disease-specific language representation model can 

be fine-tuned with one additional output layer to create task-based models such as disease 

identification or outcome prediction. We verified StrokeBERT’s performance in comparison 

with a similar pre-train model of ClinicalBERT (Bio+Clinical BERT)[15] from the medical 

domain corpora in the two following empirical studies. For this empirical study, the pretrain 

work takes about 66.8 hours on a server with 2 Intel E5-2680v4 2.4GHZ CPUs, 256GB 

RAM and 2 NVIDIA K80 GPUs.

2.3 Verifying the Performance of StrokeBERT in Real-world Clinical Tasks

Task I: Detection of Extracranial and Intracranial Artery Stenosis from 
Radiology Reports of Angiography—Carotid artery stenosis has been strongly 

correlated with the incidence of stroke.[23 24] In hospitals, digital subtraction angiography 

(DSA), computed tomographic angiography (CTA), and MRA are used to identify carotid 

artery stenosis and relied on the reports for final diagnosis.[25] In this empirical study, we 

aimed to quickly and accurately identify extracranial or intracranial artery stenosis from 

angiography reports using the new StrokeBERT model. There are several extracranial and 

intracranial artery sections mentioned in a clinical report, which can be considered as a 

multi-label text classification challenge. We fine-tuned StrokeBERT and ClinicalBERT[15] 

with one additional sigmoid output layer for comparison. For the model training, we selected 

TensorFlow’s sigmoid cross entropy with logits[26] as the loss function and BertAdam[27] 

with learning rate 5e−5 to be the optimizer; the maximum sequence length was 400; the 

total number of training epochs was 10 with 24 batch size. The process of fine-tuning and 

cross-validation is shown in Figure 2.

This study collected 9,614 angiography reports from 7,118 patients records with 

cerebrovascular diagnoses in the CGRD fine-tuning dataset. The degree of arterial stenosis 

was determined according to NASCET criteria.[28] To further validate the reports for our 

model prediction accuracy and performance, we asked two neurologists to independently 

label and confirm whether stenosis existed (<50% or ≥50% diameter stenosis) in 17 

target arteries according to the original radiology interpreted reports. Any disagreement 

between the neurologists was resolved together by further discussion to build consensus. 

The 17 target arteries are left/right common carotid artery (LCCA, RCCA), left/right 

extracranial internal carotid artery (LEICA, REICA), left/right intracranial internal carotid 

artery (LIICA, RIICA), left/right anterior cerebral artery (LACA, RACA), left/right middle 

cerebral artery (LMCA, RMCA), left/right posterior cerebral artery (LPCA, RPCA), left/

right extracranial vertebral artery (LEVA, REVA), left/right intracranial vertebral artery 

(LIVA, RIVA), and basilar artery (BA).

We used ten-times internal-external validation to evaluate the detecting capabilities of the 

two BERT-based models (StrokeBERT and ClinicalBERT). For each validation round, 80% 

of the CGRD angiography reports were used to fine-tune the BERT-based models and the 

other 20% were used for internal validation. To further challenge and validate the new 

StrokeBERT model, we included an additional 315 angiography reports from KSVGH 

located in southern Taiwan as an external validation dataset. The labeling process of 
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KSVGH angiography reports was performed identically as the CGRD dataset described 

previously. Due to differences in the diagnosis process between the two hospital systems, 

the KSVGH angiography reports focused only on 11 out of 17 intracranial cerebral arteries 

(i.e. no LCCA, RCCA, LEICA, REICA, LEVA, and REVA). For valid comparison, we 

selected comparable datasets from KSVGH as an external validation dataset approved by 

the KSVGH IRB for this study. The model training dataset did not include the KSVGH 

dataset and their patients and physicians were different from those two independent hospital 

networks.

Task II: Investigating the Effectiveness of Recurrent Ischemic Stroke 
Prediction—Identification of patients at the highest risk for recurrent stroke is critical 

because early recurrence is associated with more severe consequences[29] and early 

initiation of available treatment is imperative to prevent a recurrent stroke.[30] It is known 

among clinicians that the discharge note is an excellent source of information that details 

a patient’s health conditions during the triage of the last stroke event and provides the 

potential to identify risks associated with recurrent stroke. This empirical study aimed to 

evaluate StrokeBERT’s ability in learning representations of clinical texts on the recurrent 

ischemic stroke prediction task.

As shown in Figure 3, we selected 3,490 patients admitted with ischemic stroke (ICD-9: 

433.XX and 434.XX or ICD-10 I63.XX and I66.XX) from the CGRD fine-tuning dataset. 

Selected patients were classified into the recurrent ischemic stroke group and the non­

recurrent ischemic stroke group. The definition of recurrent stroke in this study was that 

the patient was readmitted with ischemic stroke during the data collection interval described 

in the data sources with rehabilitation or other chronic disease admissions excluded. That 

is, a patient who had no admission record after discharge from the first stroke during the 

data collection interval was labeled as a non-recurrent ischemic stroke. A patient whose 

follow-up was less than the median of the recurrent stroke interval was excluded from the 

non-recurrent ischemic stroke dataset. After the exclusions, the recurrent stroke fine-tuning 

dataset contained 969 recurrent ischemic stroke patients and 731 non-recurrent ischemic 

stroke patients, for a total of 1,700 patients with their first discharge notes that included their 

chief complaint, medical history, surgery method, findings, and hospitalization. Since 2001, 

national accredited stroke centers have been increasingly established in medical centers of 

Taiwan, and CGRD data were collected among these medical centers. [31] Most of the 

national accredited stroke centers have a multidisciplinary team, including the outpatient 

department to improve acute stroke care quality. [32] One previous study showed that more 

than 76% of patients visited the same hospital for stroke related medical services. [33] A 

previous report compared the diagnosis of stroke in Taiwan’s National Health Insurance 

Research Database (NHIRD) with those recorded in the Taiwan Stroke Registry (TSR), 

a retrospective research database for stroke collected across 65 national stroke centers 

including CGRD, and found the positive predictive value was 88.4% with the sensitivity of 

97.3%.[34]

For valid comparison, Both StrokeBERT and ClinicalBERT were fine-tuned with 

one additional output layer using cross-entropy loss function.[35] The optimizer was 

BertAdam[27] with a learning rate of 3e−5. The maximum sequence length was 400, total 
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number of training epochs was 10 and batch size was 24. Ten-times cross-validation was 

performed to assess the predictive capabilities of StrokeBERT and ClinicalBERT; 80% 

of data was used for BERT-based model fine-tuning, the remaining 20% was used for 

validation in each round (Figure 3).

3. Results

3.1 Extracting Extracranial and Intracranial Artery Stenosis Information

Table 1 depicts the performance results of StrokeBERT on identifying different targeted 

arteries toward stenosis. For the datasets selected from CGRD, the average AUC±SD of 

StrokeBERT was 0.973 ± 0.008 in intracranial arteries and 0.978 ± 0.007 in extracranial 

arteries. This study also performed same task using ClinicalBERT. The average AUC±SD 

of ClinicalBERT in intracranial arteries and in extracranial arteries were 0.971 ± 0.008 

and 0.977 ± 0.007, respectively. The F1 score and area under the precision-recall curve 

can be found in supplementary Table S1. Overall, StrokeBERT improved ClinicalBERT 

in both extracranial and intracranial artery stenosis identifications, but not significantly. 

The different report formats and physician writing styles were observed and found to 

affect the results of the model being built. For example, CGRD reports use “stenosis” 

and “occlusion”, but KSVGH reports often used “paucity” to describe artery stenosis. The 

performance differences between StrokeBERT and ClinicalBERT were found slightly larger 

in the external validation datasets obtained from other hospitals, as expected. Despite this 

difference, StrokeBERT achieved better performance than other models in all intracranial 

arteries largely due to added clinical terminology. The average AUCs of the two BERT­

based models were 0.968 ± 0.021 for StrokeBERT and 0.956 ± 0.018 for ClinicalBERT. The 

results also revealed that the StrokeBERT model can be trained to handle diverse words with 

enough variability in jargon from various data sources to allow for an accurate and precise 

retrieval of vital clinical information.

3.2 Predicting Recurrent Ischemic Stroke

The characteristics of the recurrent ischemic stroke fine-tuning dataset are shown in Table 

2. Male patients account for 62.3% of the total recurrent ischemic stroke cases and 66.2% 

of the total non-recurrent ischemic stroke cases. The average onset age of non-recurrent 

ischemic stroke patients was younger than recurrent ischemic stroke patients (64.8 ± 13.0 vs. 

67.0 ± 11.4). The time interval between recurrent stroke varied greatly, the average with the 

standard deviation is 907.0 ± 968.3 days and the median is 537 days, which represents the 

challenge of prediction in this diverse population.

The receiver operating curve (ROC) analysis showed that StrokeBERT has better 

performance than ClinicalBERT: the average AUC±SD is 0.838 ± 0.017 for StrokeBERT 

and 0.808 ± 0.045 for ClinicalBERT. The smaller standard deviation of StrokeBERT’s AUC 

also indicates that it is more robust than ClinicalBERT on recurrent stroke prediction (figure 

4). The F1 score and area under the precision-recall curve are provided in supplementary 

Table S2.
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4. Discussion

We developed StrokeBERT, an improved pre-trained model using real world cerebrovascular 

disease-specific clinical notes, to help clinicians quickly assemble and assess patient’s 

health conditions and evaluate their risks for carotid artery stenosis and recurrent stroke. 

Taking advantage of BERT’s architecture, StrokeBERT can now be incorporated into 

various downstream tasks and fine-tuned as an integrated task-specific model within EHR 

automation (e.g. identifying carotid artery stenosis) or clinical alerts (e.g. recurrent risk 

of Stroke) as demonstrated in this study. We also performed analytical experiments to see 

how the size of the pre-training dataset and different parameter settings impact model 

performance. We pre-trained two additional BERT models that based only on 38,199 

neurology reports or 105,743 radiology reports, respectively; and tested those models on 

same stenosis identification task and recurrent stroke prediction task. In summary, both 

neurology report-based BERT model and radiology report-based BERT model have lower 

AUCs than StrokeBERT in performing both tasks. The detailed measurements are displayed 

in supplementary Table S3 and Table S4. To further test the performance of our models 

affected by the parameter settings in down-stream tasks, we examined maximum sequence 

length and learning rate with one-time cross-validation. As shown in the supplementary 

Table S5 and Table S6, the learning rate and maximum sequence length significantly 

affected each model performance, for example, the lower learning rate used with same 

epoch and shorter sequence length, the lower AUC was. Regarding the parameter settings in 

downstream tasks, due to resource and time constraints, only maximum sequence length and 

learning rate with one-time cross-validation was performed in our analytical experiments.

Similar to ClinicalBERT, we found that pre-training domain-specific knowledge 

representation further improved the performance of the BERT-based model on specific 

clinical tasks. However, in this study we have found by pre-training on large-scale 

cerebrovascular disease clinical notes and reports, StrokeBERT was able to pay more 

attention to text information and events related to cerebrovascular diseases in comparison 

to ClinicalBERT which was pre-trained on the general medical domains. Attention scores 

indicating the ability to detect and identify disease relevant text information showed 

the potential impact and performance in downstream tasks from the model built. Figure 

5 visualizes the attention scores of the word (text term) pieces in a random selected 

angiography report (panel A) and a discharge note (panel B). In the artery stenosis 

information extraction task, both ClinicalBERT and StrokeBERT showed similar attention 

spots on selected texts. For example, the descriptions of artery sections and degree 

of stenosis, such as “posterior cerebral arteries (PCA)”, “occlusion of right anterior 

cerebral artery”, and “azygos anterior cerebral artery”. This explains why the performance 

between ClinicalBERT and StrokeBERT was not significantly different. However, our 

study results still revealed that StrokeBERT-based models were able to identify stenosis 

in different extracranial and intracranial arteries from an angiography report with more 

disease relevant information, thus greater performance. This extracted information can be 

used to further train a machine-learning model to autodetect carotid artery stenosis.[36] 

In the real-world hospital setting, it is time-consuming to obtain relevant information on 

cerebral artery stenosis since clinical researchers have to label the stenosis manually from 
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unorganized angiography reports. StrokeBERT was shown able to label the clinical reports 

automatically and extracted the stenosis occurred in multiple arteries simultaneously. In the 

recurrent ischemic stroke prediction task, both clinical-domain BERT-based models paid 

more attention on the descriptions of disease, symptoms, and outcomes like “ischemic 

cardiomyopathy with pulmonary edema”, “Hypertension“, “Diabetes mellitus”, “Chronic” 

and “successful percutaneous coronary intervention with drug”. However, compared to 

ClinicalBERT, the gender information (female) and term “rehabilitation”, which are 

known to be important recurrent stroke risk factors,[37] have higher attention scores 

in StrokeBERT. Therefore, in designing downstream tasks such as EHR automation for 

clinical alerts, StrokeBERT was shown to have better detection and prediction abilities. 

This tool could be further developed to improve public health by screening large clinical 

data repositories to identify patients at risk of recurrent ischemic stroke. Furthermore, it 

was shown that structured clinical registries can be utilized to build and ascertain various 

disease prediction models. [38 39] Most EHR systems contain large amount of unstructured 

data that can also be transformed into structured data by StrokeBERT for further clinical 

investigation.

Many studies have explored different computational approaches for radiology report 

information extraction and recurrent stroke prediction, with more and more studies aimed 

at the annotation of diseases and conditions. However, research studies focused on 

identifying comprehensive intracranial and extranidal artery stenosis were found scattered. 

Wu et al recently published a logistic regression model, a field-aware convolution neural 

network (CNN), and a recurrent neural network (RNN) with an attention mechanism 

to identify patients with the conditions of carotid stenosis based on their ultrasound 

reports. These reported models achieved above 93% accuracy, with the RNN-attention 

model achieving near 95.4% accuracy.[38] In this study, we demonstrated that StrokeBERT 

achieved significantly higher performance in extracting information from radiology reports 

and classified patients more precisely with each extracranial and intracranial arteries 

stenosis. External validation for intracranial arteries in different hospital systems also well 

demonstrated its performance with high 0.968 AUC. As for recurrent stroke prediction, 

clinical variables and medical event characteristics including the ABCD2 score, brain 

imaging, and stroke mechanism, were previously used to predict the risk of recurrent stroke.

[39] Many computational models or tools have also been developed. For instance, Leng 

et al evaluated the relationships between computational fluid dynamics (CFD) models and 

the risk of stroke recurrence;[40] the AUC of this model was reported to be 0.776. In 

addition, Ay et al developed a prognostic score that integrated with clinical and imaging 

information to quantify the early risk of recurrent stroke after ischemic stroke.[41] The 

AUC of their clinical-based model was 0.7 and 0.8 for their clinical and imaging combined 

models. As demonstrated in our study (Task II), the BERT-based NLP approach achieved 

superior performance with an AUC of 0.838 in recurrent stroke prediction, proving its 

efficacy of prediction in clinical applications. In addition, our results proved StrokeBERT’s 

unique ability in detecting and validating recurrent ischemic stroke in the real-world CGRD 

follow-up datasets for the past 10 years.

As shown by many previous studies, our results support the experience that a domain 

specific BERT is more efficient than a general-purpose BERT model. Several alternative 
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approaches were also being experimented, for example, Shin et al. trained a larger BERT 

model, named Bio Megatron, with 345 million parameters (BERTBase has 110 million 

parameters) on the PubMed biomedical text corpus with about 6.1 billion words. Their 

study demonstrated that larger model size can further improve the performance of a 

domain-specific language model.[44] Another study challenged the assumption that domain­

specific pretraining can benefit by starting from general-domain language models. Gu 

et al. showed that domain specific pretraining from scratch can significantly outperform 

continual pretraining from a general-domain language model. [45] These studies provided 

different strategy of model training that can affect the performance of domain-specific 

language models. In this initial study, StrokeBERT was pre-trained and fine-tuned with only 

limited hyperparameter optimization due to the limitations of data collections and processing 

power. Despite these limitations, this BERT-based platform has shown the potential to 

greatly reduce physician’s demands to retrospectively extract valuable information from 

unstructured notes during medical triage, such as patients’ past medical history, lab reports, 

treatments, outcomes, and complications.

Future work will focus on improving its performance of fine-tuning tasks by different 

machine learning algorithms and incorporating additional clinical information from more 

data sources to improve and solve more complex real-world medical applications for 

cerebrovascular diseases research and care. For example, Bacchi et al used a CNN and 

a RNN to predict the causes of transient ischemic attack-like conditions based on the 

free-text descriptions of patient’s medical history complaints. Their CNN model achieved 

a good predictive performance (AUC±SD; 81.9±2.0). By incorporating additional clinical 

information, such as magnetic resonance imaging reports, their AUC of CNN model was 

improved to 88.3±3.6.[42] Moreover, it has been shown that integrating clinical texts, 

images, and laboratory data could help deep learning models assess more complex tasks 

in the clinical domain.[43 44] The current research of language representation models is 

fast evolving in many respects. In terms of pre-training strategy, Liu et al found that the 

dynamic masking strategy performed slightly better than static masking during the model 

pre-training phase.[45] In addition, Sun et al proposed a novel language representation 

model enhanced by knowledge masking strategies called ERNIE (Enhanced Representation 

through kNowledge IntEgration), which included entity-level masking and phrase-level 

masking. [46] Sun et al further proposed ERNIE 2.0, a continual pre-training framework 

to support continual multi-task learning.[47] In addition to BERT-based models, XLNet 

is another advanced language representation model which was recently shown to improve 

over BERT on 20 NLP tasks.[48] Huang et al developed Clinical XLNet and demonstrated 

that it consistently outperformed other deep learning models.[49] Therefore, developing and 

applying other advanced language representation models and different pre-training strategies 

as well as building continual learning models in our disease-specific domain will be the 

primary focus of our future studies to advance clinical research and real world applications 

in the cerebrovascular diseases.

5. Conclusion

StrokeBERT is a disease-specific BERT-based model pre-trained on cerebrovascular 

disease-related corpora. Through validations with large multiple-center datasets and by 
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two independent empirical tasks, we demonstrated that using disease-specific BERT (in 

this case, StrokeBERT) improved the performance and results of various disease-specific 

language processing applications. In addition, a clinical platform embedded with this 

StrokeBERT tool can be further developed to assist and automate physician’s notes 

writing tasks through auto-discovering medical terms in all aspects of EHR information 

to standardize and reduce potential data entry errors. As computing power continues to 

accelerate, and deep learning techniques become more readily accessible, disease-specific 

language representation models can be further improved to be a viable and powerful tool to 

assist in developing intelligent clinical applications and accelerating biomedical discovery in 

cerebrovascular diseases.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• StrokeBERT is a disease-specific BERT-based model pre-trained on real 

world evidence (RWE) from cerebrovascular disease-related corpora.

• The model was evaluated and validated in larger, multiple-center datasets 

by two independent empirical tasks (stenosis detection and stroke recurrence 

prediction).

• Disease-specific BERT model improves results of various disease-specific 

language processing tasks compared to similar BERT-models pre-trained on 

the general domain corpora.
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Figure 1. 
StrokeBERT pre-training process.
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Figure 2. 
Fine-tuning process of StrokeBERT and ClinicalBERT for artery stenosis detection.
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Figure 3. 
Fine-tuning process of StrokeBERT and ClinicalBERT for ischemic stroke recurrence 

prediction.
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Figure 4. 
The receiver operating curve (ROC) of ischemic stroke recurrence prediction with ten-times 

cross-validation.
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Figure 5. 
Visualization of attention mechanisms in StrokeBERT. Split word pieces are denoted with 

“##”. The warm-to-cool color spectrums indicate the attention score of the word pieces.

Lin et al. Page 19

Comput Methods Programs Biomed. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lin et al. Page 20

Table 1.

The area under the curve (AUC) of StrokeBERT in extracranial and intracranial artery stenosis detection with 

ten-times internal–external validation.

Internal Validation External Validation*

Intracranial RIICA 0.975 ± 0.006 0.963 ± 0.049

RACA 0.975 ± 0.009 0.993 ± 0.006

RMCA 0.977 ± 0.003 0.989 ± 0.008

RPCA 0.963 ± 0.016 0.877 ± 0.036

RIVA 0.975 ± 0.006 0.995 ± 0.002

BA 0.975 ± 0.007 0.901 ± 0.043

LIICA 0.976 ± 0.007 0.964 ± 0.055

LACA 0.975 ± 0.009 0.994 ± 0.002

LMCA 0.974 ± 0.007 0.993 ± 0.004

LPCA 0.963 ± 0.009 0.994 ± 0.003

LIVA 0.973 ± 0.005 0.983 ± 0.019

Average 0.973 ± 0.008 0.968 ± 0.021

Extracranial RCCA 0.969 ± 0.012

REICA 0.987 ± 0.003

REVA 0.973 ± 0.006

LCCA 0.981 ± 0.010

LEICA 0.986 ± 0.003

LEVA 0.970 ± 0.005

Average 0.978 ± 0.007

*
The external validation dataset did not contain the information of extracranial carotid arteries that included left/right common carotid artery 

(LCCA, RCCA), left/right extracranial internal carotid artery (LEICA, REICA), left/right extracranial internal carotid artery (LEICA, REICA).
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Table 2.

Characteristics of ischemic stroke patient in recurrent ischemic stroke fine-tuning dataset.

Recurrent ischemic stroke (n=969) Non-recurrent ischemic stroke (n=731)

Number of male (%) 604 (62.3) 484 (66.2)

First stroke onset age (mean ± SD) 67.0 ± 11.4 64.8 ± 13.0

Recurrence interval (days, mean ± SD) 907.0 ± 968.3 -

Median of recurrence interval (days) 537 -
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