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Abstract
In several papers published in Biological Cybernetics in the 1980s and 1990s, Kawato and colleagues proposed computational
models explaining how internalmodels are acquired in the cerebellum. Thesemodelswere later supported by neurophysiologi-
cal experiments usingmonkeys and neuroimaging experiments involving humans. These early studies influenced neuroscience
from basic, sensory-motor control to higher cognitive functions. One of the most perplexing enigmas related to internal mod-
els is to understand the neural mechanisms that enable animals to learn large-dimensional problems with so few trials.
Consciousness and metacognition—the ability to monitor one’s own thoughts, may be part of the solution to this enigma.
Based on literature reviews of the past 20 years, here we propose a computational neuroscience model of metacognition. The
model comprises a modular hierarchical reinforcement-learning architecture of parallel and layered, generative-inverse model
pairs. In the prefrontal cortex, a distributed executive network called the “cognitive reality monitoring network” (CRMN)
orchestrates conscious involvement of generative-inverse model pairs in perception and action. Based on mismatches between
computations by generative and inverse models, as well as reward prediction errors, CRMN computes a “responsibility sig-
nal” that gates selection and learning of pairs in perception, action, and reinforcement learning. A high responsibility signal
is given to the pairs that best capture the external world, that are competent in movements (small mismatch), and that are
capable of reinforcement learning (small reward-prediction error). CRMN selects pairs with higher responsibility signals as
objects of metacognition, and consciousness is determined by the entropy of responsibility signals across all pairs. This model
could lead to new-generation AI, which exhibits metacognition, consciousness, dimension reduction, selection of modules
and corresponding representations, and learning from small samples. It may also lead to the development of a new scientific
paradigm that enables the causal study of consciousness by combining CRMN and decoded neurofeedback.

Keywords Internal models · Forward and inverse models · Cerebellum · Prefrontal cortex · Metacognition · Consciousness ·
Artificial intelligence · Hierarchical reinforcement learning
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1 Introduction

Internal models are neural networks in the brain that sim-
ulate the dynamics of some aspects of the external world.
In the context of sensory-motor control, two kinds of inter-
nal models of a controlled object, a forward model and an
inverse model, are possible to simulate objects of motor con-
trol. Examples of controlled objects are a roboticmanipulator
and a human body. A controlled object receives motor com-
mands, such as joint torques andmuscle tensions, and outputs
a movement trajectory, in the form of joint angles andmuscle
lengths. A forward model is an internal model of the con-
trolled object with the same “from-input-to-output” direction
as the controlled object. Thus, a forward model receives a
motor command and predicts a movement trajectory. In a
neuroscience context, a forward model receives an efference
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copy of a motor command and predicts the resulting sensory
feedback caused by executed movements. An inverse model
is also a model of the controlled object, but with the opposite
“from-input-to-output” direction; thus, it receives a desired
trajectory as input and computes a motor command neces-
sary to realize the desired trajectory. Connected in tandem,
the inverse model and the forward model become an iden-
tity function, which is why the inverse model can compute
the necessary motor command, and may serve as an ideal
feedforward controller.

Kawato and colleagues proposed that lateral and medial
parts of the cerebellum acquire inverse and forward mod-
els of controlled objects through motor learning, and that
they are hierarchically arranged (Kawato et al. 1987; Kawato
and Gomi, 1992). Forward internal models are incorpo-
rated within internal feedback control loops, and inverse
models are placed as feedforward controllers on top of the
feedback loops. Forward models may also be utilized for
optimal control of either kinematic or dynamic optimiza-
tion objectives (Kawato 1999; Uno et al. 1989; Todorov
and Jordan 2002). Supervised learning of forward mod-
els is straightforward because sensory feedback furnishes
teaching signals in learning. However, learning of inverse
models is difficult because we cannot assume the presence of
“teaching signals”, i.e., ideal motor commands in the brain.
Feedback-error learning of inverse models postulated that
feedback motor commands generated by either internal or
external feedback loops could be used as approximate error
signals for training inverse models (Kawato et al. 1987).
Mathematical proofs of its stability and convergence were
developed (Nakanishi and Schaal 2004), and robotic applica-
tions demonstrated its practical utility (Miyamoto et al. 1988;
Atkeson et al. 2000). Various experimental studies supported
cerebellar internal models, especially inverse models, and
its special case of feedback-error learning (Yamamoto et al.
2007). They include recording of simple spikes and com-
plex spikes of monkey Purkinje cells during ocular following
responses (Shidara et al. 1993;Kawato 1999;Kobayashi et al.
1998; Gomi et al. 1998; Yamamoto et al. 2002), and humans
learning a new tool (fMRI study) (Imamizu et al. 2000).

In sensory-related cortices, fast visual computation by
forward and inverse optics models was proposed (Kawato
et al. 1993), motivated by Grossberg and Mingolla (1985)
and Mumford (1992). Here, we use the word “optics” to
denote the image generation process from properties of the
three-dimensional external world including surface textures,
object shapes, and light sources. The inverse optics model
infers these latent variables related to the external world from
visual images. The forward-inverse optics model explains
very fast computation in the humanvisual system,while solv-
ing the inverse-optics or vision problem (Marr 1982; Poggio
et al. 1985). Solving complicated nonlinear inverse prob-
lems usually requires many iterative computations, which

is incompatible with human studies showing fast visual pro-
cessing (Thorpe et al. 1996). The areas higher in the hierarchy
of sensory cortices were assumed to represent the exter-
nal world more abstractly, and those lower in the hierarchy,
rawer representations of the external world. Feedback neural
connections from higher to the lower visual area provide a
forward optics model, or a generative model from latent vari-
ables to image data in recent terminology. A forward optics
(generative) model reconstructs the rawer representation
(e.g., sensory signals) from the more abstract representa-
tion (e.g., latent variable) of the external world. In contrast,
feedforward neural connections from the lower area to the
higher area are assumed to provide an inverse optics model,
or an inference model in recent terminology, in other words,
analytic one-shot computation estimating higher-order rep-
resentations from lower-order representations. Because the
inverse optics model provides an approximate solution to the
inverse problem (vision) using a one-shot computation, the
whole computation of vision can be fast. The forward optics
model, on the other hand, guarantees accurate and stable solu-
tions using iterative computations. Recurrent computations
between the forward and inverse optics model were laid out
in the laminar structures within hierarchical sensory cortices
(Fig. 1B of Kawato et al. 1993, also see Fig. 3a). Errors
between the two models were proposed to be sent to higher
cortices again,while filtered by the inverse opticsmodel. This
scheme was named “predictive coding” by Rao and Ballard
(1998) and Friston and Kiebel (2009).

These early models were incorporated in subsequent
studies and influenced sensory-motor control (Ito 2008;
Shadmehr et al. 2010; Wolpert et al. 1998; Wolpert and
Kawato 1998) and perceptual studies (Friston 2005, 2010;
Friston et al. 2006; Kawato 1997; Lee and Mumford 2003;
Olshausen and Field 1996; Rao and Ballard 1998). The origi-
nal papers and related reviews on internal models were cited
several thousand times each (Kawato 1999; Kawato et al.
1987;Wolpert et al. 1998). Figure 1a shows a rapid increase in
the number of publications with the keywords “internal mod-
el”, and 1b shows those with “internal model” AND “motor
control”, “cognition”, or “cerebellum.” The rapid increase
was especially marked for “internal model” and “cognition”.
In the following sections, we discuss one of the remaining
fundamental problems with internal models: how internal
models of large, complicated objects can be learned with a
small number of trials. Finally, based on the proposed model
of metacognition, we speculate how we can develop a new
consciousness research paradigm: causal study of conscious-
ness.

2 Literature on learning from small samples

We review several lines of studies relevant to the topic
of learning from small samples, where appropriate gener-
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Fig. 1 a Numbers of PMC papers published each year, as shown by
PubMed searches for the keyword “internalmodel”. The ordinate shows
the number of published papers and the abscissa shows the year of
publication. b Numbers of publications per year with combinations of
“internal model” AND “motor control” (blue), “cognition” (green), or
“cerebellum” (red). The search was conducted on 4 August 2021

alization can be achieved while utilizing limited training
experiences. Generalization error is defined as the error in
unseen test data (validation set), used as an objective perfor-
mance measure of generalization for a learning algorithm.
According to mathematical theories of learning, the gener-
alization error can be estimated by several factors, including
degrees of freedom of the learning system and the amount
of data used for training. A classical evaluation provides that
the generalization error is given as the degrees of freedom
divided by twice the number of training samples (Watanabe
2009). Based on this evaluation, we know that a learning
system with a small number of parameters can generalize
even with a small number of training samples. More recent
estimations, motivated by the success of deep learning, pro-
vided a much weaker constraint on the number of necessary
training samples (Suzuki 2018). However, these formulas are
asymptotic estimates, and common sense suggests that we
need hundreds of thousands of training samples for a learning
machine with hundreds of thousands of learning parameters,
e.g., the number of modifiable synapses. Human brains con-
tain 1014 synapses, and if they require a comparable number

of training samples, life expectancy of organisms is not suf-
ficient to account for their capacity to learn. Even for a single
cerebellar microzone, there are at least 10,000 Purkinje cells
and≥109 plastic synapses. If one training sample is collected
every second, this requires more than 30 years of training.
A human body possesses at least ten million muscle fibers
and millions of motor neurons; thus, motor learning prob-
lems are huge. However, animals can learn new movements,
skills, and tasks within a few hundred trials, and even learn to
avoid ingesting a toxin after just one trial in the case of taste
aversion (Nicolaus et al. 1983;Roper andRedston1987). Pre-
vious studies have offered several possible mechanisms for
the remarkable ability of animals to learn large-scale prob-
lems from small samples. While discrimination between two
stimuli can be learned with a single experience, the prob-
lem is also computationally simpler than learning an internal
model. The latter is more difficult because it involves learn-
ing some dynamic aspect of the world, and as such, requires
a much higher number of units and parameters. Here, we
review the following factors: modular and/or hierarchical
structures, feature selection and/or dimensional reduction,
and metacognition and/or consciousness.

The basic idea behind the modular architecture is to
divide and conquer. By partitioning a huge problem into
many small-task pieces, each learning module can deal with
a tractably small piece. Modular neural-network models
started with the pioneering “mixture-of-experts (MoEXP)”
model (Jacobs et al. 1991). TheMoEXPmodel was extended
to the MOSAIC model, which contains both forward and
inverse models (Wolpert and Kawato 1998; Haruno et al.
2001), and was further developed into reinforcement learn-
ing MOSAIC (RL-MOSAIC; Doya et al. 2002; Sugimoto
et al. 2012a,b). Hierarchy is another architecture that is
based on the “divide and conquer” strategy. In the upper
hierarchy, dimension reduction of the task is possible with
coarse-grained representations of states and actions, while
in the lower hierarchy, the task space is partitioned into
small subregions in which solving the task is tractable.
Hierarchical reinforcement learning was one of the strong
theoretical fields with this computational objective (Wier-
ing and Schmidhuber 1997; Parr et al. 1997), and Samejima
and colleagues combined hierarchical reinforcement learn-
ing with multiple internal models (Samejima et al. 2003,
2006; Kawato and Samejima 2007). In the neuroscience of
motor control, hierarchical models (Kawato et al. 1987) and
uniform and flat models (Todorov and Jordan 2002) were
proposed, and there have been oscillations back (Scott 2004)
and forth (Franklin et al. 2008; Osu et al. 2015; Babič et al.
2016; Ikegami et al. 2021). In robotics and artificial intelli-
gence, hierarchical reinforcement learning has been explored
for almost 20 years (Morimoto and Doya 2001), and recently
it has regained popularity (Sugimoto et al. 2012a;Merel et al.
2019). Kawato and colleagues proposed a cerebellar hierar-
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chical reinforcement learning model based on these previous
theoretical models, explaining recent experimental findings
in the cerebellum (Kawato et al. 2020).

Finally, several researchers independently proposed that
higher cognitive functions, especially consciousness (Ben-
gio 2017) and metacognition (Cortese et al. 2019), serve
very important functions in feature selection and dimension
reduction, which are beneficial for learning from small sam-
ples in hierarchical structures of the brain. Consciousness
and metacognition are in fact intimately related and might
even share common neural mechanisms (Brown et al. 2019;
Morales and Lau 2021). Of interest here is that both con-
sciousness andmetacognition could be linked to higher-order
representations; reflection, or re-representations of first-order
sensory representations (Lau and Rosenthal 2011; Brown
et al. 2019). Such higher-order representations are presumed
to be abstract and low-dimensional (in content space) and
are essential to feature selection and dimension reduction
(Cortese et al. 2019; Fleming 2020). Recent theoretical work
has discussed consciousness as a system invented for the
brain’s need to constantly discriminate what is internally
generated from what is a true representation of the external
world—an internal mechanism of perceptual reality mon-
itoring (Lau 2019). In similar fashion, Gershman (2019)
suggested that generative adversarial networks (GAN,Good-
fellow et al. 2014) provide a striking analogy for how the
brain operates in metacognition and consciousness. The key
idea in the context of consciousness is a discriminator of
GAN between true and internally generated. The discrimi-
nator maps onto the higher-order representations, which are
effectively belief states about lower-level representations.

3 Metacognition accelerates reinforcement
learning

It is always very difficult to estimate howmuch genetic infor-
mation is utilized when animals learn a huge dimensional
problem froma small sample. For example, foals stand imme-
diately after birth, and this capabilitymust come largely from
genetic hardwiring of motor neural circuits, but such estima-
tion is difficult in neuroscience, for example, when humans
learn to use new tools. As the first step to identify possible
neural mechanisms of learning from small samples, we need
to show that animals (humans) can learn big problems from
small samples when genetic information or prior knowledge
is not available.

Cortese and colleagues achieved this seemingly very dif-
ficult task by arbitrarily separating brain states into two
domains, using a binary decoding technique. They prepared a
reinforcement learning task in which participants had no clue
about the reinforcement learning state (Cortese et al. 2020).
This was made possible by extending the fMRI decoded

neurofeedback method (Shibata et al. 2011, 2018; Watan-
abe et al. 2017), and by constructing a novel and innovative
reinforcement-learning task. Multi-voxel decoding was used
to separate the brain state into two domains, each associ-
ated with an optimal action that, if selected, would lead
to high probability of reward. The decoding utilized about
200 voxels, but participants were unaware of which brain
area was targeted for decoding and how these voxels were
selected. Furthermore, fMRI BOLD signals used for this
decoding were measured during inter-trial intervals of the
reinforcement-learning task, during which there was no task
for participants nor stimulus given. Consequently, partic-
ipants had no prior information about the reinforcement
learning state; thus, genetic information could not help to
solve the reinforcement-learning task. Nevertheless, to our
surprise, participants learned to select optimal actions within
several hundred trials in just two days of the three-day
experiment. This study clearly demonstrated that humans
can learn gigantic problems (equivalent to~10,000 voxels,
and possibly 1014 synapses) from small samples, indepen-
dent of genetic information. Experimental results obtained
from the fMRI data demonstrated that the search space
for the reinforcement-learning state started from the whole
brain, and then rapidly shrank to very limited regions of
the brain, including the basal ganglia and the prefrontal cor-
tex (PFC). Metacognition proved important for this learning
from small samples, based on the following three findings.
First, participantswith bettermetacognitive capability solved
reinforcement learning more effectively, i.e., were more
likely to select the optimal option; hence, they obtained larger
rewards. Here, metacognitive capability is defined according
to how well each participant can estimate the correctness
of their perceptual decisions on motion directions by their
subjective confidence ratings. Second, when the confidence
rating was high, then optimal choices as well as smaller
reward prediction errors were observed more often. That
is, there was information coupling between the confidence
and the reward prediction errors. Finally, as learning pro-
gressed, the above information coupling between confidence
decoded in the PFC and reward prediction errors decoded in
the basal ganglia became stronger. That is, for later learning
stages, when decoded confidence was greater, the decoded
reward prediction error was smaller. The functional relation-
ship between the two brain regions became stronger and
stronger during three days of learning (Cortese et al. 2020).

In the next section, we propose a computational neu-
roscience model of metacognition. This model basically
reproduces the aforementioned experimental data and leads
to next generation artificial intelligence with metacognition,
consciousness, and learning from small samples. This com-
putational model is an expansion and integration of the lines
of research that were introduced in the previous section.
First, the metacognition model contains multiple generative-
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inverse models. So, it is a natural extension of internal
model theories (Kawato 1997, 1999; Kawato et al. 1993,
1987, 1992), forward-inverse optics models (Kawato et al.
1993), theMoEXPmodel (Jacobs et al. 1991), andMOSAIC
(Wolpert and Kawato 1998; Haruno et al. 2001). Second, it is
a modular-hierarchical reinforcement learning model; thus,
it is an extension of RL-MOSAIC (Doya et al. 2002; Sug-
imoto et al. 2012a,b). Third, the metacognition model was
inspired by the hypothesis of perceptual reality monitoring
(Lau 2019), as well as the model of consciousness by Ger-
shman, based on a generative adversarial network (GAN)
(Goodfellow et al. 2014; Gershman 2019).

4 A computational model of metacognition

The proposedmodel constitutes a hierarchicalmodular struc-
ture of the cerebral cortex.Within a given module at a certain
hierarchy, a pair of generative and inverse models consti-
tute an element. Pairs of conjugate models are arranged in
hierarchy, as well as in parallel (Figs. 2, 3a). In sensory
related cortices (Fig. 2a), feedback neural connections from
the higher area to the lower area provide a forward optics
model (Forward: g), in other words, a generative model of
the rawer representation (Eqs. 1, 2). In contrast, feedforward
neural connections from the lower area to the higher area
provide an inverse optics model (Inverse: f ), in other words,
an analytical, one-shot computation estimating higher-order
representations (Eqs. 3, 4) (Kawato et al. 1993). In this paper,
we use deterministic formulas for simplicity, but one can
develop the corresponding stochastic formulas (Friston 2010;
Gershman 2019).

x̂L � gL
(
xH, x̂H

)
(1)

x̂H � gH
(
xHH, x̂HH

)
(2)

xH � fL
(
xL, x̂L

)
(3)

xHH � fH
(
xH, x̂H

)
(4)

hereLL,L,H,HHdenote one level lower than lower in hierar-
chy, lower level in hierarchy, higher level in hierarchy, higher
than higher level in hierarchy, respectively. Within a cortical
region, top-down computational outcomes from a generative
model x̂ and bottom-up computational outcomes from an
inverse model x are compared, and the mismatch between
the conjugate-pair estimates is computed as in Eqs. 5, 6.

∥∥x̂H − xH
∥∥ (5)

∥∥x̂L − xL
∥∥ (6)

This mismatch may originate from several factors. The
first and most obvious is that the brain region in a hierarchy
does not match the relevant aspect of the external world. If
animals need to discriminate between their prey and preda-
tors based only on odors in total darkness and from remote
distances, then visual or somatosensory modules would have
large mismatches. This is because top-down and bottom-
up computations largely diverge in these irrelevant sensory
modalities. Secondly, large prediction errors are induced by
inaccurate predictive, forward, and generative models when
the models are not learned well. The third involves compu-
tation errors by inappropriate inverse models when they are
poorly suited to a specific perceptual domain. In parallel with
this mismatch error between paired models, the reward pre-
diction error δik utilizing the representation of that (i, k) corti-
cal region is computed through communicationwith the basal
ganglia (Fig. 3a). Here, i represents the modality of the mod-
ule, and k represents the depth in hierarchy and is designated
as LL, L, H, HH in Eqs. (1)–(6). For all conjugate-model
pairs, mismatch errors and reward prediction errors are com-
puted, and their weighted summation is used by the cognitive
reality monitoring network (CRMN) in the PFC (Fig. 3a).

In motor-related cortices (Fig. 2b), computations simi-
lar to those in sensory-related cortices are executed utilizing
sensory-motor conjugate-model pairs. Ultimately, the mis-
match error and the reward prediction error are computed
and weighted for summation, as in sensory cortical areas.
The most marked differences between the sensory and motor
cortices are directions of input–output of forward and inverse
models. We set the higher level of the hierarchy for both sen-
sory and motor cortices with more abstract representations,
and the higher level is closer to the PFC. The lower level
of hierarchy is characterized by rawer representations and is
closer to sensors, muscles, and the body. The inverse model
(controller: Inverse: f ) in motor cortices computes the motor
command from the desired state, so its input–output direction
is from top to bottom, which is the reverse of those of sensory
inverse models. The important assumption is that the motor
command of the higher level uH is identical to the desired
state of the lower level xdL.

xdL � uH � fH
(
xdH, x̂H, x̂L

)
(7)

xdLL � uL � fL
(
xdL, x̂L, x̂LL

)
(8)

The forward model (state predictor: Forward: g) in
sensory-motor cortices predicts the state from themotor com-
mand and the current state, so its input–output direction is
from bottom to top, which is the reverse of sensory forward
models.

x̂H � gH
(
x̂L, uH

)
(9)

x̂L � gL
(
x̂LL, uL

)
(10)

123



420 Biological Cybernetics (2021) 115:415–430

Fig. 2 a Hierarchical and recurrent arrangements of conjugate-model
pairs in higher and lower levels of sensory cortices. Forward and inverse
models in the pair are a generative, forward optics model and its inverse
in the case of vision. Themismatches between forward and inverse com-
putations are calculated (open circles in the figure) and are used as inputs
to forward models, as well as sent to the prefrontal cortex. x : A repre-
sentation of the external world computed by feedforward one-shot, and
analytical, inverse models (bottom up), x̂ : representation of the exter-
nal world computed by feedback, iterative, generative, forward models
(Top down); H: higher level in hierarchy; L: lower level in hierarchy;

HH: higher than higher level in hierarchy. b Hierarchical and recurrent
arrangements of conjugate-model pairs in higher and lower levels of
sensory-motor cortices. Forward and inverse models in the pair are a
predictive, forward model and an inverse model of a controlled object
at that level of representation. The mismatches between forward and
inverse computations are calculated (open circles in the figure) and are
used as inputs to inverse models, as well as sent to the prefrontal cortex.
x : state; x̂ : predicted state by forward model; xd: desired state; u: motor
command; H: higher level in hierarchy; L: lower level in hierarchy; LL:
one level lower than lower

The mismatch of conjugate models is the difference of
the desired state computed by the inverse model and the esti-
mated state computed by the forward model.

∥
∥xdH − x̂H

∥
∥ (11)

∥∥xdL − x̂L
∥∥ (12)

The mismatch is expected to be small, provided that the
module is relevant for current actions, that the inverse model
is appropriate for motor control, and that prediction by the
forwardmodel is accurate. If the task requires eyemovement,
while the module is about foot movement, the mismatch
should be large.

Again, the reward prediction error δik is computed for
the representation and is weighted by a weighting factor w
and summed with the above mismatch. Here, i represents
the modality, such as vision, audition, or somatosenses. k

represents the hierarchical level, corresponds to LL, L, H,
HH in previous notations, and takes larger values for higher
levels of the hierarchy.

δik is the difference between the predicted reward utilizing
the (i, k) representation and the actual reward.

The weighted summation will be used by CRMN.We call
thisweighted summation of the twokinds of errors “cognitive
prediction error” eik . Equations 13 and 14 are for motor and
sensory conjugate pairs, respectively.

e2ik �
∥∥∥xdik − x̂ik

∥∥∥
2
+ wδ2ik (13)

e2ik � ∥∥xik − x̂ik
∥∥2 + wδ2ik (14)

The cognitive prediction error is not simply a sensory pre-
diction error, a motor command error, or a reward prediction
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Fig. 3 a Whole brain parallel, hierarchical structure, having loop com-
munications with the basal ganglia. Neural circuits within laminar
structures of cerebral cortices are redrawn 12 times according to those
in Fig. 1B of Kawato et al. (1993). Each hierarchy in eachmodality con-
tains both forward and inverse models. The upper hierarchy represents
motor cortices and the lower hierarchy represents sensory cortices. Note
that forward models and inverse models are bottom-up (feedforward)
and top-down (feedback) directions in the motor cortices, but they are
reversed in the sensory cortices. CRMN in the PFC contains cogni-
tive prediction errors eik , likelihoods Lik , responsibility signals λik and
their priors λ̂ik . The basal ganglia compute reward prediction errors δik
for all modality and hierarchy (i, k). Here, i represents the modality,
such as vision, audition, somatosenses. k represents the level in hier-
archy and corresponds to LL, L, H, HH. b. An autoencoder network
when feedforward (ff) and feedback (fb) neural connections in a are
unfolded in the right and left sides of the PFC, respectively. Here, for
simplicity, the schematic representation only depicts V1 (early visual
cortex), but the same mapping applies to any sensory or motor area. x :
state; x̂ : predicted state by forward model; xd: desired state; u: motor
command; H: higher level in hierarchy; L: lower level in hierarchy; LL:
one level lower than lower. eik , Lik , λik , λ̂ik , δik : cognitive error signal,
likelihood, responsibility signal, responsibility-signal prior, and reward
prediction error of RL for (i, k) module

error, but contains all three types of errors. That is why we
use the term “cognition” for this error.

The whole architecture is basically hierarchical reinforce-
ment learningwithmultiplemodules.One of the new features
is that conjugate-model pairs constitute each hierarchy of
each modality. Another feature is gating by CRMN, as
explained below. The likelihood (Lik : likelihood of i-th par-

allel module and k-th hierarchy) is a soft max function of the
cognitive error.

Lik � exp
(−e2ik/σ

2
)

∑
lm exp

(−e2lm/σ 2
) (15)

∑

ik

Lik � 1 (16)

The responsibility signal λik is equal to Lik for small and
intermediate k, but is defined as the product of the likelihood
and a prior estimate of the responsibility signal, based on
representations in all modules at high levels of the hierarchy.

λik � λ̂ik · Lik, k >> 1 (17)

The terminology “responsibility signal” was borrowed
from the MoEXP and MOSAIC literature. For a given task
and state of the world, there may exist a well-suited module
to cope with them. The gating network and CRMN select
an appropriate module which is “responsible” for the task
and the state and computes the degree of this appropriate-
ness by the responsibility signal. If it is large, the module is
more appropriate and more heavily recruited for perception,
action, and learning.

The prior estimate of the responsibility signal λ̂ik roughly
corresponds to the gating network ofMoEXP architecture, as
well as a discriminator network of GAN. λ̂ik could be initial-
ized as a flat vector or with random numbers. The function h
in Eq. 18 is incrementally updated (learned) with the λik as
a teaching signal.

λ̂ik � h
(
xdil , x̂il , xil

)
, l >> 1, k >> 1 (18)

The responsibility signal λik uses cognitive error signals
of all levels of the hierarchy for its computation, but its prior
λ̂ik does not use cognitive error signals, and instead can
be estimated from abstract information sent by feedforward
pathways, so by inverse models in sensory streams and for-
wardmodels inmotor streams, aswell as abstract information
broadcasted away by feedback pathways, so by forwardmod-
els in sensory streams and inverse models in motor streams.
Only high-level representations are used for the prior, as indi-
cated by l >>1.Without dependingon cognitive error signals,
just by examining dimension-reduced abstract representa-
tions, CRMN can determine that some modules are most
likely appropriate for representing the sensory world and the
executed action, but that other modules are inappropriate.
Based on the responsibility signal, the PFC selects the best
conjugate-model pair for motor control and perception. This
is a computational account for metacognition in the sense
that the PFC “attends” to and “adopts” the selected module
and hierarchy. The responsibility signal is used for percep-
tual attention and action selection, as well as gating learning
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of corresponding conjugate-models and reinforcement learn-
ing. The responsibility signal also acts as a teaching signal
for its prior estimate. The CRMN in the PFC consists of the
prior estimate network for the responsibility signal, a soft
max to compute the responsibility signal, and computation
of entropy S of the responsibility signals as follows:

S � −Σλik ln(λik). (19)

Because information collected by CRMN is a very small
subset of all representations in all modules and hierar-
chy, CRMN reduces data dimensions and conducts module
and feature selection by the responsibility signal. If we
graphically expand feedforward and feedback pathways of
conjugate model pairs in the right and left sides to the PFC,
the whole neural network looks like an autoencoder network
(hourglass model) and CRMN corresponds to its bottleneck
with the smallest intermediate layer (Fig. 3b).

The most novel proposal for CRMN is its metacogni-
tion and consciousness explanations in addition to selection
of modules for action, perception, and module-learning, as
well as reinforcement learning. This is motivated by the
experimental findings of the negative correlation between the
decoded confidence and the decoded reward-prediction error
in Cortese et al. (2020). We postulate that consciousness is
determined by entropy S of responsibility signals (Eq. 19),
which is compatible with a previous coherence proposal of
consciousness (Kawato 1997). If all responsibility signals
are similarly small and almost uniform, entropy is large,
and neither metacognition nor consciousness emerges. If one
responsibility signal is much larger than other responsibil-
ity signals, then entropy becomes small, and metacognition
of the cognitive process, which is executed by the module
with the largest responsibility signal, emerges. The agent
becomes conscious of corresponding perception and action
representations. The function of the discriminator in GAN
in (Gershman 2019) is replaced by the responsibility-signal
entropy inCRMN.GAN’s discriminator helps to trainGAN’s
generator in a self-supervised fashion (Goodfellow et al.
2014). Someone first needs to train the GAN’s discriminator
with real data and false data. Separation of the data into the
two classes necessitates either human involvement, or other
brain parts, or homunculus. In theGANalgorithm, a teaching
signal for discriminating between real and false data is nec-
essary (here we note the presence of training data in GAN as
the supervised learning for clarity), but we cannot afford to
assume such a luxury in biological brains. If wemake such an
assumption, it is almost identical to assuming the presence of
a homunculus who tells some neural activities representing
the external world and others not. Instead of the super-
vised learning paradigm of GAN, reinforcement learning
based on rewards and minimization of responsibility-signal
entropy are driving forces for all kinds of learning in CRMN

architecture. This learning involves conjugate-model pairs,
reinforcement learning, and the responsibility-signal prior
estimator. For rigorous computation of the responsibility sig-
nals, the mismatch at each hierarchy and module should be
computed. The responsibility signals can be approximated by
the responsibility estimator that uses only the high-level top-
down and bottom-up signals. Thus, in CRMN, the cognitive
error signals are “teaching” signals in supervised learning,
and the responsibility estimators are learned with this super-
vision. In this sense, CRMN was inspired by Gershman’s
proposal of GAN discriminator for reality monitoring and
turned it into a self-supervised learning framework (Good-
fellow et al. 2014; Gershman 2019; Lau 2019).

5 Relationships to previous models

CRMN is based on several lines of previous artificial neu-
ral network models and computational neuroscience models.
In this section, we discuss how the proposed metacognition
model explains various enigmas associated with learning
from small samples in relation to previous studies. First
of all, the PFC in CRMN serves as the bottleneck layer
of the autoencoder neural network in dimension reduction,
as explained in the previous section (Fig. 3b). Dimensional
reduction in the PFC and selection of a module are the main
mechanisms enabling learning from small samples. Because
the huge original problem is transformed into many small
and tractable problems with reduced dimensions, the PFC
and the selected module can learn from a small sample.

Conjugate-model pairs were proposed as forward and
inverse models for cerebellar internal models (Kawato et al.
1987), as well as in MOSAIC (Wolpert and Kawato, 1998;
Haruno et al. 2001), and proposed as essential elements
in the coherence model of consciousness (Kawato 1997).
In the perceptual domain, Kawato and colleagues (1993)
proposed forward and inverse optics models for fast visual
computation. The MoEXP model incorporated competition
and cooperation between multiple modules in selection and
learning (Jacobs et al. 1991). CRMN extends these previous
models and incorporates generative-inverse model pairs as
well as competition and cooperation between them, and is
more general in the sense that perception and motor control
are coherently managed. The novel feature of CRMN is its
selection and gating mechanism. In previous models, a mod-
ule with better learning performance (MoEXP), or a module
containing a forward-model with better sensory prediction
(MOSAIC) is selected. Thus, gating requires comparison of
each module’s output and teaching signal (MoEXP) or the
state of the external world (MOSAIC). This may be possible
within a shallow hierarchy, but would be practically impos-
sible in brains with deep hierarchies. CRMN instead utilizes
consistency of conjugate-model-pair predictions for gating,
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which can be evaluated within each level of hierarchy with-
out reference to the global teaching signal or the sensory
inputs. Our basic assumption is that the cascade of a gener-
ative model and its inverse should be an identity function;
thus, the mismatch between corresponding outputs should
be zero if the model pair is suited for a given context and is
perfectly accurate (Fig. 2).

Furthermore, CRMN is also based on a second stream of
theoretical and computational studies: hierarchical and mod-
ular reinforcement learning. CRMN proposes that reinforce-
ment learning occurs in parallel while utilizing individual
representations for each module in the hierarchy with its
specific conjugate-model pair. Therefore, if the brain con-
tains 10,000 different representations, and 10,000 different
value functions, policies and reward prediction errors are
estimated simultaneously and in parallel by loop compu-
tations between the basal ganglia and each module in the
hierarchy (Fig. 3a). Module selection in CRMN is based not
only on the consistency between conjugate-model pair com-
putations, but also appropriateness of its representation for
reinforcement learning. Thus, CRMN selects and recognizes
a cognitive process not only by its perceptual consistency or
motor-control competence, but also based on its optimality in
maximizing long-term rewards. CRMN is closely related to
RL-MOSAIC (Doya et al. 2002; Sugimoto et al. 2012a,b) in
the hierarchical-reinforcement learning literature in the sense
that prediction goodness selects the appropriate module.
While only goodness of forward-model prediction is con-
sidered in RL-MOSAIC, consistency of forward and inverse
models is a criterion for selection and is generalized to both
perceptual and sensory motor domains in CRMN. CRMN
also incorporates the reward prediction error in selecting an
appropriate module, and this is a new feature, compared with
MoEXP, MOSAIC, and RL-MOSAIC.

Computation of responsibility signals from cognitive pre-
diction errors transpires in the PFC and is the most novel
feature of CRMN. This computation is closely related to the
gating functions ofMoEXP architecture, and the responsibil-
ity signal of MOSAIC. Estimation of the responsibility prior
is related to prior estimation inMoEXP, and the discriminator
network of GAN. If entropy of the responsibility signals is
large, CRMN believes that all modules are inappropriate for
perceptual interpretation of the current world, or for behav-
ioral adequacy in a given task. This corresponds to a state
in which the discriminator of GAN believes that the input is
artificial. The small entropy of CRMN corresponds to a state
in which the discriminator of GAN believes that the input is
real. CRMN, as amodel ofmetacognition and consciousness,
is highly motivated by theories of Lau (2019) and Gershman
(2019). A new aspect of CRMN is entropy of responsibil-
ity signals based on model mismatch and reward prediction
errors, which can theoretically abolish the necessity of teach-
ing signals for the GAN discriminator. Gershman (2019)

explicitly proposed the prefrontal discriminator of GAN,
which is a centralized consciousness model (higher-order
theory). Our model is half centralized as responsibility sig-
nals and its predictor converge in the PFC, but half distributed
(first-order theory) because computations of mismatches are
individually executed at each hierarchy level and module all
over the cerebral cortices. The feedback generator and feed-
forward generator of Fig. 1 in Gershman (2019) correspond
to our forward optics (generative) model and inverse optics
(inference) model (Fig. 2), respectively. The usage of “for-
ward” and “feedback” are just opposite in both, and we note
this just to avoid possible confusion.

Because CRMN is based on hierarchical-modular rein-
forcement learning, MOSAIC, and MoEXP, its origin lies in
optimal action selection, and supervised and reinforcement
learning. Thus, its ancestry had nothing to do with phenom-
enal consciousness or metacognition. But once CRMN is
laid out, it could be a model of phenomenal consciousness,
even though not amodel of accessibility or access conscious-
ness or attention. We propose that only when responsibility
signal entropy S is low, participants become consciously
aware of representations with high responsibility signals.
This is because all representations at several hierarchical lev-
els are coherent, consistent and stable; thus, the PFC abstract
representations are very well connected to first-order repre-
sentations.

6 DecNef experimental support for CRMN

In this section, we discuss how the proposed metacognition
model explains experimental results of decoded neurofeed-
back (DecNef), especially experimental results of Cortese
and colleagues (2020). In the CRMN model, the search
space of the reinforcement-learning state for any new task
starts from all brain areas and proceeds to very limited
regions selected by CRMN, based on responsibility sig-
nals. This accords well with the experimental finding that
brain areas correlated with the reward prediction error were
widespread and covered the entire brain on the first day,
but shrank very quickly to a few areas, including the basal
ganglia and the PFC during the following two days. Par-
ticipants with higher metacognitive capability learned faster
in the reinforcement-learning task. Moreover, better actions
were taken when participants were more confident about
their perceptual judgments. If CRMN performs well, both
metacognition and gating by the responsibility signal are
efficient. Thus, the association between metacognition and
learning found in the experiment is compatible with CRMN.
Interestingly, in this study, participants could discriminate
the correctness of their brain state inference (perceptual
choice), but they were not conscious of the brain state itself.
For the CRMN, to be conscious we need to have a high
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responsibility signal across the distribution of representations
that span the entire hierarchy—lower-level representations
must match higher-level ones. Nonetheless, for metacog-
nition, the responsibility signal is about a single module;
thus, even with a relatively low, but graded responsibility
signal, this could be sufficient to have metacognitive insight,
while failing to reach consciousness. As learning progressed,
confidence decoded from PFC multi-voxel patterns showed
larger information coupling with reward prediction errors
decoded from basal-ganglia multi-voxel patterns. CRMN
performs several functions simultaneously and coherently,
based on responsibility signals. Functions include gating
modules for metacognition, perception, and action, and both
conjugate-model learning and reinforcement learning. Thus,
experimental results are compatible with predictions from
CRMN.

CRMN can explain the “consciousness enigma” of Dec-
Nef experiments (Shibata et al. 2011; Cortese et al. 2016,
2021a). Although decoded fMRI neurofeedback in these
experiments induced strong brain representations and caused
significant behavioral changes with medium to large effect
sizes (Watanabe et al. 2017), participants remained unaware
of the information induced in their own brains (Shibata et al.
2018; Cortese et al. 2021a). CRMN predicts that strong
neural representations in a module and hierarchy are not suf-
ficient to induce consciousness. Feedforward and feedback
computations by conjugate-model pairs should be compati-
ble as a prerequisite for consciousness. However, the target
area of DecNefwas isolated from other areas regarding view-
points of the induced information (Shibata et al. 2011,Amano
et al. 2016). Furthermore, although the induced information
was strong enough to change related behaviors, no relevant
sensory stimulus or motor task was given to participants;
thus, neither generative models nor inverse models receive
appropriate inputs related to the induced information from
lower and/or higher levels of the hierarchy. Without relevant
inputs, neither model can accurately predict information rep-
resentations in the targeted area in DecNef. Consequently,
mismatches between the conjugate model-pair should be
quite large and the corresponding responsibility signal should
be small. In this case, CRMN asserts that the informa-
tion representation in that area does not reach the level of
consciousness, even though it is strong enough to change
behavior. Hence, CRMN explains why participants in Dec-
Nef did not become conscious of the information induced in
their own brains that was strong enough to cause behavioral
changes.

7 Relationship to phenomenal
consciousness

In this section, we discuss how the proposed metacogni-
tion model explains experimental results of a broad array
of phenomena in metacognition, consciousness, and sense
of agency. On the same basis of larger mismatch signals
introduced in the previous section, CRMN explains why
spontaneous brain activities (Berkes et al. 2011; Kenet et al.
2003;Luczak et al. 2009), brain activities inducedbyworking
memory, or brain activities induced by mental imagery, are
not necessarily brought above consciousness. Brain activities
under these conditionsmay contain strong information repre-
sentations in some brain areas (Albers et al. 2013; Mendoza-
Halliday and Martinez-Trujillo 2017), but these areas lack
either feedforward or feedback neural inputs or both, regard-
ing relevant representations from lower and higher levels
in the hierarchy. Thus, the mismatch within the conjugate-
model pair is large and responsibility signals of the areas are
small. During working memory andmental sensory imagery,
top-down signals are sent from the PFC to sensory cor-
tices, but bottom-up signals are absent because of the lack of
corresponding sensory stimuli. Therefore, mismatch signals
should be large atmany levels of the hierarchy, and especially
at lower levels. In theCRMNframework, largemismatch sig-
nals imply nonconscious representations. Nevertheless, per-
sistent local recurrence between generative and inverse mod-
els at some intermediate levels may generate internal signals
traveling upward to middle and high levels of the hierarchy,
leading to small mismatch with top-down signals (conscious
representations). These cases may correspond to conscious
experiences for some participants. Thus, CRMNpredicts that
the efficiency of recurrent computations between the forward
and inverse models and their levels in the hierarchy deter-
mines whether and/or how strongly a participant is conscious
about working memory or mental imagery content.

Top-down signals sent from the PFC through feedback
pathways in the sensory stream and top-down pathways in
the motor stream cannot tell whether downstream represen-
tations are real or not. Let us take a thought experiment. The
motor center sends a rightward finger movement intention,
but actually a participant is involved in a sense of agency
experiment, and is shown a leftward finger movement video.
Accordingly, sensory representations of the rightward move-
ment inferred from the motor command are not real. We can
think of similar mismatches between working memory and
visual imagery top-down signals and real bottom-up sensory
signals. An important proposal of CRMN is that only if the
brain examines compatibility of top-downandbottom-up sig-
nals, can it discriminate real from spurious representations
of the external world and executed task.

The peculiar cases of aphantasia and blindsight offer
important tests for the CRMNmodel. People with aphantasia
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can perform mental imagery, but lack conscious awareness
of the imagery content (Pounder et al. 2021). In blindsight,
people are unable to consciously experience visual stimuli
due to damage to the visual cortex. Yet, they are able to
objectively discriminate between visual stimuli (Weiskrantz
1996; Stoerig and Cowey 1997). CRMN can accommodate
both conditions. In aphantasia, the lack of consciousness
may result from weaker recurrent local interactions between
the generative model and its inverse model, or deficits in
the CRMN. In blindsight, bottom-up signals are weak; thus,
high-level representations are not formed, and top-down sig-
nals are absent, so mismatch signals are large. However,
the weak low-level signals may still be used to perform
tasks that involve unconscious processing, such as forced
choices, Pavlovian and instrumental conditioning, reinforce-
ment learning (Hammet al. 2003; Takakuwa et al. 2017;Kato
et al. 2021).

Based on similar reasoning, CRMN provides an explicit
computational account of “sense of agency” (Haggard 2017)
and its deterioration in brain disorders (Biran and Chatter-
jee 2004; Fried et al. 2017). Mirror neurons of monkeys and
the mirror-neuron system of humans are activated both in
movement control and observations of related movements
executed by other agents (Di Pellegrino et al. 1992; Iacoboni
et al. 1999; Rizzolatti 2004). Wolpert and colleagues pro-
posed that forward models in MOSAIC can be utilized to
infer intentions of other agents from observations of their
movements (Wolpert et al. 2003). Even though neural repre-
sentations of one’s ownmovements andmovements executed
by others could be similar in motor related cortices, we can
well discriminate the two types, i.e., we have capability of
sense of agency. Who executes the movements observed
by the sensory system? Myself or someone else? CRMN
explains the difference between these two cases by inverse
models and top-down neural connections.When one visually
observes a video of armmovements, for example, bottom-up
neural connections carrying visual information and resulting
forward model computations could be similar to those gen-
erated by one’s own movements. However, because there is
no movement intention in higher motor cortical areas, top-
down neural connections do not carry much control input
to inverse models; thus, the mismatch between the inverse
models and forward models becomes large. Then, CRMN
rejects the hypothesis that neural representations in premo-
tor or motor cortices are generated by one’s ownmovements,
and the sense of agency does not emerge. In visual cor-
tical areas, the mismatch could be small and participants
may be consciously aware of arm movements. This capa-
bility is compromised in patients with psychosis (Blakemore
et al. 2000), and we can explain this either by deficits in
CRMN, mismatch computation, or within forward (Blake-
more et al. 1998) or inverse models. Conscious perception
is also similarly compromised in schizophrenia (Berkovitch

et al. 2017). Finally, based on similar CRMN mechanisms,
brain activities induced by mental motor imagery and spon-
taneous brain activities are rejected for representing actual
movements, even if they have similar motor representations
in some brain areas. Because CRMN is based on a single
set of computations, it can offer a simple unifying expla-
nation for the seemingly different phenomena of psychosis,
schizophrenia, conscious perception and agency.

We assume that, in the PFC/CRMN, an abstract represen-
tation of conscious content exists (regardless of whether it
is Lik s or vectorial representations), and only if this con-
tent is compatible with first-order content in the sense of
high responsibility signals. Then conscious awareness of the
content emerges. In this paper, we did not consider sev-
eral interesting phenomena in conscious vision, including
peripheral inflation, binocular rivalry, masking, weak stim-
uli, but most of these may be explained by the interplay
(mismatch between the conjugate pair or coherence between
first-order and higher-order representations) between gener-
ative and inference models and their monitoring (in the way
of more abstract representations and responsibility signals)
by the PFC. It is one of our future research plans to system-
atically consider these interesting cases from the theoretical
framework of CRMN.

8 Discussion

Here, we discuss the proposed model of metacognition in
the context of several previous theories of consciousness.
We further speculate how this computational neuroscience
model could lead to next-generation artificial intelligence,
which possesses metacognition and consciousness (Dehaene
et al. 2017), and is able to learn gigantic problems from small
samples. To conclude, we illustrate how this model, at the
intersection of neuroscience and artificial intelligence, may
also inspire new experiments to causally induce conscious-
ness in humans.

CRMN provides an implementable computational algo-
rithm for higher-order theories (HOT) of consciousness
(Brown et al. 2019). In general HOT, the PFC monitors
a cognitive process as a requisite of metacognition. How-
ever, it has not been computationally specified what kinds
of neural information are monitored. It is also not evident
whether this monitoring mechanism is fundamentally dif-
ferent from a homunculus observing a cognitive process. In
CRMN, the PFC monitors coarse-grained information rep-
resentations, mismatch signals, and reward prediction errors
from each area. Of note, while monitoring is about coarse-
grained information, what the agent will be consciously
aware of are representations associated with small entropy,
which can correspond to coarse- or fine-grained information.
Thus, the PFC monitors only very limited information and
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computes responsibility signals in an algorithmic way, so it
cannot be a homunculus. In CRMN, we explicitly propose
that consciousness has important functional contributions to
survival and learning from small samples. CRMN clarifies
the relationship between metacognition and consciousness
with a concrete algorithm. Both result from one underlying
mechanism, but metacognition is defined over one cognitive
process, and consciousness is defined over distributed vari-
ables (responsibility signals) of all cognitive processes and its
entropy. As long as responsibility signals are large, the PFC
can simultaneously accommodate metacognition of multiple
cognitive processes. Because consciousness is determined
by the entropy of all responsibility signals, it is a state deter-
mined by all modules, and different from metacognition.

CRMN is also consistent with a second major hypoth-
esis of consciousness in some regards. The prerequisite of
consciousness in CRMN is a low mismatch, leading to a
high responsibility signal between a generative model and
its inverse model. Such a situation can only be attained if
the two paired models are consistent and signals circulat-
ing between them are self-consistently maintained in that
brain area. This accords with the basic assumption of recur-
rent processing theory (Lamme et al. 2000; Lamme 2018;
Malach 2021). Recurrent neural connections within and
between areas are essential tomaintain neural activities above
consciousness. One-shot feedforward computations across
hierarchical brain areas are not sufficient for consciousness
in the recurrent processing theory or in CRMN. With this
note, one may notice that CRMN could not be perfectly clas-
sified as a higher-order theory because the computations of
mismatch signals and reward prediction errors, both of which
are at the heart of the responsibility signal computation, are
done in a distributed manner by every level of the hierarchy
and modality, and by their loop connections with the basal
ganglia. In that sense, CRMN may be regarded as a blend of
first-order theory and higher-order theory. As prerequisites of
consciousness, CRMN requires two conditions: that a first-
order representation of some module and some level in the
hierarchy have a small mismatch, and that the PFC detects it
by a small entropy of the responsibility signals.

In CRMN, the PFC is an information hub. Information
from all cerebral cortical areas is collected in the PFC, which
sends responsibility signals back to all cerebral cortical areas
in return. Thus, communications between the PFC and all
cerebral cortical areas are essential for consciousness to be
established in CRMN, as in global neuronal workspace the-
ory, another major theory of consciousness (Dehaene and
Naccache 2001). Yet, a delicate difference in nuance of
information broadcasts may exist. Widespread information
broadcasts between several areas of key cognitive functions
are not essential in CRMN, although they might be in global
neuronal workspace theory.

One of the core proposals of the self-organizing men-
tal representational account (SOMA) theory by Cleeremans
et al. (2019) is that learning of a metarepresentation of first-
order representations is essential for consciousness. If we can
assume that higher level representations with generative and
inference model pairs at higher and more abstract levels of
CRMN roughly correspond tometarepresentation of SOMA,
the two theories are related.

Currently CRMN does not explicitly include the default
mode network (DMN). We have the following hypothesis
regarding partition of labor in reinforcement learning (RL)
between task positive networks versus task negative net-
works or DMN. The former is mainly for on-line currently
experienced trials for RL, while the latter is for off-line, off-
policy, mental simulations of RL. The responsibility signals
and learning rates of on-line trials should be generally larger
than those of off-line trials. Furthermore, different values of
other RL hyperparameters should be chosen for on-line and
off-line RL trials. Thus, the ventromedial PFC and the dor-
solateral PFC may contain different architectures of CRMN
for selection and gating of modules in DMN and the task-
positive network, respectively. The DMN is heavily involved
in social cognitive functions; thus, it seems to be involved
especially in off-line social simulations of RL. Wolpert et al.
(2003) proposed that conjugate model pairs are utilized to
understand the intention of actions by others. In this context,
the expandedCRMNseems related to a proposal byGraziano
and Kastner (2011) and Fleming (2020) that the same mech-
anisms/brain areas involved in attributing agency to others
are potentially involved in generation of consciousness in
a given agent. Further, multiple accounts of metacognition
have modeled self-reflection as an inference about others’
performance or mental states (Fleming and Daw 2017; Shea
et al. 2014).

Bengio (2017) noted that language is important in the con-
sciousness prior for artificial intelligence. Language allows
complex sensory information to be represented at a symbolic
level. Previous human imaging studies suggest continuous
transitions from sensory-motor domains to language. We
demonstrated that the human cerebellum contains multi-
ple internal models of tools (Imamizu et al. 2000, 2003;
Higuchi et al. 2007), and also showed that representations
of language and tools overlap in Broca’s area, supporting the
tool-origin theory of language (Higuchi et al. 2009). Beyond
dimensionality reduction and selection of the bestmodules or
representations, the architecture proposed here would endow
an artificial agent with an additional advantage. A scheme
that updates multiple internal models in parallel for each
acquired data point would enable the agent to modify its
internal states even in modalities that are not immediately
relevant. This seems particularly important in the real world,
where relevant data are often sparse and delayed, and envi-
ronments are stochastic. What is unnecessary now might be
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crucial an hour later. The CRMN implements two aspects
of human reasoning: hypothesis testing that probably hap-
pens at the conscious level, but also keeping track of multiple
alternatives subconsciously. Engineering implementations of
generative models, their inverses, and estimators of respon-
sibility signals with deep neural networks may inaugurate
new-generation artificial intelligence with metacognition,
consciousness, and learning capability from small samples.
As a small step in this direction, we plan to computation-
ally simulate a simplified CRMN as a MoEXP architecture.
To this end, we will model participant learning behaviors
observed in Cortese et al. (2021b). In that experiment, par-
ticipants were able to learn an abstract representation for
reinforcement learning from a small sample. The fact that
participants’ confidence was significantly correlated with
their ability to select the correct abstraction is a strong indica-
tor of its involvement in accelerating learning. Our ultimate,
and possibly long-term scientific goal is to cause phenomenal
consciousness by decoded neurofeedback without sensory
stimuli or motor tasks. Knotts et al. (2019) obtained intrigu-
ing results toward this direction, finding that reinforcing
mental representations of high confidence and a stimulus fea-
ture (e.g., the color red) was associated with a higher chance
of making false alarms. Yet, this study also showed that the
goal of generating phenomenal consciousness is probably too
difficult without explicit computational models like CRMN.
With multi-voxel decoding of responsibility signals based on
CRMN, a “causal study of consciousness” may be within our
reach.
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