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Characterizing the breast cancer lipidome and its
interaction with the tissue microbiota
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Breast cancer is the most diagnosed cancer amongst women worldwide. We have previously
shown that there is a breast microbiota which differs between women who have breast
cancer and those who are disease-free. To better understand the local biochemical pertur-
bations occurring with disease and the potential contribution of the breast microbiome, lipid
profiling was performed on non-tumor breast tissue collected from 19 healthy women and 42
with breast cancer. Here we identified unique lipid signatures between the two groups with
greater amounts of lysophosphatidylcholines and oxidized cholesteryl esters in the tissue
from women with breast cancer and lower amounts of ceramides, diacylglycerols, phos-
phatidylcholines, and phosphatidylethanolamines. By integrating these lipid signatures with
the breast bacterial profiles, we observed that Gammaproteobacteria and those from the class
Bacillus, were negatively correlated with ceramides, lipids with antiproliferative properties. In
the healthy tissues, diacylglyerols were positively associated with Acinetobacter, Lactococcus,
Corynebacterium, Prevotella and Streptococcus. These bacterial groups were found to possess
the genetic potential to synthesize these lipids. The cause-effect relationships of these
observations and their contribution to disease patho-mechanisms warrants further investi-
gation for a disease afflicting millions of women around the world.
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complex interplay between genomic and physiological

interactions at the tumor site, which can result in different
prognostic attributes and therapeutic implications. It is the most
commonly diagnosed cancer amongst women worldwide affect-
ing up to one in eight during their lifetime, but its etiology is still
not completely understood and causal pathways have been dif-
ficult to delineate. Recent technological and scientific advances in
the field of ‘omics” have uncovered previously unknown features
of disease ontology further advancing our knowledge on the role
of genetics and the environment in breast cancer!.

Accumulating evidence suggests that bacterial communities
within breast tissue could be an additional environmental factor
contributing to cancer development’~!2. We have previously
shown that human breast tissue is not sterile and contains diverse
bacterial communities whose composition differs in normal tissue
between healthy women and those with breast cancer?3. How-
ever, it is unclear if differences in the breast microbiome are a
cause or consequence of the pathology.

The biomolecular processes occurring within tumors differ from
those occurring in normal tissue and a variety of cancers share
common metabolic features. Hence, dysregulated metabolism con-
stitutes one of the established hallmarks of cancer!3. Reprogrammed
tumor cell metabolism aims to modify cellular fitness in a manner
that presents a selective advantage during malignancy. Biosynthesis
and turnover of lipids are considerably increased in tumor cells to
meet the anabolic requirements and redox needs of the proliferating
tissue!4. Lipids are also shuttled towards the formation of cellular
membranes and signaling molecules. Shifts in cellular lipid profiles
thereby influence breast cancer metabolism and progression!. Bac-
teria also process a variety of lipid species as an energy source and
obtain the building blocks required for the synthesis of their cell
envelope. The intestinal microbiota has been shown to modulate host
lipid metabolism in the gut and at the systemic level through direct
and indirect interactions!®. Variation in the lipid content of a host
environment can therefore influence the microorganisms present and
conversely, the activity of the different microbial inhabitants can
modify the lipid landscape of that niche and its visibility and
bioactivity for the host.

The aim of this study was to characterize the lipidomic signatures
of breast tissue collected adjacent to breast tumors and compare it to
those collected from healthy individuals who were disease-free. In
addition, the relationship between the breast microbiota and the
surrounding lipid profiles was explored as well as the effect of breast
cancer on these associations.

Breast cancer is a multifaceted disease characterized by a

Results
Characterizing the lipidomic profile of breast tissue from
healthy women and breast cancer patients. Fresh breast tissue
was collected from 61 women undergoing breast surgery at St.
Joseph’s Health Centre in London, Ontario, Canada. Forty-two
women underwent lumpectomies or mastectomies for breast
tumors, while 19 were free of disease (“healthy”) and underwent
either breast reductions or enhancements. For those women with
tumors, the tissue obtained for analysis was collected outside the
marginal zone, approximately 5 cm away from the tumor. This is
termed ‘tumor-adjacent-normal’ tissue. Tissue collected from
healthy women is referred to as ‘healthy-normal’ tissue. None of
the subjects had been on antibiotics for at least 3 months prior to
collection. The lipidomic profiles of the tissue extracts were
measured by ultra-performance liquid chromatography-mass
spectrometry (UPLC-MS) in both positive and negative electro-
spray ionization (ESI) modes.

Orthogonal projection to latent structures-discriminant analysis
(OPLS-DA) models were constructed to assess differences in the

lipid profiles of healthy-normal tissue and tumor-adjacent-normal
tissue. Lipid features were Pareto-scaled, and log-transformed and
model validation was carried out using cross-validation-analysis of
variance (CV-ANOVA) testing. From these models, clear
differences were observed in the breast lipids between the two
study groups measured by both ESI modes. These models
displayed high predictive scores, indicating distinctive lipid
phenotypes in healthy-normal tissue and tumor-adjacent-normal
tissue (EST+ mode model diagnostics: RZX = 0.361, R2Y = 0.784,
Q%Y = 0.505, P value = 2.66e-09; ESI— mode model diagnostics:
R2X =0.303, R2Y = 0.659, Q2Y = 0.392, P value = 1.94e-07). For
putative biomarker extraction, appropriate feature selection, and
lipid structure annotation of candidate biomarkers, the workflow
described by Vorkas et al. was followed!®17, A total of 48 unique
lipid species were annotated, which were found to be statistically
significantly different between the two tissue groups (Fig. 1). The
lipid profile of tumor-adjacent-normal tissue was characterized by
the accumulation of lysophosphatidylcholines (LysoPCs) and
oxidized cholesteryl esters (0xCEs). Such features were absent
from the healthy-normal tissues. Conversely, breast tissue from
healthy women presented a more diverse lipid profile with higher
intensities of several lipid classes such as diacylglycerols (DG),
ceramides (Cer), phosphatidylcholines (PC), and phosphatidy-
lethanolamines (PE).

Variation in the breast microbiome between healthy controls
and breast cancer patients. Comprehensive analysis of the
microbiome of the same breast tissues has previously been per-
formed using 16S rRNA gene sequencing analysis and the results
are described in Urbaniak et al.23. For the purposes of this
manuscript, a subset of these bacterial profiles was investigated
where matching lipidomics data existed (16 healthy controls, 32
breast cancer patients). Using ALDEx2, bacterial taxa were
identified whose relative abundances significantly differed
between the two study groups. Tumor-adjacent-normal tissue was
found to contain higher relative abundances of Staphylococcus,
Bacillus, and Gammaproteobacteria (unclassified), while healthy-
normal tissue harbored higher abundances of Corynebacterium,
Acinetobacter, Prevotella, Gammaproteobacteria (unclassified),
and Lactococcus (Table 1).

Elucidating microbial—lipid interactions in breast tissue.
Relationships between lipids and bacterial taxa were further
investigated using a multi-block sparse-PLS-DA (sPLS-DA)
approach to identify the most discriminatory bacterial OTUs and
lipids between healthy-normal (n=16) and tumor-adjacent-
normal tissues (n=32). Tumor-adjacent-normal tissues were
discriminated from healthy controls on the first component of the
model for both lipid and OTU data sets (Fig. 2A). The impor-
tance of each variable in the process of tissue classification is
shown in Fig. 2B. Lysophosphatidylcholines and oxidized cho-
lesteryl esters from the lipid block and Bacillus and Gammapro-
teobacteria (unclassified) from the bacterial block were the most
important variables for discriminating tumor-adjacent-normal
tissue from the healthy-normal tissue. The circos plot derived
from the sPLS-DA model displays the features selected from the
model to best classify the phenotypes (Fig. 2C). The links between
the two data sets indicate a strong inverse correlation between
Acinetobacter and Lactococcus, which were more abundant in
tissues from healthy individuals, and lysophosphatidylcholines
and oxidized cholesteryl esters. A strong positive correlation was
observed between Acinetobacter, Lactococcus, Corynebacterium,
Prevotella, Anoxybacillus, and Cytophagales (unclassified) and
phosphatidylethanolamines, diacylglycerols and ceramides, all of
which were more abundant in the healthy-normal tissues.
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Fig. 1 Discriminant lipid species between healthy-normal and tumor-adjacent-normal tissues. Lipid species found in the OPLS-DA models (ESI+ and ESI—)
to be significantly different in breast tissue collected from healthy women (n =19) and those with breast cancer (n = 42). Left panel, bar plot presenting the log(p
value) from the t test (two-tailed; assuming unequal variance) comparing the two groups. Right panel, bar plot indicating the p(corr) values obtained from the
OPLS-DA models built on the lipidomic profile (negative p(corr) indicates the lipid feature is more abundant in the tissue from cancer patients compared to
healthy controls). Top five features in the list are uniquely present in tissues from cancer patients. Cer ceramide, DG diacylglycerol, lysoPC
lysophosphatidylcholine, oxCE oxidized cholesteryl ester, PC phosphatidylcholines, PE phosphatidylethanolamines.

Integrated analysis of the microbial and lipidomic data was also
performed without prior variable selection using Pearson’s
correlation coefficients (Fig. 3). Results from this analysis were
evaluated with and without false discovery rate (FDR) correction.

Gammaproteobacteria (unclassified) and Comamonodaceae were
significantly inversely correlated with the abundance of Cer and
PEs. Staphylococcus did not associate with ceramides but
exhibited negative correlations with PEs. Bacillus was negatively
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Table 1 Bacterial relative abundances in normal and tumor-adjacent-normal tissue.
Genus Median log2 RA Median log2 RA Effect size P value P.gj
Cancer Healthy
Corynebacterium —3.05078 0.55456 0.93460 0.00002 0.00024
Acinetobacter 3.52399 4.99866 0.89468 0.00004 0.00047
Prevotella —0.07806 2.23876 0.83597 0.00010 0.00085
Gammaproteobacteria (unclassified) —-3.41404 0.24559 0.83370 0.00022 0.00147
Prevotella —2.19046 0.61126 0.83049 0.00048 0.00297
Lactococcus 1.80420 3.84987 0.74354 0.00003 0.00038
Lactococcus 1.21785 3.44230 0.72191 0.00041 0.00267
Prevotella —3.88765 —1.18212 0.67504 0.00204 0.00919
Lactococcus —0.23240 3.06471 0.56543 0.00320 0.01553
Prevotella —3.43107 —1.36356 0.49660 0.03067 0.08866
Streptococcus —0.77006 1.46508 0.42017 0.04131 0.12656
Micrococcus 0.52029 111744 0.36611 0.03150 0.09472
Staphylococcus —1.35312 —3.22940 —0.4477 0.03066 0.08570
Staphylococcus 2.57149 137032 —0.45353 0.03536 0.1m97
Lactobacillus 2.73155 1.64036 —0.47398 0.02433 0.08437
Propionibacterium 4.31073 3.43269 —0.48797 0.03016 0.10008
Bacillus —2.22084 —4.77999 —0.51615 0.023%4 0.06333
Bacillales (unclassified) —1.45938 —4.20697 —0.5183%9 0.01784 0.05692
Bacillus —2.39633 —-517174 —0.55899 0.01690 0.05183
Staphylococcus 1.32550 —1.53964 —0.66019 0.00057 0.00348
Bacillus 114347 —2.40476 —0.79326 0.00020 0.00140
Gammaproteobacteria (unclassified) 0.05306 —3.91697 —0.98396 0.00002 0.00020
Bacillus 4.56707 0.08631 —1.32125 0.00000 0.00000
Median log?2 relative abundances (RA) and effect sizes of different genera in healthy-normal tissue and tumor-adjacent-normal tissue. Negative effect size value indicates a higher relative abundance of
genera in tumor-adjacent-normal tissue compared to healthy-normal tissue.
Bolded values indicate bacterial genera found to significantly differ between the study groups after adjusting for multiple testing.

associated with the majority of lipid features that were found in
higher amounts in the healthy-normal tissues, but few associa-
tions survived FDR correction. Enterobacteriaceae were positively
correlated to LysoPCs and Bacteroidetes (unclassified) were
positively associated with several PEs but none of these
associations remained significant following FDR correction.
Lactococcus and Acinetobacter were inversely associated with
LysoPCs and oxCEs, lipids found to be higher in tumor-adjacent
normal tissues. The same OTUs were positively associated with
PEs and some DGs. Prevotella, Streptococcus and Corynebacter-
ium were positively correlated only to DGs.

Genetic potential of discriminatory breast tissue microbiota
for lipid biosynthesis and metabolism. The Kyoto Encyclopedia
of Genes and Genomes (KEGG)!8-20 was used to identify the
enzymes responsible for the biosynthesis of Cer (pathway mod-
ule: M00094), DGs (entries: C00641 and C00165), PCs (entry:
C00157), and PEs (entry: C00350). The enzymes required for the
biosynthesis of LysoPCs were identified based on a literature
search?l. In total, 5 enzymes were identified that can synthesize
Cer, 26 for DGs, 2 for lysoPCs, 15 for PC, and 12 for PE (Fig. 4).

Using the EnzymeDetector?? tool of the enzyme repository
BRENDAZ?3 (www.brenda-enzymes.org), the presence of genes for
these enzymes of interest in the genomes of strains of
Acinetobacter, Bacillus, Corynebacterium, Lactococcus, Prevotella,
Pseudomonas, and Streptococcus was explored. Ceramidase, which
is responsible for the degradation of Cer, was also included in the
analysis. The presence of any of these indicates the genomic
potential of each genera to synthesize the specific lipid group
indicated. A heatmap is provided in Fig. 4 with categorical values
denoting the presence or absence of the genes responsible for the
enzymes of interest. In the case of the biosynthesis of DGs, the
biosynthetic potential was identified in Acinetobacter, Bacillus,
Corynebacterium, Lactococcus, Prevotella, Pseudomonas, and in
Streptococcus. For lysoPCs, one enzyme was identified for

Acinetobacter, Bacillus, Corynebacterium, and Pseudomonas.
Except for Prevotella, all of the genera analyzed had at least one
enzyme required for the synthesis of PC. All of the genera have
the genetic potential to synthesize PE. None of the analyzed
genera had the genes required for the biosynthesis of Cer. The
gene required for the expression of ceramidase was not identified
in any of the genomes of the genera analyzed.

Discussion

This research has identified distinct lipid signatures in tumor-
adjacent-normal breast tissue collected from breast cancer
patients versus healthy controls. This provides further evidence
that altered cellular lipid metabolism occurs in close proximity to
a tumor, an area where microbes are known to inhabit. Tumor-
adjacent-normal tissue contained higher amounts of oxCEs and
LysoPCs and lower amounts of various DGs, PEs, and Cer
compared to healthy-normal tissue. Significant associations were
also observed between different bacterial groups measured in the
breast tissue and the lipids present. These relationships were
altered by the presence of a tumor and their potential to con-
tribute to breast cancer pathomechanisms and influence cancer
progression warrant further investigation.

Several long fatty amide-chain Cer (fatty amide chains ranging
from 21 to 24 carbons) were less abundant in tumor-adjacent-
normal tissue compared to tissue sampled from healthy indivi-
duals. Ceramides are antiproliferative24 molecules that have been
shown to mediate cell death in cancer by inducing apoptosis°.
Alternatively, Cer can be metabolized to sphingosine-1-phosphate
(S1P), which has been attributed with a critical role in breast
cancer?0 as it is associated with the promotion of cell proliferation
and survival. The findings presented here are based on tissue
adjacent to the tumor (approximately 5cm away) and the lower
abundance of ceramides may reflect increased migration of these
molecules into the tumor tissue. This may facilitate cancer pro-
gression by impairing the control of cell proliferation and the
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Fig. 2 Integrative analysis of lipid and bacterial profiles in healthy-normal and tumor-adjacent-normal tissues. Integration of lipid and bacterial profiles
using multi-block sparse-partial least-squares-discriminant analysis (sPLS-DA). A Score plots showing samples from each data set projected in latent
space. Tumor-adjacent-normal (n=32) and healthy-normal tissues (n =16) are discriminated along component 1. B Loading weights of each of the
selected discriminant variables on component 1 for each data block. € Circos plot showing correlations between variables in the different data sets along
component 1, derived from the DIABLO model using sPLS-DA. DG diacylglycerol, lysoPC lysophosphatidylcholine, oxCE oxidized cholesteryl ester, PE

phosphatidylethanolamines.

mechanisms that arrest growth?”. Consistent with this, previous
studies have shown breast tumors contain greater amounts of Cer
and S1P compared to healthy tissue from the same individuals28.
Tumors have also been found to have higher expression of genes
involved in all three ceramide biosynthesis pathways?°.
We previously reported that the breast microbiome of these
tissues varied between healthy-normal tissue and that collected
adjacent to a tumor. Interestingly, the microbiota was comparable
between the tumor and adjacent tissue from the same individual.
Tissue from breast cancer patients contained a greater abundance
of Bacillus, Staphylococcus, Enterobacteriaceae (unclassified),
Comamondaceae (unclassified), and Bacterioidetes (unclassified)
and a lower abundance of Prevotella, Lactococcus, Streptococcus,
Corynebacterium, and Micrococcus compared to the healthy
individuals. Similar findings have been reported by others, noting
differences in the breast microbiome between healthy individuals
and those with breast cancer and no, or minimal, differences
between paired normal and tumor tissue from the same

individual (reviewed in ref. 39). It is unclear if differences in the
lipid profiles between tumor-adjacent-normal and healthy-
normal tissues are a result of the bacterial variation in the tis-
sues or rather that lipid differences due to the presence of a tumor
drive the bacterial variation. We believe the former is a more
feasible explanation, as bacteria are known to produce bioactive
molecules that have a profound influence on the host31-33, Some
of these bacterial metabolites play a role in breast cancer pro-
cesses and include lithocholic acid343%, short-chain fatty acids®°,
cadaverine®’, or deconjugated estrogens3$3°.

Our results are consistent with observations made by others
where lipid and fatty acid pathways are upregulated, most likely
to be used as sources of energy that support tumor cell growth as
well as pathogenesis0-42.  Specifically, for the Cer, the
sphingomyelinase-ceramide system has been implicated with a
key role in host responses to many pathogens. Sphingomyelinases
and Cer are important for the internalization of pathogens, the
induction of apoptosis in infected cells and the release of
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Fig. 3 Correlations between discriminant lipid and bacterial OTUs. Pearson’s correlation analysis identifying associations between lipids and bacterial
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cytokines®3. It is feasible that modulation of this biochemical this study, bacteria from the Gram-positive class, Bacillus and the
capacity during tumorigenesis could alter the host’s ability to Gram-negative class, Gammaproteobacteria were negatively cor-
control the local bacterial communities. Conversely, several bac-  related with Cer. Pseudomonas aeruginosa, a Gammaproteo-
terial species are able to synthesize and/or metabolize Cer*3. In  bacteria species, can secrete hemolytic phospholipase C, which
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can synthesize sphingomyelin from Cer, and alkaline ceramidase,
an enzyme that can breakdown Cer** to sphingosine. In addition,
Bacteroides spp. can produce serine palmitoyltransferase, an
enzyme that facilitates the production of sphingolipids, including
Cer. Sphingolipids derived from bacteria in the gut have been
shown to affect host lipid metabolism. As such, there is potential
that the tissue microbiota of the cancer patients could modulate
Cer availability in the breast through reduced production and
enhanced metabolism of these sphingolipids compared to the
healthy controls. It is important to note that, although our
pathway analysis did not identify genetic potential to metabolize
Cer in any of the genera, it is possible that such genes exist but
have not yet been annotated. Given the influence of Cer on
tumorigenesis, bacterial-related changes in the tissue abundance
of these molecules could have implications for tumor growth and
represent an attractive target for further study and interventions.
DGs were also depleted in tumor-adjacent-normal tissues
compared to healthy-normal tissue. These DGs are key molecules
in lipid metabolism. They are fundamental components of cel-
lular membranes and are involved in cell growth and proliferation
serving as modulators of signaling proteins in multiple inter-
secting pathways*>46. They act as second messenger signaling
lipids and can activate protein kinase C (PKC), a family of serine/
threonine kinases that control important biological processes and
are involved in cell cycle regulation, apoptosis, cell survival, and
tumorigenesis?’. There is a large body of evidence suggesting that
a number of PKC isoenzymes are involved in carcinogenesis,
invasion, and metastasis in many types of cancer including breast
cancer®, It is possible that, like Cer, DGs are recruited from the
surrounding tissue to the tumor site for PKC activation and
cancer progression, explaining their lower abundance in these
tissues. Several of the DGs depleted in the tumor-adjacent-normal
tissue were positively correlated with bacteria associated with
healthy-normal tissue. This included Acinetobacter, Lactococcus,
Corynebacterium, Prevotella, and Streptococcus. Inspection of the
genomes from these bacterial groups indicated that they all
possess the enzymatic capacity for the biosynthesis of DGs.
Consistently, various bacterial species isolated from human feces
have been shown to produce DGs including Escherichia coli,
Bifidobacterium infantis, and Clostridium bifermentans*®. How-
ever, increased abundance of exogenous DGs by the intestinal
microbiota has been proposed as a tumor-promoting risk
factor®®. As with Cer, it is plausible that DG availability may also
influence the bacterial profiles of the tissue. For example, DGs
have been identified to have a role in antibacterial autophagy, an
important immune response to invading microbes®. The DGs
target pathogenic bacteria such as Salmonella to the autophagy
pathway and induce autophagy via PKC activation.
Tumor-associated tissue was found to contain higher amounts
of three lysoPC species compared to healthy-normal tissue.
LysoPCs are predominantly derived from phospholipase hydro-
lysis (usually LPA2; also indicated by sn-1 lysoPC detected) or the
lecithin-cholesterol acyltransferase (LCAT) mediated transfer of
one fatty acid to free cholesterol (producing cholesteryl ester),
from the PC. Increased oxCEs in the tumor-adjacent-normal tis-
sue suggest that increased LCAT-catalyzed production of lysoPCs
has occurred in these tissues. Additionally, oxCEs can be directly
produced from the hydrolysis of PC hydroperoxides by the LCAT
enzyme’!. The strong positive correlations between lysoPCs and
0xCEs found here further support this hypothesis. Intriguingly,
both lysoPCs and oxCEs were negatively associated with the
Lactococcus genus. The mechanisms remain to be explored.
Dysregulation of PE metabolism was indicated by the lower
abundance of several PE species in tumor-adjacent-normal tissue,
predominantly from the ether-PE subclass. De novo PE synthesis
occurs by two main pathways: (a) in the endoplasmic reticulum

(ER), by incorporating a PEth (CDP-Eth) to DGs, which con-
stitute the final steps of the Kennedy pathway, and (b) in the
mitochondria, using the conversion of phosphatidylserine to
PE°2. There is currently no clear evidence as to the effect of these
changes on cancer disease.

Conflicting studies show both positive and negative associa-
tions with PEs and cancer, suggesting such relationships may be
cell-type or cancer dependent>?>3. Nonetheless, decreased levels
of ether-PEs have been reported in breast cancer tumors com-
pared to adjacent normal tissue®. Furthermore, the dysregulated
PE moieties from our study showed positive correlations to Cer
and inverse associations to 0xCEs, in concordance with previous
reports of associations between ether-PE species and cholesterol
and sphingolipid metabolism>2.

Notable differences were found in the microbial and lipidomic
landscapes of breast tissue collected from healthy women com-
pared to those from patients with breast cancer. These connec-
tions were supported by the genetic potential of specific bacteria
to synthesize certain lipids. The findings admittedly have lim-
itations in terms of sample size and location (i.e. tumor-adjacent-
normal tissue rather than tumor tissue), and do not prove cause
and effect. Nevertheless, the integrated analysis performed in this
study generates new opportunities for better understanding the
biological mechanisms underpinning breast cancer and once
again illustrates the need to consider the microbiome in the
pathogenesis of this common disease.

Methods
Tissue collection and processing. Fresh breast tissue was collected from 61 women
(Supplementary Table 1) undergoing breast surgery at St. Joseph’s Hospital in Lon-
don, Ontario, Canada. Ethical approval was obtained from the Western Research
Ethics Board and Lawson Health Research Institute, London, Ontario, Canada.
Subjects provided written consent for sample collection and subsequent analyses.
Forty-two women underwent lumpectomies or mastectomies for breast tumors, while
19 were free of disease (“healthy”) and underwent either breast reductions or
enhancements. For those women with tumors, the tissue obtained for analysis was
collected outside the marginal zone, approximately 5 cm away from the tumor. None
of the subjects had been on antibiotics for at least 3 months prior to collection.
After excision, fresh tissue was immediately placed in a sterile vial on ice and
homogenized within 30 min of collection. Tissue samples were homogenized in
sterile PBS using a PolyTron 2100 homogenizer at 28,000 rpm. The amount of PBS
added was based on the weight of the tissue in order to obtain a final concentration
of 0.4 g/ml. The homogenate was then stored at —80 °C until metabolome analysis.

Tissue metabolite extraction. Breast tissue samples (40 mg) were combined with
300 pl of pre-chilled chloroform:methanol (2:1) and homogenized using a tissue
lyzer. The homogenate was combined with 300 pl water, vortexed and spun
(1000 x g for 15 min at 4 °C) to separate the aqueous and organic phases into two
glass vials. 300 ul water and 300 pl of chloroform:methanol (2:1) were added to the
pellet and samples were vortexed and spun again. The aqueous and organic layers
were transferred into their respective glass vials. The organic phase supernatants
were allowed to evaporate at room temperature in an extractor hood overnight and
stored at —40 °C until analysis.

UPLC-MS analysis of organic extracts. Ultra-performance liquid chromato-
graphy coupled to mass spectrometry (UPLC-MS) analysis was performed as
described in Vorkas et al.!”. The organic extracts were subjected to a lipid profiling
reversed-phase (RP) UPLC-MS analysis. The evaporated extracts of the breast
tissue samples were reconstituted in 500 pl of the solvent mixture:water/acetonitrile
(CAN)/isopropanol (ISP) (1:1:2) and then centrifuged at 5000 x g for 10 min at
4°C. The extracts was then transferred into Total Recovery vials (Waters Corp,
USA). UPLC separation was conducted using an Acquity UPLC System (Waters
Corp, USA) using an Acquity UPLC CSH C18 2.1 x 100 mm, 1.7 pm, column
(Waters Corp, USA). The column temperature was set to 55 °C and flow rate at
0.4 mL/min. Mobile phase A consisted of ACN/water (60:40) and mobile phase B
consisted of ISP/ACN (90:10). Ammonium formate diluted to a concentration of
10 mM and formic acid to 0.1% was added to both mobile phases A and B. The
elution gradient was set as follows: 60-57% A (0.0-2.0 min), 57-50% A

(2.0-2.1 min; curve 1), 50-46% A (2.1-12.0 min), 46-30% A (12.0-12.1 min; curve
1), 30-1% A (12.1-18 min), 1-60% A (18.0-18.1 min), 60% A (18.1-20.0 min).
Injection volumes of 3 and 7 pl were used for positive and negative ionization
modes, respectively. The autosampler temperature was set to 4 °C. Mass spectro-
metry was performed using a Xevo G2 QTof (Waters MS Technologies, UK) with
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an electrospray ionization (ESI) source. A quality control pooled sample (QC) was
injected every ten samples in order to assess instrument stability and feature
reproducibility through the run®. Data extraction for both analyses was conducted
using the XCMS package®® (version 1.34.0) in R programming language (version
2.15.2).

Microbiome data acquisition. Detailed description of the DNA isolation process,
V6 16S rRNA sequencing-PCR amplification and sequence processing, and taxo-
nomic assignment is presented in Urbaniak et al.3. (i) DNA isolation: In a tube,
1.2 ml of ASL lysis buffer (QIAamp, DNA stool kit; Qiagen) was added to 400 ul of
thawed tissue homogenates together with 400 mg of 0.1 mm diameter zirconium
glass beads (BioSpec Products). 800 ul of PBS control and 800 ul of the skin swab
control were then added to the same tube. Bead beating (Mini beadbeater 1;
BioSpec Products) at 4800 rpm for 60 s at room temperature and then 60 s on ice
(repeated twice) was performed for mechanical and chemical lysis of all samples.
The suspension was then incubated at 95 °C for 5 min. Subsequent procedures were
performed using the Qiagen QIAamp DNA stool kit according to the manu-
facturer’s protocol, with the exception of the last step, in which the column was
eluted with 120 pl of elution buffer. DNA was stored at —20 °C until further use.
(i) V6 16S rRNA gene sequencing: PCR amplification: The genomic DNA isolated
from the clinical samples was amplified using barcoded primers that amplified the
V6 hypervariable region of the 16S rRNA gene (70 bp long): V6-forward, 5
ACACTCTTTCCCTACACGACGCTCTTCCGATCTnnnn(8)CWACGCGAR-
GAACCTTACC3'; and V6-reverse, 5 CGGTCTCGGCATTCCTGCT-
GAACCGCTCTTCCGATCTnnnn(8)ACRACACGAGCTGACGAC3'. In the
primers, nnnn indicates four randomly incorporated nucleotides, and 8 represents
a specific sample barcode sequence. The PCR was performed in a 42-ul reaction
mixture containing 2 pl of DNA template (or nuclease-free water as a negative
control), 0.15 ug/ul of bovine serum albumin, 20 ul of 2 x GoTaq hot-start colorless
master mix (Promega), and 10 pl of each primer (initial concentration, 3.2 pmol/
pl). Thermal cycling was carried out in an Eppendorf Mastercyler under the fol-
lowing conditions: initial denaturation at 95 °C for 2 min followed by 25 cycles of
95 °C for 1 min, 55 °C for 1 min, and 72 °C for 1 min. After amplification, the DNA
concentration was measured with the Qubit 2.0 fluorometer (Invitrogen) using the
broad-range assay. Equimolar amounts of each PCR product were then pooled and
purified using the QIAquick PCR purification kit (Qiagen). The pooled PCR
purified sample was then paired-end sequenced on the Illumina Mi-Seq platform
using a 150 cycle kit with a paired-end 80-bp run at the London Regional Geno-
mics Center, London, Ontario, Canada, following standard operating procedures.
(iii) Sequence processing and taxonomic assignment: Perl and Bash-based scripts
were used to demultiplex the reads and assign barcoded reads to individual sam-
ples. Multiple layers of filtering were employed: (i) paired-end sequences were
overlapped with Pandaseq, allowing 0 mismatches in the overlapped reads; (ii)
reads were kept if the sequence included a perfect match to the V6 16S rRNA gene
primers; (iii) barcodes were 8-mers with an edit distance of >4, and reads were kept
if the sequence were a perfect match to the barcode; (iv) reads were clustered by
97% identity into operational taxonomic units (OTUs) using the Uclust algorithm
of USEARCH version 757, which has a de novo chimera filter built into it; and (v)
all singleton OTUs were discarded, and those that represented >2% of the reads in
at least one sample were kept (a filter for PCR and environmental controls and the
skin swabs). Taxonomic assignments for each OTU were made by extracting the
best hits from the SILVA database®® and then manually verified using the Ribo-
somal Database Project (RDP) SeqMatch tool (http://rdp.cme.msu.edu/) and using
BLAST against the Greengenes database (http://greengenes.lbl.gov). Taxonomy was
assigned based on hits with the highest percentage identities and coverage. If
multiple hits fulfilled this criterion, classification was reassigned to a higher
common taxonomy.

Statistics and reproducibility. Data analysis for the acquired lipidomic data was
performed using SIMCA (v.16; Sartorius). Orthogonal projection to latent
structures-discriminant analysis (OPLS-DA) was applied to the processed Pareto-
scaled, log-transformed data. Model validation was carried out using cross-
validation-analysis of variance (CV-ANOVA) testing. For putative biomarker
extraction, appropriate feature selection, and lipid structure annotation of candi-
date biomarkers, the workflow described by Vorkas et al.!l” was followed.
Integrated analysis of the microbial and lipidomic data was performed using
Pearson’s correlation coefficients and evaluated with and without FDR correction.
Multivariate methods were used to identify discriminant features from the high
dimensional data sets between breast cancer patients and healthy controls, namely
sparse generalized canonical correlation discriminant analysis via the Data
Integration Analysis for Biomarker discovery using Latent cOmponent (DIABLO)
framework. This is part of the mixOmics R package. Sparse-partial least-squares-
discriminant analysis (sPLS-DA) was used to integrate the relative abundance OTU
data set and the lipidomics data set to classify the two groups of tissues and select the
most discriminatory features from each data set. Tuning of sSPLS-DA parameters was
performed to determine the main OTUs and lipids that allow for the best
discrimination between the healthy and diseased states with the lowest possible error
rate. This resulted in a selection of 30 OTUs and 19 lipid species. The results from
the sPLS-DA models were visualized using scores, loadings and circos plots that

exhibit the strongest positive and negative Pearson’s correlations (|r| > 0.5) between
the most discriminant OTUs and lipids for each subset of data and tissue types.

To compare the relative abundances of genera the ALDEx2 R package®® was
used. The obtained values represent the expected values of 128 Monte-Carlo
instances of CLR-transformed data. Effect sizes were calculated, and statistical
significance was determined upon Benjamini—Hochberg correction of P values
obtained from the Wilcoxon rank test (significance threshold P <0.05).

The Kyoto Encyclopedia of Genes and Genomes (KEGG)!8-20 was used to
identify the enzymes responsible for the biosynthesis of ceramides (pathway module:
MO00094), diacylglycerols (entries: C00641 and C00165), phosphatidylcholines (entry:
C00157), and phosphatidylethanolamines (entry: C00350). The enzymes required for
the biosynthesis of lysophosphatidylcholines were identified based on a literature
search. Then, the EnzymeDetector?? tool of the enzyme repository BRENDA?3
(www.brenda-enzymes.org) was used to evaluate if the genes responsible for the
synthesis of the enzymes of interest had been annotated in the genomes of strains of
Acinetobacter, Bacillus, Corynebacterium, Lactococcus, Prevotella, Pseudomonas, and
Streptococcus. Ceramidase, which is in charge of the degradation of ceramides, was
also included in the analysis. A heatmap was generated using the ggplot2 package in
R (Fig. 4), with categorical values denoting the presence or absence of the genes
responsible for the enzymes of interest.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The raw data generated during the current study are available from the corresponding
author on reasonable request. The processed lipidomics and microbiome data used in the
figures presented in the manuscript are supplied as Supplementary Data.

Code availability
Integrative analyses between lipidomics and microbiome data were performed using the
mixOmics suite of tools (https://github.com/mixOmicsTeam/mixOmics).
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