Skip to main content
. 2021 Oct 14;8:742640. doi: 10.3389/fcvm.2021.742640

Table 2.

Class identification CNNclass performance.

AlexNet DenseNet MobileNet ResNet ShuffleNet SqueezeNet VGG
Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score
2-chamber 0.998 0.993 0.996 0.998 1.000 0.999 0.997 1.000 0.998 0.998 1.000 0.999 0.993 1.000 0.997 0.986 0.991 0.989 0.993 1.000 0.997
3-chamber 0.991 0.953 0.972 1.000 1.000 1.000 1.000 0.996 0.998 0.996 0.996 0.996 1.000 0.983 0.991 0.987 0.979 0.983 0.987 0.987 0.987
4-chamber 1.000 0.990 0.995 1.000 0.998 0.999 0.990 0.995 0.992 0.998 0.995 0.997 0.997 1.000 0.998 0.987 0.992 0.989 0.993 0.997 0.995
Short axis 0.995 0.999 0.997 0.996 0.999 0.998 0.997 1.000 0.998 0.999 0.999 0.999 0.996 1.000 0.998 0.992 0.997 0.994 0.996 1.000 0.998
Other 0.973 0.985 0.979 0.998 0.990 0.994 0.996 0.984 0.990 0.994 0.995 0.994 0.996 0.984 0.990 0.984 0.969 0.976 0.995 0.978 0.986
Accuracy 0.992 0.998 0.996 0.998 0.996 0.989 0.994

Precision, recall, and F1 score for each CNNclass-determined class, and accuracy of each trained CNNclass.