Table 2.
AlexNet | DenseNet | MobileNet | ResNet | ShuffleNet | SqueezeNet | VGG | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Precision | Recall | F1-score | Precision | Recall | F1-score | Precision | Recall | F1-score | Precision | Recall | F1-score | Precision | Recall | F1-score | Precision | Recall | F1-score | Precision | Recall | F1-score | |
2-chamber | 0.998 | 0.993 | 0.996 | 0.998 | 1.000 | 0.999 | 0.997 | 1.000 | 0.998 | 0.998 | 1.000 | 0.999 | 0.993 | 1.000 | 0.997 | 0.986 | 0.991 | 0.989 | 0.993 | 1.000 | 0.997 |
3-chamber | 0.991 | 0.953 | 0.972 | 1.000 | 1.000 | 1.000 | 1.000 | 0.996 | 0.998 | 0.996 | 0.996 | 0.996 | 1.000 | 0.983 | 0.991 | 0.987 | 0.979 | 0.983 | 0.987 | 0.987 | 0.987 |
4-chamber | 1.000 | 0.990 | 0.995 | 1.000 | 0.998 | 0.999 | 0.990 | 0.995 | 0.992 | 0.998 | 0.995 | 0.997 | 0.997 | 1.000 | 0.998 | 0.987 | 0.992 | 0.989 | 0.993 | 0.997 | 0.995 |
Short axis | 0.995 | 0.999 | 0.997 | 0.996 | 0.999 | 0.998 | 0.997 | 1.000 | 0.998 | 0.999 | 0.999 | 0.999 | 0.996 | 1.000 | 0.998 | 0.992 | 0.997 | 0.994 | 0.996 | 1.000 | 0.998 |
Other | 0.973 | 0.985 | 0.979 | 0.998 | 0.990 | 0.994 | 0.996 | 0.984 | 0.990 | 0.994 | 0.995 | 0.994 | 0.996 | 0.984 | 0.990 | 0.984 | 0.969 | 0.976 | 0.995 | 0.978 | 0.986 |
Accuracy | 0.992 | 0.998 | 0.996 | 0.998 | 0.996 | 0.989 | 0.994 |
Precision, recall, and F1 score for each CNNclass-determined class, and accuracy of each trained CNNclass.