
INTRODUCTION

Airway mucus is a thin gel-like layer lining the airway lumi-
nal surface that consists of water, ions, and various molecules 
that show antimicrobial and anti-oxidative activities (Adler and 
Li, 2001). Mucus glycoproteins (mucins) that confer mucus 
viscoelasticity form a major biological macromolecular com-
ponent of mucus. In normal lung physiology, airway mucus ex-
erts its function as a physical defensive barrier against airway 
epithelial damage induced by inhaled dust, irritating gases, 
and microbes, such as bacteria and viruses, thereby protect-
ing the pulmonary system (Lillehoj and Kim, 2002). However, 
under the pathological state of the pulmonary system, such as 
chronic obstructive pulmonary diseases, cystic fibrosis, and 
asthma, the hyperproduction and/or hypersecretion of airway 
mucus, indicating the changes in mucin quality or quantity, 
have been reported to compromise the host defense system, 
ultimately leading to increased morbidity and mortality (Rose 
and Voynow, 2006). Although mucolytics, expectorants, and 
glucocorticoids have been clinically used for the management 
of abnormal airway mucus secretion, several drawbacks are 
associated with their use, including rebound mucus hyperse-
cretion due to airway luminal wall irritation and various adverse 

side effects (Li et al., 2020). Thus, it is necessary to develop 
novel agents that regulate the production and/or secretion of 
mucins by controlling their biosynthesis and/or degradation. 

Achieving this may require investigating natural com-
pounds (derived from diverse medicinal plants that are used 
empirically for alleviating inflammatory pulmonary diseases), 
with respect to the activity to regulate abnormal secretion and/
or production of mucins. We have reported various natural 
products that modulate the gene expression, production, and 
secretion of airway mucins (Kim et al., 2012; Seo et al, 2014; 
Choi et al., 2019; Li et al., 2020). 

According to a multitude of reports, eriodictyol, a flava-
none, is present in numerous vegetables, fruits, and medicinal 
plants; moreover, it shows a broad range of biological activi-
ties, including antioxidative, antineoplastic, anti-inflammatory, 
antidiabetic, neuroprotective, antiobesity, cardioprotective, 
and hepatoprotective activities (Islam et al., 2020). Eriodictyol 
exerted anticancer effects on human lung cancer cells (Zhang 
et al., 2019). Eniafe et al. (2018) suggested that eriodictyol 
may be used for the long-term regulation of asthmatic contrac-
tion of bronchial smooth muscle. In addition, Deshpande et al. 
(2020) suggested that eriodictyol can be used as a potential 
regulator for coronavirus disease 2019 via in silico analysis 
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In this study, we investigated whether eriodictyol exerts an effect on the production and gene expression of MUC5AC mucin in 
human pulmonary epithelial NCI-H292 cells. The cells were pretreated with eriodictyol for 30 min and then stimulated with phorbol 
12-myristate 13-acetate (PMA) for 24 h. The effect of eriodictyol on PMA-induced nuclear factor kappa B (NF-κB) signaling path-
way was also investigated. Eriodictyol suppressed the MUC5AC mucin production and gene expression induced by PMA via sup-
pression of inhibitory kappa Bα degradation and NF-κB p65 nuclear translocation. These results suggest that eriodictyol inhibits 
mucin gene expression and production in human airway epithelial cells via regulation of the NF-κB signaling pathway.
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using molecular docking technology. 
However, there are no studies about the potential effect of 

eriodictyol on mucin production and mucin gene expression 
in airway epithelial cells. Among the many subtypes of human 
mucins, mucin 5AC (MUC5AC) is known as a major type of 
airway mucin (Lillehoj and Kim, 2002). In this study, we inves-
tigated the effect of eriodictyol on MUC5AC mucin production 
and gene expression induced by phorbol ester in NCI-H292 
cells. The human pulmonary mucoepidermoid cell line NCI-
H292 is often used for identifying the signaling pathways in-
volved in airway mucin production and gene expression (Li et 
al., 1997; Takeyama et al., 1999; Shao et al., 2003). In addi-
tion, phorbol ester induces airway MUC5AC gene expression 
and mucin production, and nuclear factor kappa B (NF-κB) 
signaling is involved in this activity of phorbol ester in airway 
epithelial cells (Ishinaga et al., 2005; Laos et al., 2006; Wu et 
al., 2007; Kim et al., 2012; Choi et al., 2019). Thus, to eluci-
date the mechanism of eriodictyol, we examined whether it 
exerts any effect on phorbol ester-induced activation of the 
NF-κB signaling pathway in NCI-H292 cells. 

MATERIALS AND METHODS

Materials
All chemicals used in this study were purchased from Sig-

ma-Aldrich (St. Louis, MO, USA), unless otherwise stated. 
Eriodictyol (AV-H19076; purity: 98.0%) was purchased from 
Avention (Incheon, Korea). Anti-NF-κB p65 (sc-8008), anti-β-
actin (sc-8432), and anti-inhibitory kappa Bα (IκBα; sc-371) 
antibodies were purchased from Santa Cruz Biotechnology 
(Santa Cruz, CA, USA). Anti-phospho-inhibitory kappa B ki-
nase (IKK) α/β (Ser176/180; #2687) and phospho-specific 
anti-IκBα (serine 32/36; #9246) antibodies were purchased 
from Cell Signaling Technology Inc (Danvers, MA, USA). 
Anti-nuclear matrix protein p84 (ab-487) antibody was pur-
chased from Abcam (Cambridge, MA, USA). Goat anti-mouse 
IgG (#401215) and goat anti-rabbit IgG (#401315) were pur-
chased from Calbiochem (Carlsbad, CA, USA) and used as 
the secondary antibody. 

NCI-H292 cell culture
NCI-H292 cells were purchased from American Type Cul-

ture Collection (ATCC, Manassas, VA, USA). The cells were 
cultured in Roswell Park Memorial Institute (RPMI) 1640 
medium supplemented with 10% fetal bovine serum (FBS), 
penicillin-streptomycin mixture (100 units/mL and 100 μg/mL, 
respectively), and hydroxyethyl piperazineethanesulfonic acid 
(25 mM) at 37°C in a water-jacketed humidified incubator (5% 
CO2, 95% air). For serum deprivation, confluent cells were 
washed twice with phosphate-buffered saline (PBS) and then 
cultured in RPMI 1640 with 0.2% FBS for 24 h. 

Eriodictyol treatment of cells 
After serum deprivation, the cells were pretreated with vary-

ing concentrations of eriodictyol for 30 min and treated with 
phorbol 12-myristate 13-acetate (PMA) at 10 ng/mL for 24 h in 
serum-free RPMI 1640. Eriodictyol was dissolved in dimethyl 
sulfoxide and treated in culture medium (final concentration 
of dimethyl sulfoxide was 0.5%). The final pH values of these 
solutions were between 7.0 and 7.4. The culture medium and 
0.5% dimethyl sulfoxide did not affect mucin gene expression, 

production, and expression and activity of molecules involved 
in NF-κB signaling pathway in NCI-H292 cells. After 24 h, the 
cells were lysed with buffer solution containing 20 mM Tris, 
0.5% NP-40, 250 mM NaCl, 3 mM ethylenediaminetetraacetic 
acid (EDTA), 3 mM ethylene glycol tetraacetic acid (EGTA), 
and protease inhibitor cocktail (Roche Diagnostics, IN, USA) 
and were collected to measure the production of MUC5AC 
glycoproteins in a 24-well culture plate. Total RNA was extract-
ed to determine MUC5AC gene expression in a six-well cul-
ture plate via reverse transcription polymerase chain reaction 
(RT-PCR). For western blot analysis, the cells were treated 
with eriodictyol for 24 h and PMA for 30 min.

Quantitative analysis of MUC5AC mucin
Airway MUC5AC mucin production was measured using 

enzyme-linked immunosorbent assay. Cell lysates were pre-
pared with PBS at a 1:10 dilution, and 100 μL of each sample 
was incubated at 42°C in a 96-well plate until dried. The plates 
were washed three times with PBS, blocked with 2% bovine 
serum albumin (fraction V) for 1 h at room temperature, and 
then washed three times with PBS. The plates were then in-
cubated with 100 µL 45M1, a mouse monoclonal MUC5AC 
antibody (NeoMarkers, CA, USA), which was diluted at 1:200 
with PBS containing 0.05% Tween 20. After 1 h, the wells 
were washed three times with PBS, and 100 µL of horseradish 
peroxidase-goat anti-mouse IgG conjugate (1:3,000) was dis-
pensed into each well and left to incubate for 1 h, after which 
the plates were washed three times with PBS. Color reaction 
was developed with 3,3ʹ,5,5ʹ-tetramethylbenzidine peroxide 
solution and stopped with 1 N H2SO4. The absorbance was 
measured at 450 nm. 

Isolation of total RNA and RT-PCR
Total RNA was isolated using the easy-BLUE Extraction Kit 

(iNtRON Biotechnology, Inc., Gyeonggi, Korea) and reverse 
transcribed using AccuPower RT Premix (BIONEER Corpo-
ration, Daejeon, Korea) according to the manufacturer’s in-
structions. Two micrograms of total RNA were primed with 1 
µg of oligo (dT) in a final volume of 50 µL (RT reaction). Two 
microliters of the RT reaction product were PCR-amplified in 
a 25 µL using Thermorprime Plus DNA Polymerase (ABgene, 
Rochester, NY, USA). Rig/S15 rRNA, which encodes a small 
ribosomal subunit protein, a housekeeping gene that was con-
stitutively expressed, was used as a quantitative control. The 
following primers were used: MUC5AC, forward (5′-TGA TCA 
TCC AGC AGG GCT-3′) and reverse (5′-CCG AGC TCA GAG 
GAC ATA TGG G-3′); Rig/S15, forward (5′-TTC CGC AAG 
TTC ACC TAC C-3′) and reverse (5′-CGG GCC GGC CAT 
GCT TTA CG-3′). The PCR mixture was denatured at 94°C 
for 2 min followed by 40 cycles at 94°C for 30 s, 60°C for 30 
s, and 72°C for 45 s. After PCR, 5 µL of the PCR product was 
subjected to 1% agarose gel electrophoresis and then visual-
ized with ethidium bromide under a transilluminator. 

Whole cell extract preparation
NCI-H292 cells (confluent in 100-mm culture dish) were 

pretreated for 24 h at 37°C with 1, 5, 10, or 20 μM of eriodic-
tyol and then stimulated with PMA (50 ng/mL) in serum-free 
RPMI 1640 for 30 min. After eriodictyol treatment, media were 
aspirated and the cells were washed with cold PBS. For the 
cell collection, the cells were scraped and centrifuged at 3,000 
rpm for 5 min. After the supernatant was discarded, the cell 
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pellet was mixed with radioimmunoprecipitation assay buffer 
[25 mM Tris-HCl pH 7.6, 150 mM NaCl, 1% NP-40, 1% sodium 
deoxycholate, and 0.1% sodium dodecyl sulfate (SDS)] for 30 
min with continuous agitation. The lysate was centrifuged in a 
microcentrifuge at 14,000 rpm for 15 min at 4°C. The super-
natant was either used or immediately stored at −80°C. The 
amount of protein in extract was quantified using the Bradford 
method.

Nuclear and cytosolic extract preparation
After treatment with eriodictyol, the cells were harvested us-

ing trypsin-EDTA solution and then centrifuged in a microcen-
trifuge at 1,200 rpm for 3 min at 4°C. After the supernatant was 
discarded, the cell pellet was washed by suspending in PBS. 
The cytoplasmic and nuclear protein fractions were extracted 
using NE-PER® nuclear and cytoplasmic extraction reagent 
(Thermo-Pierce Scientific, Waltham, MA, USA) according to 
the manufacturer’s instructions. Both extracts were stored at 
−20°C. The amount of protein in the extracts was quantified 
using the Bradford method.

Western blot analysis 
Whole cell, cytosolic, and nuclear extracts containing pro-

teins (each 50 μg) were subjected to 10% SDS polyacryl-
amide gel electrophoresis and then transferred onto a poly-
vinylidene difluoride membrane. The blots were blocked with 
5% skimmed milk and probed with the appropriate primary 
antibody in blocking buffer overnight at 4°C. The membrane 
was washed with PBS and then probed using the horseradish 
peroxidase-conjugated secondary antibody. Immunoreactive 
bands were detected using an enhanced chemiluminescence 
kit (Pierce ECL western blotting substrate; Thermo-Pierce Sci-
entific). 

Statistical analysis
The means of individual groups were converted to percent 

control and expressed as the mean ± standard error of the 
mean. The difference between groups was assessed using 

one-way analysis of variance and the Holm-Sidak test as a 
post-hoc test. A p-value<0.05 was considered significantly sig-
nificant.

RESULTS

Effect of eriodictyol on PMA-induced MUC5AC gene 
expression and mucin production

Eriodictyol suppressed PMA-induced MUC5AC gene ex-
pression (Fig. 1) and mucin production (Fig. 2), with the lat-
ter being dose dependent. As shown in Fig. 2, the amounts 
of MUC5AC mucin in the cells of eriodictyol-treated cultures 
were as follows: control, 100 ± 2%; 10 ng/mL of PMA alone, 
185 ± 3%; PMA plus 1 μM eriodictyol, 182 ± 3%; PMA plus 5 
μM eriodictyol, 145 ± 2%; PMA plus 10 μM eriodictyol, 102 ± 
4%; PMA plus 20 μM eriodictyol, 70 ± 1%. Cell viability was 
assessed using the sulforhodamine B assay, which revealed 
that there was no cytotoxic effect of eriodictyol at concentra-
tions of 1, 5, 10, or 20 µM (data not shown).

Effect of eriodictyol on PMA-induced IKKα/β and IκBα 
phosphorylation and IκBα degradation

To activate NF-κB, PMA induces the phosphorylation of 
IKK, which sequentially phosphorylates IκBα. The phosphory-
lated IκBα dissociates from NF-κB and is degraded. There-
fore, we tested whether eriodictyol affects the PMA-induced 
phosphorylation of IKKα/β and IκBα and degradation of IκBα. 
As shown in Fig. 3, eriodictyol attenuated PMA-stimulated 
IKKα/β phosphorylation by controlling the phosphorylation of 
the serine 176/180 moiety of IKKα/β. PMA treatment increased 
the phosphorylation of IκBα, whereas eriodictyol treatment 
suppressed its phosphorylation. Moreover, PMA treatment 
increased the degradation of IκBα, whereas eriodictyol treat-
ment suppressed its degradation. 

Effect of eriodictyol on PMA-induced NF-κB p65 
phosphorylation and nuclear translocation

After its activation, NF-κB translocates from the cytosol to 
the nucleus, followed by binding to a specific DNA sequence. 
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This NF-κB/DNA assembly recruits RNA polymerase, and the 
resulting mRNA is translated into the specific proteins, includ-
ing MUC5AC mucins. The transcriptional activity of NF-κB p65 
is dependent on its phosphorylation. As shown in Fig. 4, PMA 
treatment increased the phosphorylation of p65, whereas eri-
odictyol treatment suppressed its phosphorylation. Eventually, 
eriodictyol decreased the nuclear translocation of NF-κB p65 
stimulated by PMA.

DISCUSSION

As mentioned above, mucolytics, expectorants, and gluco-
corticoids have been utilized for pharmacotherapy of pulmo-
nary diseases that exhibit hypersecretion of airway mucus; 
however, these drugs have limited clinical efficacy in regu-
lating such diseases and elicit diverse side effects (Li et al., 
2020). Thus, it is essential to develop novel agents that regu-
late production and/or secretion of mucins by controlling their 
biosynthesis and/or degradation. Achieving this may require 
investigating natural compounds (derived from diverse medici-
nal plants that are used empirically for alleviating inflammatory 
pulmonary diseases), with respect to the activity to regulate 
abnormal secretion and/or production of mucins. Our results 
showed that eriodictyol, a flavonoid with anti-inflammatory ac-
tivity, decreased MUC5AC gene expression and mucin pro-
duction stimulated by PMA (Fig. 1, 2). These results suggest 
that eriodictyol can regulate the gene and protein expression 
of pulmonary mucin by directly acting on airway epithelial 
cells. This is the first study to report about the regulatory activ-

ity of eriodictyol on airway mucin production. 
Eriodictyol was reported to suppress the IL-1β-mediated 

inflammation of chondrocytes, by attenuating NF-κB activa-
tion, and to downregulate the IL-1β-stimulated overproduction 
of PGE2, nitric oxide, and COX-2 (Wang et al., 2018). In the 
lipopolysaccharide-mediated acute lung injury mice model, 
eriodictyol dramatically reduced the expression levels of IL-6, 
PGE2, IL-1β, and TNF-α in the bronchoalveolar lavage fluid. In 
addition, the activation of COX-2/NLRP3/NF-κB and Nrf2 sig-
naling was attenuated by eriodictyol (Wang et al., 2020). No-
tably, a similar report confirmed that eriodictyol could function 
as an anti-inflammatory agent by protecting against Staphy-
lococcus aureus-mediated lung injury (Xuewen et al., 2018). 
These reports indicate the need to investigate the mechanism 
of action of eriodictyol involved in mucin gene expression and 
production, focusing on the NF-κB signaling pathway. 

As a multifunctional transcription regulator, NF-κB signaling 
commonly exists in eukaryotic cells. NF-κB activation occurs 
by preferentially inducing the phosphorylation of the IKKs, 
which then activate IĸBα phosphorylation. Consequently, the 
dissociated form of phosphorylated IĸBα accumulates and is 
degraded by the proteasome. NF-κB subunits (p65 and p50) 
are then released and enter the nucleus, where they bind to 
DNA (Nie et al., 2012; Liu et al., 2020). The NF-κB signaling 
pathway plays a crucial role in mediating the biological func-
tions associated with immunity and inflammation (Huang et 
al., 2018; Lee et al., 2019; Shang et al., 2019). Under patho-
logical airway conditions, NF-κB was found to be involved in 
mucin hypersecretion and cytokine activity regulation (Liu et 
al., 2020), and its abnormal activation has been observed in 
patients with asthma (Huang et al., 2018). Several groups of 
scientists reported that the gene expression and production of 
MUC5AC mucin might be induced by the inflammatory media-
tors that stimulate the activity of transcription factors including 
NF-κB (Fujisawa et al., 2009; Kurakula et al., 2015; Garvin 
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et al., 2016). PMA induces airway MUC5AC gene expression 
and mucin production, and NF-κB signaling is involved in this 
activity (Ishinaga et al., 2005; Laos et al., 2006; Wu et al., 
2007; Kim et al., 2012).

In our study, eriodictyol suppressed NF-κB p65 phosphory-
lation and nuclear translocation by acting on the steps of the 
phosphorylation and degradation of IκBα, in human airway 
epithelial cells (Fig. 3, 4). Therefore, the pharmacological ef-
fect of eriodictyol may be partly exerted on MUC5AC gene ex-
pression and mucin production by reducing IκBα degradation 
and NF-κB p65 nuclear translocation. 

Collectively, these results indicate that the inhibitory activity 
of eriodictyol on airway mucin gene expression and produc-
tion might be mediated by controlling PMA-stimulated IκBα 
degradation and NF-κB p65 nuclear translocation. Therefore, 
eriodictyol could possibly be used as an effective novel muco-
regulator for inflammatory pulmonary diseases. It is desirable 
to modify the chemical structure of eriodictyol to obtain an op-
timal compound that will show the most effective regulatory 
effect on the secretion and/or production of pulmonary mucus.
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