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Abstract 
State space models, including compartmental models, are used to 
model physical, biological and social phenomena in a broad range of 
scientific fields. A common way of representing the underlying 
processes in these models is as a system of stochastic processes 
which can be simulated forwards in time. Inference of model 
parameters based on observed time-series data can then be 
performed using sequential Monte Carlo techniques. However, using 
these methods for routine inference problems can be made difficult 
due to various engineering considerations: allowing model design to 
change in response to new data and ideas, writing model code which 
is highly performant, and incorporating all of this with up-to-date 
statistical techniques. Here, we describe a suite of packages in the R 
programming language designed to streamline the design and 
deployment of state space models, targeted at infectious disease 
modellers but suitable for other domains. Users describe their model 
in a familiar domain-specific language, which is converted into 
parallelised C++ code. A fast, parallel, reproducible random number 
generator is then used to run large numbers of model simulations in 
an efficient manner. We also provide standard inference and 
prediction routines, though the model simulator can be used directly 
if these do not meet the user’s needs. These packages provide 
guarantees on reproducibility and performance, allowing the user to 
focus on the model itself, rather than the underlying computation. 
The ability to automatically generate high-performance code that 
would be tedious and time-consuming to write and verify manually, 
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particularly when adding further structure to compartments, is crucial 
for infectious disease modellers. Our packages have been critical to 
the development cycle of our ongoing real-time modelling efforts in 
the COVID-19 pandemic, and have the potential to do the same for 
models used in a number of different domains.
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Introduction
To mathematically model a physical or biological process one must develop and test a model, combine it with 
potentially noisy or poor quality data, and then produce high-quality reproducible results in a computation-
ally efficient manner. This constitutes a multi-disciplinary challenge1,2. Frameworks which automate common  
computational and statistical methods can facilitate some of the complex steps in the process, and come with 
guarantees of efficiency and reproducibility3,4 – a necessity in modern science, particularly when this science is  
used in real time to support policy making5–7. 

When designing these frameworks, it is generally fair to assume that a typical multi-disciplinary modeller is 
a domain expert and technically minded, but should not have to become a software engineer in order to develop 
an efficient implementation3. Therefore, as developers of computational frameworks, we should aim to lower the  
barriers of entry by using a programming language favoured by researchers in the targeted domain, design-
ing a clear and well-documented application-programmer interface (API), and making installation, use and reuse 
as painless and portable as possible. We can enhance uptake by combining sensible software engineering choices 
with carefully designed statistical and computational methods. This make design advantages such as speed,  
unit-tested code and reproducible random number generation as broadly accessible as possible.

With these aims in mind, we describe the development of three libraries in the R programming language8, designed 
to make the implementation of state space models as easy and reliable as possible. R-like code in the odin 
domain-specific language (DSL) is automatically transpiled (converted between two high-level programming 
languages) into C++. This C++ code is then compiled into a dynamic library (loaded only when needed) with 
an R interface. The resulting code is portable, and the generated libraries are lightweight and computationally 
efficient. This procedure offers the performance and careful memory management of compiled code, without 
requiring the user to have any specialist programming knowledge. Additionally, we include an R package, mcstate, 
which provides routines for common inference and prediction tasks. Compiled models also link with functions 
directly callable from R, so users are free to develop more flexible uses and inference procedures using 
R programming. An overview of these packages and how they interact is shown in Figure 1. We provided 
detailed examples of applying these tools to simple stochastic epidemic models, both here and in the package 
documentation.

As single-threaded code, our packages run at around the same speed to two existing high-performance packages 
with similar functionality, pomp9 and libBi10. On top of this, we have paid particular attention to development 
of the odin DSL which makes models easy to develop and modify, a close interface with R which simplifies 
the flow of data in and out of models, and added efficient parallelisation which decreases runtimes while 
simulating stochastic models correctly.

Methods
Implementation
State space models relate input, output and state over time using a probabilistic model linking states at  
subsequent time steps, and can be used to model a broad range of processes. Below we describe how four major 
components of our framework, bundled as packages for the R programming language, can be used to implement 
these models. All of the packages require 100% code coverage of tests, and include unit tests designed by software  
engineers and integration testing (of entire analysis pipelines) designed by statisticians and epidemiologists.  

          Amendments from Version 1
We have added four new pieces of functionality to the code suggested by the reviewers:
- The iterated filtering algorithm of Ionides et al.
- More flexible parallelisation over both chains and particles in pMCMC.
- The ability to add arbitrary C++ code snippets to odin models.
- A simulate function, to more easily run models across a whole time series.

We document these features both in the updated text, and in a number of new package vignettes. In the text, we now 
include the sections on maximum likelihood inference (rather than entirely operating within a Bayesian framework), 
and a discussion on how to use these techniques for model criticism. We have also added a section on performing 
prior predictive checks within our framework. Finally, we have made numerous small changes to improve the clarity of 
the manuscript, including a new figure which gives an overview of our packages and how they operate together.

Any further responses from the reviewers can be found at the end of the article

REVISED
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Figure 1. Overview of the odin.dust, dust and mcstate packages. For a typical user, a model will be written in 
the odin DSL, and the odin.dust package used to convert this into a dust model (which is an R object). This object 
can be used directly with functions provided by the dust package to run the model forward across a time series. 
With simulated or observational data, the mcstate package can be used to fit the model to this data using various 
techniques based around sequential Monte Carlo (particle filters).

Code to reproduce this analysis and all of the plots in this paper can be found at https://github.com/mrc-ide/ 
odin-dust-plots.

odin – A DSL for R programmers to write efficient state space models
Packages which allow users to implement their own model code straddle a difficult dichotomy: making  
models fast and efficient to use, and making models fast and efficient to develop. Using an intermediary DSL is 
one approach to this issue, also applied in the popular JAGS and stan packages, as this offers a bridge between 
the more familiar language style used to develop models, and the compiled languages preferred for running large  
models11. Compared to writing directly in a compiled language, DSLs have the further advantage that we can 
design error messages which are domain specific, rather than the sometimes convoluted errors from compilers  
(which are necessary due to their generality). 

odin is a DSL we have been developing since 2016, and has been used to model both continuous and discrete time 
models. odin is syntactically similar to R, and by taking advantage of R’s ‘non-standard evaluation’12 presents 
users with a simple interface for describing sets of equations. The general approach of the package is that the 
user expresses their problems as a set of mathematical relationships, modelled as assignments to form a directed 
acyclic graph (DAG). odin then sorts that graph and transpiles the equations to code in a chosen target language. 
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Users can therefore write their equations in any order, which is more similar to mathematical formalism than  
declarative programming. 

For use with ordinary differential equations (ODEs), odin transpiles to C code (https://mrc-ide.github.io/odin/) 
or JavaScript (https://mrc-ide.github.io/odin.js). For the models in this paper, we focus on transpilation of  
discrete time stochastic models into C++ using a framework (dust) that we describe below. In both cases, odin  
has an R interface, allowing its standalone use, or inclusion in R packages.

By eliminating logic and ‘general programming’ (such as defining types, writing loops), the models become  
relatively simple sets of mathematical truths that map closely to the scientific domain, yet remain efficient to solve. 
In addition to scalar relationships, odin provides a syntax designed to easily add structure to compartments - for  
example to represent age or transmission classes and the interaction between these without requiring explic-
itly written loops. Arrays representing structure classes are written implicitly with indices, meaning models  
can easily be extended. An example of adding age structure is shown in the Use Cases. 

Specific functions available to the user beyond basic arithmetic include the random number generation func-
tions detailed below, and optimised sums over state items. We include most of the functions available in the 
Rmath library8 in odin, which are documented at https://mrc-ide.github.io/odin/articles/functions.html. A subset  
of these functions are currently available for dust, and we intend to continue to expand this support. If a required 
function is not available in odin, it is possible to write user-supplied C++ functions to be included in the model 
code. The only requirement for these functions is that they must return a scalar, and cannot modify the data 
they are passed. This is similar to the Csnippet approach taken by the pomp package.

mcstate – An R package implementing common SMC inference techniques, using odin models
The odin DSL gives modellers the ability to write a fast state space model in R, and interact with it in a 
number of fundamental ways. While some users may wish to implement their own inference techniques using 
these building blocks, we expect that most will use the standard methods we provide and test in the mcstate  
R package, as mcstate provides all the necessary routines for statistical inference from these models.

The key additional programmatic elements that mcstate provides for state space modelling are the definition 
of some observed data, and an observation function, which defines the log-likelihood of the observed data given 
the underlying model state. As the observation function is written directly in R, the user is free to define this 
however they choose, as long as it accepts the model state and some data as arguments. This may therefore use 
the state history stored in R, for example to compute the change in sizes of compartments and take advantage  
of large library of built-in functions. Some typical observation functions are described in the Use Cases below.

The mcstate package provides a particle filter implementation, also known as SMC (Sequential Monte Carlo)13,14, 
which enables efficient parameter inference with high-variance model runs. A dust model is run forwards in 
time for a number of particles (n). At each step where observations are available these are compared to the data, 
and a likelihood weight computed for each particle. The n particles at observation time step j are then resam-
pled with replacement, with probabilities corresponding to their likelihood weight, to select n particles to be 
run to observation time step j+115. This SMC process runs the update function for all particles, resamples, and  
continues until the final observation is reached. This final state is sometimes referred to as a ‘nowcast’. A function  
is provided to convert observational data into the correct format for the particle filter. 

With this technique for combining potentially stochastic observations with a stochastic model, a marginal  
likelihood given model parameters can be produced. We can use the log-likelihood derived from the parti-
cle filter to perform Bayesian inference on model parameters. To do this, mcstate uses Markov Chain Monte 
Carlo (MCMC) over runs of the particles filter, known as pMCMC16,17. Currently mcstate supports standard  
Metropolis-Hastings MCMC: m

c
 independent chains are run, with care taken to ensure independent random 

number streams. The user provides prior distributions as functions in R, and a variance-covariance matrix for the 
proposals. Proposals at each step are drawn from a multivariate normal distribution, are reflected if outside of  
a specified minimum or maximum, and discretised if required. Alternatively, users can choose to apply iterated 
filtering, known as IF218. This algorithm moves parameters in a random walk at each step in the time series, using 
the same weighting as the particle filter to select parameters for the next step. Over the course of the time series, 
and multiple iterations of this algorithm, this maximises the likelihood, and parameters approach values most 
compatible with the data.

We also support forecasting from the final observation position. The estimate of the posterior distribution  
produced by an MCMC run is sampled from by sampling particles with replacement. These runs extend the 
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original model run by applying to state update functions until the time has reached the required length, pick-
ing up from the final random number generator (RNG) state of the particle. If further forecasts are required, a 
new RNG state is seeded from R’s internal state, to avoid producing identical forecasts from the same streams of  
pseudorandom numbers.

dust – A C++ template library for driving parallel stochastic models from R
The above statistical techniques are computationally demanding, particularly as models become more complex, 
and to run them in a reasonable time-frame we needed an efficient engine to run stochastic models. Noting that 
between each observation step every particle is independent, we designed a system that could simulate the particles 
in parallel, so that we could take advantage of the increasing availability of multi-core CPUs. Our solution is imple-
mented in the R package dust. The dust code itself is written in C++ with an R interface, which being a compiled 
language is typically faster to execute, and allows more careful memory management. To interface with dust, users 
must provide an update function, which is the core of the model, and we provide some examples below. While 
the user can write this in C++, most easily by modifying one of the included model examples, we expect most 
users to use odin.dust to generate this code automatically. 

dust uses two main abstractions to represent and run state space models: Particle and Dust. A Particle object is a 
single trajectory simulated from the model and a Dust object is a collection of n

P
 Particles with the same model 

parameters and initial conditions, but different trajectories due to the inherent stochasticity of the system  
being simulated. Internally, Particles within a Dust object can be shuffled and sampled, to support particle filter-
ing methods. A Dust object can be run forward in discrete steps, moving all Particles forward the same number 
of steps. This is the main computation in dust, and is parallelised on up to n

P
 CPU cores using OpenMP19.  

Using the static schedule to evenly distribute particles across cores gave close to linear increase in performance  
with the number of cores with long running models described in the Use Cases (Figure 2). We designed dust 
with these abstractions as this design has the advantage of having a high-level R interface directly designed to 

Figure 2. Speedup of dust simulations as number of threads increases, on a log-log scale. Models are described 
in the Use Cases. Speedup is defined as the ratio of wall time (total program time) taken to the wall time using a 
single thread. Here, a straight line along y = x would signify reaching the theoretical optimum of 100% parallelisation 
efficiency. The closer to the straight line, the closer to full efficiency at that number of cores. The models were run for 
5 × 105 steps using nP = 103 to artificially increase the amount of computation. The SIRS model has an additional R to S 
transition to make the infection endemic, otherwise the infection dies out, and no significant processing is used. The 
‘SIR (short)’ model demonstrates a fall in performance for short running models, in this case with 103 steps and nP = 102 .  
We also ran the SIRCOVID model inference with nP = 102 for 103 MCMC steps. The consistent speedup demonstrates 
that the multicore use is effective, even when running a full pipeline with a particle filter and evaluation of a log-
likelihood in R.
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work with particle filters, but still allowing control of individual particles in the lower-level C++ interface to 
develop new methods which operate on trajectories in different ways. This was useful when developing a ‘simulate’ 
method to run projections forward where every particle has a different set of parameters. For a technical 
audience, the “design” vignette describes why these decisions were made from a developer perspective.

In addition, we tested the speedup of a large SEIR (susceptible-exposed-infected-recovered) model for  
COVID-19 transmission in the UK, implemented using the odin DSL, using dust and mcstate to infer its 
parameters. Due to 19 age-classes which add structure to most of the model compartments, the model has around  
1000 compartments in total. The computation time of running simulations of this model is therefore dominated 
by many random number draws, and so can be efficiently parallelised using the techniques described above. 
We confirmed this using a CPU profiler, finding that at least 61% of processing time being spent in the rbinom() 
function (described below). This dust model and its interface is named sircovid20, and its code and documen-
tation can be found at https://mrc-ide.github.io/sircovid. Running with n

P
 = 100 for 2000 steps, one MCMC chain 

on a laptop took around 1 hour with a single core, and showed roughly linear speedup with number of cores  
when used for either extra particles or extra chains. 

On a personal computer, users can employ up to p cores to run the n
P
 particles of dust objects, or use these cores to 

run the m
c
 chains of mcstate, as long as n

P
m

c
 <= p. On distributed infrastructure with disconnected nodes each with 

many cores, memory is shared on a node, but not between nodes. In this case, the optimal use of resources is 
typically to run n

P
 particles on a single node, using all p of its cores. The m

c
 chains, or parameter sets, can be 

independently run on up to m
c
 separate nodes, and their results combined using the provided functions. In 

some cases, parallelisation over particles is less efficient than over whole particle filters, for example when vary-
ing initial conditions and RNG seeds, on operating systems with poor OpenMP performance, or when evaluating 
model likelihoods at over a range of parameters sets. This can easily be automated in the pMCMC by using 
multiple ‘workers’ in mcstate, to parallelise m

c
 chains first, then use remaining threads to parallelise particles 

within these. Further flexibility is available to parallelise particle filters over multiple nodes, and collect results 
at the end, so users can pick a parallelisation mode that is most efficient for their problem. This is detailed in the 
‘parallelisation’ vignette in the mcstate package. 

The C++ source of the package exists largely as a header-only template library. This has the advantage that 
no platform-specific library code is needed for the generation of models, simplifying the installation process and 
giving wider support across operating systems and hardware architectures. Furthermore, compiling and opti-
mising is always done using the whole model code in a single unit. The compilation is launched from within R, 
and once finished gives a shared object with R methods to run, shuffle and extract state from the underlying  
particles.

If writing a model directly in C++ there are some minimal interface requirements, which constrain the types of 
model which can be run through dust. Specifically, the user must provide a model class to dust with the following  
functions:

•   �initial() – Loads data passed from R to set the initial state and model parameters.

•   �size() – Computes the size of the model state for a single particle (number of compartments).

•   �update() – Updates the model for a single timestep. This may only depend on the previous state i.e. it  
must be Markovian. The function has access to the model parameters, timestep and random number  
generator functions.

More flexible simulation runs than provided by mcstate, for example from running counterfactuals, are  
straightforwardly supported by direct use of the dust object in R, while providing alternative parameter sets.

Random number generation
Generating random numbers from common distributions is a cornerstone of designing the model update  
function for many epidemiological models. This is also true computationally – when profiling a complex com-
partmental model for COVID-19 transmission, we found that at least 61% of program time was spent comput-
ing random deviates. R’s default number generator is not able to operate in parallel, which meant that using the 
standard library functions for generating random deviates from common distributions was not an option.  
We therefore took particular care with the design of a parallel random number generator used by dust. 
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Random number generation on a computer produces a stream of pseudorandom numbers, usually integers in 
a specified interval, which are uncorrelated, but deterministic given a set starting point (the ‘seed’). For stochas-
tic model simulations there are two main considerations: running independent model realisations, and making  
results reproducible. Using the same seed for different particles will give identical results, and will break the 
assumptions of downstream inference methods21. However, using the same seed for an entire set of particles is  
desirable, so results can be reproduced. We also wish for our RNG implementation to ‘play-fair’, which means 
that results are independent of the specific hardware used, and the degree of parallelisation22. This is needed for 
scientific reproduciblity and effective debugging – knowing a change in results is attributable to a change in  
model, and not a change in the sequence of random number draws used to simulate the model is vital for model  
development. 

The simplest solution, which is the default in R, is to run particles serially with each subsequent particle contin-
uing from a single random number stream. However, serial particles places a limit on parallelisability. A frequent 
way around this is to make m RNGs for each parallel thread, and seed each one with a new but pre-specified seed.  
However, as the state space of the RNGs is highly non-linear and chaotic, it isn’t possible to predict at 
which point a given seed will enter the stream, shared between all RNGs with the same design. For even  
modest simulation lengths and levels of parallelism, this can lead to correlated streams of random numbers, again  
breaking downstream inference assumptions. 

One solution is to create p RNGs which can be advanced or ‘jumped’ a set number of steps. If each thread’s 
RNG consumes k random numbers, then advancing each RNG p

i
 by ik steps before running will ensure  

independent streams for each process. If k is not known, this becomes more difficult. The approach we follow 
here uses a new class of RNGs known as Xoshiro (XOR, shift, rotate)23. These generate a stream of pseudoran-
dom integers in the interval [0,264) with a period 2256. Generation is very fast, but importantly also implements a  
jump() function which advances the generator by 2128 steps in a time comparable to a single random number 
draw. Applying this allows the initialisation of up to 2128 RNGs, each capable of drawing a stream of up to  
2128 pseudorandom numbers before correlating. These concepts are summarised in Figure 3.

Random number streams should not vary based on the number of threads used in a specific run, and should 
instead always be reproducible from the same single seed. Therefore every particle p has its own RNG, rather 
than every thread; this is feasible given the relatively small state (256 bits) used by Xoshiro compared with 
generators such as Mersenne Twister (2560 bits)24. A single 64-bit integer seed is passed from R, with the 
remaining three chunks of 64-bits-of-state set pseudo-randomly from this using the splitmix64 algorithm25.  
These 256 bits are used to set the initial state of a xoshiro256** generator. The RNG state for particle  
i begins with this state, after applying the jump() function i times. 

Many off-the-shelf parallel random number generators are aimed at repeated generation from a distribution 
with the same parameters, including those in the C++ standard library. This is ill-suited to state space models,  
where distribution parameters typically change between every generation, and between every particle. The  

Figure 3. Top: parallel random number streams with the same seed are identical. Middle: parallel random 
number streams with different streams can quickly become correlated. Bottom: using the jump() function of the 
Xoshiro generator moves forward 2128 steps, giving evenly spaced, uncorrelated streams of random numbers.
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TensorFlow26 code base contains suitable implementations, but would be a large and complex dependency,  
difficult to make fully compatible with R. Therefore, we added code which uses the Xoshiro generator to transform  
into random deviates from statistical distributions:

•   �runif(a, b) - A uniformly distributed real number in the interval [a, b), by dividing RNG state by its  
maximum value of 264.

•   �rnorm(µ, σ) - A normally distributed real number with mean µ and variance σ2, by applying the  
Box-Muller transform to runif(0, 1)27.

•   �rbinom(n, p) - A binomially distributed integer given n trials and a probability of success p. Uses  
inversion transform sampling with exponentiation by squaring if np < 1028, or transformed rejection  
sampling with the ‘BTRS’ algorithm otherwise29.

•   �rpois(λ) - A Poisson distributed integer given rate λ. Uses Knuth’s algorithm for λ < 1030, and transformed  
rejection sampling otherwise31.

All of these methods are optimised for when the parameters of the distribution change every sample, as expected 
with stochastic state space models. We plan to add other random number distributions as required, though  
these were sufficient for all models currently tested. This is all implemented using C++ to be bundled with  
dust, and can directly be accessed from R.

Operation
Given a model which is known to be a good description for the data under study, we provide an over-
view of the typical workflow runs through these packages in sequence. Steps 1 and 2 are model simula-
tion, 3 to 7 for model inference, and 8 for forecasting. In cases where models are not being fitted to data, a 
dust generator can be used directly to simulate from the model with given parameters, and this process ends 
after the second step. If any model parameters are being inferred from the data steps 1–7 are required, with  
step 8 an optional addition if a further forecast using the inferred values is needed. Users with more  
complex needs not met by an odin model may also skip step 1, and write a dust target in C++ directly, while  
still using the dust RNG library and functions if required.

1.   �Write a model in the odin DSL. Markov models will define a set of update() functions which  
together give the state at t +1 by operating on the state at t.

2.   �Compile the model into a dust object. Using odin.dust, this will create a shared library and R inter-
face. This will turn the odin code into a single update() update function usable by dust. This step 
may be performed iteratively within an interactive session for rapid development, or by creating an  
R package for more robust development.

3.   �Write an observation function. This will compare model simulations to data, and calculate the  
log-likelihood of the model run given the data. Users are free to implement this however they wish,  
and can leverage any R function or package to do so.

4.   �Load observed data. Typically this will be time series data in R, as a data.frame. Use the included 
functions in mcstate to convert this into input for the particle filter, potentially adding an offset and  
intermediate steps without observations.

5.   �Create a particle filter object. This uses the dust generator, observation function and observed data.

6.   �Set parameters. Define prior functions and pMCMC jump size for unknown parameters; set the  
values of known parameters.

7.   �Run a pMCMC. Using parameters and the particle filter, this will return posterior density estimates  
for each unknown parameter.

8.   �Forecast trajectories. If a forecast is required, run the predict() function in mcstate after the  
pMCMC, which will create simulated trajectories for each particles past the end of the data, while  
sampling parameters from the posterior.

In some cases, users will want to first undertake model criticism, where possible models are compared in their 
ability to describe the data being studied, and iteratively improved. This may also be used as a replacement 
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where the computational demands of a full pMCMC run are too great. In this case, steps 1–5 are the same, but 
then a maximum likelihood method replaces subsequent steps, and priors are only optionally specified:

•   �6a. Investigate model specification. Use maximum-likelihood estimation with IF2 to determine features 
of the data which are incompatible with the model.

•   �7a. Compare possible models. Likelihood estimates from IF2 can be produced by running sets of particle 
filters with the sample() function. For nested model structures, these can be compared with likelihood- 
ratio tests.

•   �8a. Use this information to design a better model. Changes to the model structure can be made, returning to 
step 1 iteratively until an appropriate model is arrived at.

System requirements for running are:

•   �R (>=v3.5.0)

•   �A C++ compiler such as gcc or clang is needed to compile dust models.

•   �An appropriate OpenMP library (>=v3.0), including a C++ compiler supporting the -fopenmp option, 
such as gcc (>=v4.0) or clang (>=v3.9). If OpenMP is not available, models will still compile, but  
parallelisation of particles will not be supported.

•   �odin, odin.dust, dust and mcstate, all of which can be installed with standard tools. Here, we used odin  
v1.1.12; odin.dust v0.2.7; dust v0.9.3; mcstate v0.6.0.

All our R packages are available for R on Linux, OS X and Windows, and are open source using the MIT licence.

Use cases
Here we exhibit some brief examples of state space models, followed by a typical use case in epidemiol-
ogy. We demonstrate the ease of use of these packages as this model becomes more complex, and is expanded 
to more realistic scenarios. These examples are included with the dust package, and detailed vignettes to  
reproduce the analysis here are included with the mcstate package.

Basic stochastic models
A basic model for volatility, which is a broadly used concept in finance describing randomly distributed variance  
of an asset’s price x, is given by: 

t tdx axdt dWσ= +

where α is the constant drift, σ is a constant volatility and dW
t
 is a Weiner process with zero mean and a vari-

ance of one32,33. Given the properties of Weiner processes (Brownian motion), the update function using the  
Euler-Maruyama method is:

1

~ (0,1)
ttx ax w

w N
σ+ = + ∗

which in the odin DSL is simply:

update(x) <- x * alpha + sigma * rnorm(0, 1)
initial(x) <- x0
alpha <- user(0.91)
sigma <- user(1)
x0 <- user(0)

The user() syntax specifies this will be a parameter provided through the R interface, either directly or 
through an inference method (such as mcstate). Default values can be set in brackets. Multiple realisations of  
this model can be run through dust (Figure 4) as follows:
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Figure 4. Plot of the x state from ten independent realisations (particles) from the volatility model, with an 
example trajectory highlighted in black, and the smoothed mean value from all particles in red.

gen <- dust::dust_example("volatility")
# more generally:
# gen <- odin.dust::odin_dust("volatility.txt")

vol <- gen$new(data = list(alpha = 0.91),
               step = 0,
               n_particles = 10,
               n_threads = 4L,
               seed = 1L)
vol$run(10)

This is included as an example in the dust package, but users can load their own model code by calling odin_dust  
on the text file containing their model. This example illustrates running ten particles, ten timesteps forwards  
parallelised over four threads. The seed provided gives reproducible, uncorrelated runs for each of the particles.

Stochastic SIR model
Models of infectious disease transmission – such as the susceptible-infected-recovered (SIR) model34,35 – are  
an obvious use of our packages. Typically these models can be expressed in three related forms: ODEs, stochas-
tic differential equations (SDEs) or as a continuous time Markov chain (CTMC)36. Their solutions have dif-
ferent properties: ODEs are fast to solve numerically, and are deterministic given a set of initial conditions; 
SDEs give stochastic solutions each time they are solved which better represent the variance in real-world  
systems, and still have efficient numerical solvers; CTMCs best represent the discrete nature in small popula-
tions and correctly model absorbing states, but are computationally more intensive to realise trajectories from37. 
For the remainder of this section we focus on stochastic models, particularly CTMC formulations of infectious  
disease transmission models. A simple definition (using the ODE formalism) of the SIR model is:

dS SI
dt N
dI SI I
dt N
dR I
dt

β

β γ

γ

= −

= −

=
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S is the number of susceptibles, I is the number of infected and R is the number recovered; the total population  
size N = S + I + R is constant. β is the infection rate, γ  is the recovery rate.

This model can be discretised in time steps of width d t using the following update equations for each time step36–38:

1

1

1

,

, ,

,

SI

SI IR

IR

t tt

t t tt

ttt

S S n
I I n n
R R n

+

+

+

= −
= + −
= +

where the number of individuals moving between compartments are given by drawing from binomial distributions:

,

,

~ ( , 1 exp( ))

~ ( , 1 exp( ))

SI

IR

t
t t

t t

In B S dt
N

n B I dt

β

γ

− − ⋅

− − ⋅

the binomial distribution is used as there are n trials, one for each individual in the compartments, who move 
with per-capita transition probability p. In a single time step, p can be calculated as 1 d teλ⋅−  where λ is the  
transition rate, as in a Poisson process time between events is exponentially distributed.

These equations can be written in the odin DSL as:

## Definition of the time-step and output as "time"
dt <- user(1)
initial(time) <- 0
update(time) <- (step + 1) * dt

## Model parameters (default in parenthesis)
beta <- user(0.2)
gamma <- user(0.1)

## Initial conditions
initial(S) <- 1000
initial(I) <- 1
initial(R) <- 0

## Core equations for transitions between compartments:
update(S) <- S - n_SI
update(I) <- I + n_SI - n_IR
update(R) <- R + n_IR

## Individual probabilities of transition:
N <- S + I + R # total population size
p_SI <- 1 - exp(-beta * I / N * dt) # S to I
p_IR <- 1 - exp(-gamma * dt) # I to R

## Draws from binomial distributions for numbers changing between
## compartments:
n_IR <- rbinom(I, p_IR)
n_SI <- rbinom(S, p_SI)

This would be saved as sir.R and then compiled with odin.dust::odin_dust (���������"��������sir.R���"��).

Initial conditions here are fixed, but they can also be added to the user() group to be set from R for each 
run. For infectious disease models, users may follow the guidance in the odin documentation on discretising  
ODE models using appropriate random number draws (https://mrc-ide.github.io/odin/articles/discrete.html). 
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This model can simulate an epidemic forward in time using fixed parameters, as shown in Figure 5. We can also 
use this model to demonstrate the inference process (steps 3–8 in Operation), showing how the transmission rate  

β and recovery rate γ (as well as 0
β
γ

=R ) can be inferred from observed daily case counts y
t
. For each day t, the 

number of expected new cases (if all cases are observed) can be assumed to be Poisson distributed with mean y
t
, so 

an observation function can be written by taking the log of a Poisson probability mass function at k
t
 = S

t−1
 − S

t
 = n

SI,t
.  

This can easily be achieved using the builtin R function dpois() (one of many probability-distribution  
functions available to users):

case_compare <- function(state, prev_state, observed, pars = NULL) {
  cases_modelled <- prev_state[1, , ] - state[1, , ]
  dpois(incidence_observed, observed$cases, log = TRUE)
}

In the state array, the first dimension is over model compartments, the second dimension is over particles, and 
the third over time. So the index ‘1’ extracts the first state, the number of susceptibles. Multiple data-streams can  
straightforwardly be added by noting that log-likelihoods sum, as long as they are conditionally independ-
ent. That is, given the simulated quantities in the model, the observed quantities are assumed to be independent,  
and have independent noise. So a similar log-likelihood component could be defined based on deaths, in a model 
with these compartments, and added to the existing function. If a data stream isn’t measured at a particular  
time point, it simply contributes zero to the log-likelihood.

Figure 5. Plots of the number of individuals in the S, I and R compartments over time in an SIR model with 
β = 0.2 and γ = 0.1. A: 10 particles run forward for 100 time steps. B: Solid points are data generated from the model 
from which simulated case counts were produced. Lines are 100 particles run forward using a particle filter with this 
data. C: Daily case incidence data which was fitted to (black), and modelled incidence of 100 particles (grey). Average of 
particles shown as points D: Extending the particle trajectories forward in time by simulating the model forward with 
parameters sampled from the estimated posterior. Here, only the first half of the time series was used to show a more 
uncertain part of the epidemic, subsequent real points are shown in black.
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A particle filter can then be set up using mcstate (steps 4 and 5), choosing the number of particles, and  
formatting observational data appropriately with the built-in function particle_filter_data(). The  
observations must be evenly spaced, though missing observations are permitted. The step size in the data is  
defined to be one, and 1

dt
 update steps are taken between each observation.

n_particles <- 100
dt <- 0.25
data <- particle_filter_data(data, time = "day", rate = 1/dt)
filter <- particle_filter$new(data = data,
                              model = sir,
                              n_particles = n_particles,
                              compare = case_compare)

The right panel of Figure 5 demonstrates using this observation function with case data simulated from the model. 
Only those trajectories consistent with the data are continued forward at each step, and a final log-likelihood  
of the model parameters given the data is produced. 

Steps 6 and 7, which are used to estimate the posterior density for β and γ, are achieved by defining sam-
pling distributions for the parameters, and running a set of MCMC chains. Priors for each parameter can  
be added at this stage, with an example shown on γ  for demonstrative purposes:

beta <- pmcmc_parameter("beta", 0.2, min = 0)
gamma <- pmcmc_parameter("gamma", 0.1, min = 0,
                         prior = function(p)
                           dgamma(p, shape = 1, scale = 0.2, log = TRUE)
                        )
proposal_matrix <- diag(2) * 0.01^2
mcmc_pars <- pmcmc_parameters$new(list(beta = beta, gamma = gamma),
                                  proposal_matrix)

pmcmc_run <-
  pmcmc(
    mcmc_pars,
    filter,
    n_steps = 2000,
    save_state = TRUE,
    save_trajectories = TRUE,
    progress = TRUE,
    n_chains = 4
  )

Noting that in the SIR model 0
β
γ

=R , we could alternatively directly sample R
0
 instead of β. This is achieved by 

also supplying a transformation function, which takes parameters being sampled in the MCMC, and returns  
a list of user input parameters needed by the odin model:

R0 <- pmcmc_parameter("R0", 2, min = 0)
parameter_transform <- function(pars) {
    beta <- pars[["gamma"]] * pars[["R0"]]
    gamma <- pars[["gamma"]]
    list(beta = beta, gamma = gamma)
}

Parameter transforms can also be used to represent time-varying parameters. One way of doing so is to make fixed 
time points as pmcmc_parameters in R, define a piecewise linear interpolation between fixed parameters in 
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the transformation, and give a dust model a dense vector with the parameter value at every time point. We refer 
interested readers to the example of the time-varying β parameter in the SIRCOVID package.

Posterior distributions for β and γ are available from the pmcmc object, and are plotted for this example in  
Figure 6. They can be loaded directly into standard MCMC analysis packages such as coda39 to produce diag-
nostics such as effective sample size, the Gelman-Rubin diagnostic R̂. As is typical with MH sampling, the pro-
posal distribution will likely need to be tuned to get an appropriate acceptance rate, typically thought to be 0.234  
for high dimensional problems40. One algorithmic way to do this is to run the chains for a short time, calculate the  
variance-covariance matrix among the samples, and use this as the proposal kernel. This process is covered in the  
‘Tuning the pMCMC’ section of the SIR models vignette in the mcstate package.

Finally, producing a forecast past the end of the data (step 8) is achieved simply by calling predict() on  
the above MCMC object (as shown in the final panel of Figure 5):

forecast <- predict(pmcmc_run,
                    steps = seq(400, 800, 4),
                    prepend_trajectories = TRUE,
                    seed = pmcmc_run$predict$seed)

Maximum-likelihood estimation with the SIR model
Using the particle filter constructed above, an iterated filtering algorithm can be applied to find parameter values 
which maximise the model likelihood. This is useful for the model criticism workflow outlined in steps 6a-8a. This 
may also be useful when pMCMC would stretch the available computational resources, as evaluating the 
likelihood profile at different points has more favourable scaling properties41–43. In this mode, the user sets param-
eters up as for pMCMC, and adds a control object including an independent perturbation strength for each 
parameter pars_sd, a population size of parameters n_par_sets, and a cooling schedule in iterations 
and cooling_target:

Figure 6. Inferring parameters in compartmental models: the SIR model fitted to simulated daily case data. 
The particle filter was set up as specified, and four independent chains were run, each chain taking 2 × 103 samples  
for the SIR model. In the SIR model, true values are β = 0.2, γ = 0.1, R0 = 2. A: posterior samples from β. B: posterior 

samples from γ. C: marginal posterior distribution for 0

β
γ

=R .
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pars <- mcstate::if2_parameters$new(
            list(mcstate::if2_parameter("beta", 0.5, min = 0, max = 1),
                 mcstate::if2_parameter("gamma", 0.01, min = 0, max = 1)))

control <- mcstate::if2_control(
  pars_sd = list("beta" = 0.02, "gamma" = 0.02),
  iterations = 100,
  n_par_sets = 300,
  cooling_target = 0.5)

res <- mcstate::if2(pars, filter, control)

This will yield a likelihood which is maximised over the course of the iterations, and the corresponding parame-
ter estimates. The likelihood and its error can be estimated by running particle filters at these parameter estimates 
using the if2_sample() command. This mode is covered in more detail in the “if2” package vignette.

Prior specification and prior predictive checks
Above, we showed a Gamma(1, 0.2) prior on γ for demonstrative purposes. The default if no prior function is 
specified, is to use a flat improper prior, which does not contribute to the posterior. For model features which do 
not fit the data, it may not be possible to set a suitable prior, so this may be a particularly useful when undertaking 
model criticism (steps 6a–8a). The prior function is completely flexible, and therefore allows any functionality 
the R language allows. This can therefore include more complex setups such as using tools from external packages, 
or drawing from another model’s posterior, which may be used to implement hierarchical models.

When setting priors, users may wish to perform prior predictive checks to determine whether the chosen prior 
functions are appropriate for the model and data44. First, parameters are selected by drawing from the priors 
(in the example below, from a uniform distribution for β. and gamma distribution for γ). Then, the model is sim-
ulated forwards using these parameters, and the resulting data series plotted to determine appropriateness. The 
simulate method in dust can be used to run across a whole time series and return the model state:

step_start <- 0
step_end <- 100
mod <- sir$new(pars = list(), step = start, n_particles = 100L)

# Note here the "r" version of the "d" distribution densities used in the
# prior functions. Care should be taken translating more complex densities
# into random draws
prior_draw <- list("beta" = runif(1, 0, 1), "gamma" = rgamma(1, 1, 0.2))
mod$reset(pars = prior_draw, step = start)
prior_data <- mod$simulate(step_end)

Adding age-structure to the SIR model
This model can be extended to add more flexibility or more specificity when modelling the biology of different 
diseases. For example: adding new compartments to represent other disease states; compartments which represent 
spatial or age structuring of the population; or delay distributions which model different rates at which individu-
als pass through disease pathways. By matching the compartments and the transitions between them to the disease 
being studied, infectious disease epidemiologists can flexibly and accurately model a wide variety of real world  
processes.

As an example of how the basic code given above can be extended, we demonstrate how the SIR model can 
incorporate age-structure into each of its three compartments. Adding age structure to the model consists of the  
following steps, which turn variables into arrays:

•   �Define the number of age categories as a user parameter N
age

.

•   �Add age structure to each compartment, by adding square brackets to the left hand side of each declaration in 
the odin definition of the model given at the beginning of the section describing stochastic SIR model.
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•   �Modify the right hand side of each declaration to use quantities from the appropriate compartment,  
by adding indices i and j as needed. These will automatically be turned into loops by odin.dust.

•   �Where an age compartment needs to be reduced into a single compartment/variable, we use sum (though  
further array reduction functions are available).

•   �Define the dimensions of all arrays, for example by setting dim(S) <- N_age.

Alone, this would simply give N
age

 independent processes equivalent to the first model, scaled by the size of the 
population in each age category. To actually make this useful, some form of interaction or transitions need to 
be added between the compartments. An example of this would be to add an age-specific contact matrix m,  
which defines a different force of infection λ for each age group. This is calculated by

                                                                             
age

=1
j j

N

i i
j

I m
N
β

λ = ⋅ ∑                                                                             (1)

In the odin DSL:

m[, ] <- user() # age-structured contact matrix
s_ij[, ] <- m[i, j] * I[i]
lambda[] <- beta / N * sum(s_ij[i, ])

The contact matrix m is input from R. Its entries m
ij
 define the intensity of contact between age classes i and j. 

One choice is to base it on the POLYMOD survey, which can conveniently be loaded in through the socialmixr 
R package45. This can be provided as input to the model by adding it to the list returned by a transformation 
function.

The probability of infection of a susceptible is then indexed by this force of infection:

p_SI[] <- 1 - exp(-lambda[i] * dt)

Putting this all together, the key components of the age structured SIR model is as follows (omitting initial  
conditions and parameter values from the unstructured SIR model for simplicity):

## Core equations for transitions between compartments:
update(S[]) <- S[i] - n_SI[i]
update(I[]) <- I[i] + n_SI[i] - n_IR[i]
update(R[]) <- R[i] + n_IR[i]

## Individual probabilities of transition:
p_SI[] <- 1 - exp(-lambda[i] * dt) # S to I
p_IR <- 1 - exp(-gamma * dt) # I to R

## Force of infection
m[, ] <- user() # age-structured contact matrix
s_ij[, ] <- m[i, j] * I[i]
lambda[] <- beta / N * sum(s_ij[i, ])

## Draws from binomial distributions for numbers changing between
## compartments:
n_SI[] <- rbinom(S[i], p_SI[i])
n_IR[] <- rbinom(I[i], p_IR)

## Total population size
N <- sum(S) + sum(I) + sum(R)
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# Array dimensions
dim(S) <- N_age
dim(I) <- N_age
dim(R) <- N_age
dim(n_SI) <- N_age
dim(n_IR) <- N_age
dim(lambda) <- N_age
dim(m) <- c(N_age, N_age)
dim(s_ij) <- c(N_age, N_age)

While we use 1- and 2- dimensional structures here, odin currently supports up to 8 dimensions, allowing for 
concise description of structured models (at the time of writing, we know of use of up to 4 dimensions).

Comparison with alternative packages
Although state space models can in some cases be analysed using a general Bayesian hierarchical framework 
such as JAGS46 or stan47, care needs to be taken with state space models as trajectories can rapidly diverge from 
time-series data with stochastic update functions, and fitting may become slow48. Two previous packages which 
aim to solve these issues in a similar way are pomp (partially-observed Markov processes)9 and libBi (library for  
Bayesian inference)10. 

Both packages use similar concepts to dust and mcstate, requiring users to define a Markovian update func-
tion (rprocess() in pomp; transition() in libBi), an initial state (rinit() in pomp; initial() 
in libBi) and a observation function (dmeasure() in pomp; observation() in libBi). These packages both 
support simulation and inference from the model using the same overall methods as mcstate, and additionally  
support some optimisation procedures such as maximum likelihood or particle perturbation.

These packages also support some link between interpreted and compiled languages. In pomp, the interface is in 
R, but it also any of these functions may be written either in R or in C. This allows us to demonstrate the advan-
tage of using compiled functions to simulate from models on an even footing. Using an SIR model coded in pomp 
using R functions, and and equivalent implementation in pomp coded using C function, a speedup of around  
100x was seen comparing C to pure R, even for this simple model (Table 1). libBi uses a DSL to define both the 
update and observation functions, which are transpiled into C++, then compiled into a standalone executable 

Table 1. Comparison of packages for SIR model implementations. This table lists some features of each 
package. The CPU time is for a run of 106 steps with nP = 10; S0 = 106; I0 = 10;  dt = 10−4 on a single core. We focus on 
a long simulation time, as profiling of the more realistic COVID-19 transmission model showed most computation 
time during inference was spent in this stage, and minimises measurement of overheads. Array indexing can be 
automated when a DSL infers the correct ‘C-Tran’ sums and loops to add, or manual when they must be written 
in the model by the user. Bayesian inference algorithms include particle MCMC (pMCMC), approximate Bayesian 
computation (ABC)49, SMC250 and sequential importance sampling (SIS)51; maximum likelihood inference algorithms 
include iterated filtering (IF2) and numerical likelihood optimisation (optim).

Package Potential 
parallelisation 

CPU 
time 

Model 
language 

Interface 
language 

Data 
input

Array 
indexing

Parameter 
constraints/
transforms

Inference 
methods

dust nP mc 0.96s R/odin DSL R R Automatic Arbitrary R 
code

pMCMC, 
IF2

pomp mc 82s R R R Manual Fixed choice 
of functions

pMCMC, 
IF2, ABC

pomp mc 1.3s C R 

libBi nP mc 1.04s libBi DSL bash NetCDF/
RBi

Automatic In DSL pMCMC, 
SMC2, SIS, 
optim
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supporting all its inference methods. We implemented an identical stochastic SIR model in all three  
packages. With compiled functions, all three methods run at similar speeds (Table 1). 

The main differences between pomp and our packages are:

•   �In pomp, parallelisation is only over independent chains m
c
; parallelisation of particles is unsupported.

•   �To write efficient code in pomp, users must write directly in C, no DSL is available. This also makes  
function debugging more challenging as there is no built-in parser.

•   �Automated generation of code for arrays is not supported in pomp. For multi-compartment models this 
requires the user to write loop indexes over arrays/tensors manually, sometimes known as ‘C-Tran’ code.

•   �Parameter constraints are not directly supported in pomp and must instead be implemented through  
monotonic transforms, such as taking the logarithm.

The main differences between libBi and our packages are:

•   �The interface to libBi is through the command line, and parameters are set through configuration files. 

•   �Parameter setup to be used for both simulation and inference in libBi may require different model definitions.

•   �Combining inference and forecasting tasks is possible, but requires chaining configuration files in libBi  
rather than relying on object reuse.

•   �In libBi, Input and output is in the NetCDF format, which is efficient and compact, but requires extra  
tools and knowledge to manipulate, and is not human-readable.

•   �To interface with R, the RBi package can be used, which converts between NetCDF format and R objects,  
and constructs calls to the libBi command line interface.

•   �All functions must be written in the libBi DSL, and although this is extensive, it is still more restric-
tive than a full language such as R, as may be used in pomp and our packages. However, this also allows  
faster compiled code to be generated for the observation functions.

•   �An alternative method of parallel random number generation is used in libBi52,53, and further parallelisation  
over parameters is additionally supported when using the SMC2 algorithm for inference.

Overall we would summarise these three packages as being broadly similar in purpose and efficiency. We believe 
that the major advantages of our packages are the tight interface with R, the easy-to-use DSL, and the con-
sidered parallel simulation machinery. In comparing these packages, anecdotally we found the flow of data 
between the source and models was simplest in our packages – for our rapidly evolving COVID-19 model, this  
made our packages the only viable choice. The growing set of auxiliary functions specific to COVID-19  
modelling in the SIRCOVID package are easily referenced between packages, demonstrating that being close 
to the language users are conversant with has a clear interface advantage. However, we expect that different users 
will have different preferences for these packages. Users will now have three good software choices available,  
which they can decide between based on their background and needs.

Summary
State space models are broadly used to model biological processes, particularly transmission of infectious  
diseases. In principle a simple state space model can readily be implemented in any number of programming lan-
guages, but keeping this model efficient, reproducible and correct, especially as it is expanded to include more  
processes and complexity, is a cross-disciplinary challenge. We have produced a suite of packages intended to 
make the mechanics of model development and fitting as simple and efficient as possible, so modellers can focus  
on the biology of their problem, rather than spending time on software integration challenges.

Software solutions must balance the competing needs of modellers, statisticians and software developers, thus 
tradeoffs necessarily exist. Anecdotal experience with expert modellers led to the following design requests: use 
of a DSL close to R to make compiled code; reproducibility of results; parallelisation with a fair random number 
draws for simulation; tight integration with the R language to allow easier definition of an observation function; 
fast implementation of new inference methods, especially when adding compartments or age-structure; and  
more flexible uses of the model simulator. 
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We aimed to produce methods which lie closer to the typical skill set and scientific interest of epidemiologists 
than previous state space modelling packages. Resulting model objects are lightweight and directly connected  
to R, making their reuse easy and flexible. No advanced programming skills are required to use the packages, 
and the definition of likelihood functions in R itself means that in practice few restrictions are placed on models, 
other than that they are Markovian. Optimised code for model simulation is automatically generated, and mod-
ern Bayesian methods such as SMC can be applied without needing a thorough understanding of the mechanics  
of their operation. Models are guaranteed to be reproducible, ‘play fair’ with randomness even when paral-
lelised, and come with a suite of fully unit-tested inference methods. CPU parallelisation is efficient, and the 
code developed here will form the basis of future speedups using specialist hardware such as general purpose  
graphics processing units.

These packages helped us with reliability, speed of model development, and the speed of real-time infer-
ence in our model of COVID-19 transmission in the UK. Due to their generality, we believe these packages will 
be more broadly useful for a range of modelling attempts, and will mean modellers do not have to reinvent  
the wheel each time a new model and inference method is produced.

Software availability
Software available from: 

•   �odin: https://mrc-ide.github.io/odin

•   �odin.dust: https://mrc-ide.github.io/odin.dust

•   �dust: https://mrc-ide.github.io/dust

•   �mcstate: https://mrc-ide.github.io/mcstate

Source code available from: 
•   �odin: https://github.com/mrc-ide/odin

•   �odin.dust: https://github.com/mrc-ide/odin.dust

•   �dust: https://github.com/mrc-ide/dust

•   �mcstate: https://github.com/mrc-ide/mcstate

•   �Plots: https://github.com/mrc-ide/odin-dust-plots

Archived source code as at time of publication: 
•   �odin: http://doi.org/10.5281/zenodo.477240354

•   �odin.dust: http://doi.org/10.5281/zenodo.477239855

•   �dust: https://doi.org/10.5281/zenodo.477239556

•   �mcstate: http://doi.org/10.5281/zenodo.477245557

•   �Plots: https://doi.org/10.5281/zenodo.429339658

Software license: MIT
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modelling language. It is efficient in fitting time-series via transcribing the model into fast C++ 
language, parallelisation, and the use of particle filtering, similar to pomp or libBo. It integrates 
well with commonly used R environment, and it is thus available to use for a wide group of 
researchers. 
 
I would not be surprised if this software and its iterations took an important role for predicting 
and understanding the ongoing COVID-19 pandemic. A key determinant for this is its development 
and refinement by an interdisciplinary team, and working with feedback from use case in an 
urgent public health crisis. 
 
I truly enjoyed reading this paper, and I would like to suggest a few points of improvement, before 
I make some suggestions for improved readability.

The authors describe at first some general concepts, then the different components of their 
framework, the random number generator, its operation, and finally a comparison with 
other tools. It should be made clearer at the very beginning, in what ways this software 
advances current tools, and combines the advantages of different tools. It remains unclear 
if the dust-object idea containing particles is novel, or an adaptation. I also suggest 
extending Table 1 to include several of the other features that differ between dust, pomp, 
and libBi. 
 

1. 

The tool of the authors follows a Bayesian framework, which I consider especially suitable in 
the context of COVID-19 modelling where information on biological parameters is added 
constantly through various trials. I am not entirely sure, but I think the Figure 3 shows a 
prior-predictive simulations/checks: Once a user has written the structure of a model and 
they want to understand the implications of the prior choice on the outcome-scale, then 
they would want to simulate from the model and its priors (instead of posteriors)(see 
McElreath 2020, Chapter 4.3.2). As this is one of the strengths of this simulation-based tool, 
it would be useful if the authors added prior predictive checks as an explicit step in the 
described work flow.  
 

2. 

Following the above point, I am wondering if the user is limited to priors in the shape of 
standard distributions (e.g., Normal(0,1) ), or would it be possible for the user to define a 
prior based on a posterior from a different model, for example in the form of 1000 random 
draws of the posterior? While I see how this is a computational challenge, I think it is a 
feature that might be very useful for adding results from other Bayesian studies. Can the 
authors at least comment on this? 
 

3. 

Is it possible to include time varying variables, such as a R0 that is changing in time? It is not 
clear from the text if this is possible. If yes, a reader might benefit from advise on how to 
smooth such a variable over time to avoid overfitting. 
 

4. 

It would be very helpful to have a cartoon that visualises how odi/dust/mcstate work 
together and how they make use of the abstractions (particle and dust) and how all this 
system generates the model building pipeline. 

5. 

As this paper is meant to help researchers like for example infectious disease modellers to make 
use of sophisticated software, it will be useful to revise the text to help this target audience to 
better follow the paper. Here are some concrete ideas:

A non-technical reader will not gain much from Figure 1 without further comparisons or ○
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explanation. What does a straight line signify? Should this surprise, what is to expect? 
 
Briefly explain what a dynamics library is. 
 

○

Briefly explain why C++ is used at the backend (speed). 
 

○

Briefly explain (or avoid) the term transpile. 
 

○

“change in randomness” page 6 should be explained more precisely. 
 

○

Redefine what “m” mean on page 6. 
 

○

The indexing in the expression m_{i} seems odd if m is defined as in integer above. Please 
explain or change. 
 

○

Is the variance-covariance matrix for the proposal kernel computed in an automated step, 
or does the user have to do this, or make that setting? 
 

○

Adding example code that uses the predict() function would help. 
 

○

“adding square brackets to the left hand side of each declaration”, a reference to a code 
block should be added. It would help to enumerate the code blocks for easy reference. 
 

○

It is not clear how entries of the contact matrix m are defined  
 

○

Equation (1) needs definition of beta, N, I and m.○

I found a few typos 
“psuedorandom numbers” page 4 
“first dimension[s]” page 12 
“and and” page 15 
 
References 
1. McElreath R: Statistical rethinking: A Bayesian course with examples in R and Stan. CRC press. 
Mar 2020.  
 
Is the rationale for developing the new software tool clearly explained?
Partly

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
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Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Infectious disease epidemiology, COVID-19 dynamics, microbiome dynamics.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 03 Jun 2021
John Lees, Imperial College London, UK 

Knock et al. have developed a software that allows building and fitting of state space models to 
(partially) observed data and that allows simulation from those models. Like tools such as 
WinBugs or Stan their tool allows the user to define models in language that is similar to 
statistical modelling language. It is efficient in fitting time-series via transcribing the model into 
fast C++ language, parallelisation, and the use of particle filtering, similar to pomp or libBo. It 
integrates well with commonly used R environment, and it is thus available to use for a wide 
group of researchers. 
 
I would not be surprised if this software and its iterations took an important role for predicting 
and understanding the ongoing COVID-19 pandemic. A key determinant for this is its 
development and refinement by an interdisciplinary team, and working with feedback from use 
case in an urgent public health crisis. 
 
I truly enjoyed reading this paper, and I would like to suggest a few points of improvement, 
before I make some suggestions for improved readability. 
 
We thank the reviewer for their kind comments and positive summary. We have a number 
of additional changes to the text which we believe should clarify the points arising. 
 
The authors describe at first some general concepts, then the different components of their 
framework, the random number generator, its operation, and finally a comparison with other 
tools. It should be made clearer at the very beginning, in what ways this software advances 
current tools, and combines the advantages of different tools. It remains unclear if the dust-
object idea containing particles is novel, or an adaptation. I also suggest extending Table 1 to 
include several of the other features that differ between dust, pomp, and libBi. 
  
We are somewhat constrained by the software manuscript format: demonstrating 
motivation and specific use cases before a full comparison with other methods – so we have 
left the full comparison with the alternative packages before the summary. However, we do 
agree that this would be useful to be introduced earlier on, so have added more text to the 
introduction to clarify the differences between packages, and expanded table 1 as 
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suggested. 
 
We are not sure of the exact manner in which pomp and libBi are engineering in this 
regard, but this kind of class definition is a fairly typical occurrence in C++ libraries. But, we 
have added more of a description of why we opted for the Dust/Particle separation, which 
we think makes the rationale for this decision clearer, and was missing previously. We have 
also added and reference a “design” vignette, which describes this in further detail. 
 
The tool of the authors follows a Bayesian framework, which I consider especially suitable in the 
context of COVID-19 modelling where information on biological parameters is added constantly 
through various trials. I am not entirely sure, but I think the Figure 3 shows a prior-predictive 
simulations/checks: Once a user has written the structure of a model and they want to 
understand the implications of the prior choice on the outcome-scale, then they would want to 
simulate from the model and its priors (instead of posteriors)(see McElreath 2020, Chapter 4.3.2). 
As this is one of the strengths of this simulation-based tool, it would be useful if the authors 
added prior predictive checks as an explicit step in the described work flow.  
 
We now follow the reviewer’s suggestion, and add a section on simulating from the priors to 
the workflow. Notably, we have added a simulate method to the dust package which makes 
running models across the time series using a specific set of parameters easier and more 
flexible. 
  
Following the above point, I am wondering if the user is limited to priors in the shape of standard 
distributions (e.g., Normal(0,1) ), or would it be possible for the user to define a prior based on a 
posterior from a different model, for example in the form of 1000 random draws of the posterior? 
While I see how this is a computational challenge, I think it is a feature that might be very useful 
for adding results from other Bayesian studies. Can the authors at least comment on this? 
  
One advantage of our framework’s tight integration with R is that functions for the 
likelihood and prior are completely flexible, and can use any functionality the R language 
allows. Although we demonstrate with a simple prior distribution in the use cases, any 
function can be defined. This can include using functions from external packages, or, as 
suggested, drawing from another model’s posterior. We’ve noted this more specifically in 
the revised text. A future feature will include the ability to ‘restart’ models from part way 
along the time series, and will draw on this suggestion to re-initialise the model. 
 
Is it possible to include time varying variables, such as a R0 that is changing in time? It is not 
clear from the text if this is possible. If yes, a reader might benefit from advise on how to smooth 
such a variable over time to avoid overfitting. 
  
Indeed, this is possible, and used extensively in the SIRCOVID package. To do so in these 
packages usually requires adding a simple ‘transform’ function in the particle filter, which 
translates between the parameters being inferred in R, and parameters in the model code. 
The easiest way to implement time-varying parameters is to make them piecewise-linear, 
and point the reader to the example in SIRCOVID of how to set this up (but do add a 
paragraph noting this to the examples). In theory a smoothing method such a spline fitting 
using a few free parameters would also be possible, but we do not demonstrate that here. 
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It would be very helpful to have a cartoon that visualises how odin/dust/mcstate work together 
and how they make use of the abstractions (particle and dust) and how all this system generates 
the model building pipeline.  
 
We have added an extra figure giving an overview of the software packages. 
 
As this paper is meant to help researchers like for example infectious disease modellers to make 
use of sophisticated software, it will be useful to revise the text to help this target audience to 
better follow the paper. Here are some concrete ideas: 
 
Thank you for these suggestions, which we address individually below. We expect that 
many modellers will find the package vignettes particularly useful in addition to this paper – 
there we are able to separate out technical language on design decisions with practical 
guides on how to use the software. 
 
A non-technical reader will not gain much from Figure 1 without further comparisons or 
explanation. What does a straight line signify? Should this surprise, what is to expect? 
  
Added to caption. 
 
Briefly explain what a dynamics library is. 
 
Added. 
  
Briefly explain why C++ is used at the backend (speed). 
 
Added. 
  
Briefly explain (or avoid) the term transpile. 
 
Added. 
  
“change in randomness” page 6 should be explained more precisely. 
 
Explanation added. 
  
Redefine what “m” mean on page 6. 
 
The indexing in the expression m_{i} seems odd if m is defined as in integer above. Please explain 
or change. 
 
Thanks for spotting this – this should have been p, indexed for each core/thread not chain. 
  
Is the variance-covariance matrix for the proposal kernel computed in an automated step, or 
does the user have to do this, or make that setting? 
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This is indeed a user option. We note that in the text, and a package vignette discusses how 
to set this in more detail than we have space for in this paper. 
  
Adding example code that uses the predict() function would help. 
 
Added. 
  
“adding square brackets to the left hand side of each declaration”, a reference to a code block 
should be added. It would help to enumerate the code blocks for easy reference. 
 
Reference to code block added. We are unfortunately unable to give line numbers to the 
code blocks due to formatting constraints. 
  
It is not clear how entries of the contact matrix m are defined  
  
We have reordered the text slightly, and expanded the description. 
 
Equation (1) needs definition of beta, N, I and m. 
I found a few typos 
“psuedorandom numbers” page 4 
“first dimension[s]” page 12 
“and and” page 15 
 
Typos fixed.  

Competing Interests: No competing interests were disclosed.

Reviewer Report 20 January 2021
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© 2021 Ionides E. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Edward Ionides   
Department of Statistics, University of Michigan, Ann Arbor, MI, USA 

The authors have built a framework for model development and statistical inference for complex 
partially observed stochastic dynamic models, motivated by applications in epidemiology. The 
methods are simulation-based, offering scientists appealing flexibility to investigate a range of 
different model specifications. The resulting odin/dust/mcstate software environment is compared 
with two other packages having similar capabilities, libBi and pomp. Time comparisons are 
comparable, but odin/dust/mcstate has had considerable work put into some important practical 
considerations: (i) the domain-specific language (DSL) used for model specification; (ii) 
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parallelization issues. 
 
The work undertaken by the authors contributes a new perspective to the worthwhile task of 
building and testing models to interpret data on noisy and incompletely measured dynamic 
systems. I shall compare odin/dust/mcstate to my experiences with pomp (King et al, 2016)1 
raising some points that are missing from the current version of the authors' manuscript.

The authors emphasize only Bayesian inference. The Bayesian paradigm is convenient for 
combining uncertainty about parameters with variability inherent in the dynamics, making 
it well placed to provide forecasts once the prior and model are satisfactory. However, in 
some situations there are advantages to avoiding the additional requirement to add to the 
model a quantification of prior uncertainty about parameters. For model criticism, the goal 
is to diagnose features of the model that are incompatible with the data. If such features 
exist, then a compatible prior does not exist and so the requirement to specify one is a 
hindrance rather than a help. It may be better to first investigate model specification by 
cycles of the scientific method promoted by Popper (1959)2: What features of the data are 
inconsistent with the hypothesized model? Can we find a better model? 
 

1. 

Maximum likelihood estimation, and associated likelihood ratio tests and profile likelihood 
confidence intervals, provide non-Bayesian methodology for partially observed stochastic 
dynamic models that also make statistically efficient use of data. The odin/dust/mcstate 
framework could, for example, implement an iterated filtering likelihood maximization 
(Ionides et al, 2015)3 as has been much used in pomp. 
 

2. 

Monte Carlo adjusted profile likelihood estimation (Ionides et al, 2017)4 has some favorable 
scaling properties (Ning et al, 2020)5 that are not shared by particle Markov chain Monte 
Carlo (Doucet et al, 2015)6. For analysis that stretches available computational resources, 
computational scaling may be another reason to consider likelihood-based inference. 
 

3. 

I agree with the authors on the importance of developing software accessible to a broad 
technical audience. The DSL written by the authors builds on the success of packages such 
as WinBUGS, JAGS, and stan. The Csnippet approach used by pomp is somewhat different: it 
gives the users the full flexibility of C while hiding certain details such as variable definitions 
for latent states, observations and parameters. For simple models, pomp Csnippet code can 
look very much like WinBUGS DSL code. For more complex models, the user may start 
needing to use increasingly esoteric properties of C, but this is a strength as well as a 
weakness, since it is hard to anticipate and encode in a DSL all the features one might want 
in a simulation model. The Csnippet framework is simple enough that it is accessible to 
students in a Masters level time series course where students with no prior C experience 
develop and fit their own pomp analysis. 
 

4. 

The benefits of parallelizing the particle filter depend on the purpose to which it is put. If it 
is used in a single, long, particle Monte Carlo Markov chain calculation then parallelization 
may help. However, in practice, one should carry out many replications of the inferential 
algorithm while varying the starting point and the seed of the random number generator. 
In a likelihood-based framework, one may want to evaluate and maximize the likelihood at a 
range of profile points. In these cases, parallelizing within the particle filter can be inferior 
to parallelizing over the embarassingly parallel replicated filters.

5. 
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Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes
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Reviewer Expertise: Time series analysis, with applications in epidemiology and ecology.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 03 Jun 2021
John Lees, Imperial College London, UK 

The authors have built a framework for model development and statistical inference for complex 
partially observed stochastic dynamic models, motivated by applications in epidemiology. The 
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methods are simulation-based, offering scientists appealing flexibility to investigate a range of 
different model specifications. The resulting odin/dust/mcstate software environment is 
compared with two other packages having similar capabilities, libBi and pomp. Time 
comparisons are comparable, but odin/dust/mcstate has had considerable work put into some 
important practical considerations: (i) the domain-specific language (DSL) used for model 
specification; (ii) parallelization issues. 
 
The work undertaken by the authors contributes a new perspective to the worthwhile task of 
building and testing models to interpret data on noisy and incompletely measured dynamic 
systems. I shall compare odin/dust/mcstate to my experiences with pomp (King et al, 2016)1 
raising some points that are missing from the current version of the authors' manuscript. 
 
We thank the reviewer for their comments and thoughtful suggestions. We have made two 
major additions to the code to add the functionality as suggested, and modified the text to 
better address the issues raised. We have also added some of this summary into our 
introduction, to introduce pomp and libBi earlier on. 
 
The authors emphasize only Bayesian inference. The Bayesian paradigm is convenient for 
combining uncertainty about parameters with variability inherent in the dynamics, making it well 
placed to provide forecasts once the prior and model are satisfactory. However, in some 
situations there are advantages to avoiding the additional requirement to add to the model a 
quantification of prior uncertainty about parameters. For model criticism, the goal is to diagnose 
features of the model that are incompatible with the data. If such features exist, then a 
compatible prior does not exist and so the requirement to specify one is a hindrance rather than 
a help. It may be better to first investigate model specification by cycles of the scientific method 
promoted by Popper (1959)2: What features of the data are inconsistent with the hypothesized 
model? Can we find a better model? 
 
It is true that we focused on Bayesian inference using a prior and model which have been 
determined to be satisfactory, which leaves out the model criticism phase. We have now 
added two sections on model criticism, alternatives to prior specification, and maximum 
likelihood estimation (noting the additions in response to the second point). We hope this 
expands to scope of discussion here suitably. 
  
Maximum likelihood estimation, and associated likelihood ratio tests and profile likelihood 
confidence intervals, provide non-Bayesian methodology for partially observed stochastic 
dynamic models that also make statistically efficient use of data. The odin/dust/mcstate 
framework could, for example, implement an iterated filtering likelihood maximization (Ionides et 
al, 2015)3 as has been much used in pomp. 
 
Thank you for this suggestion, we agree that this would be a nice addition, and fits well with 
the design of our packages. We have now implemented and tested this algorithm using 
dust and mcstate. We have also added a package vignette and section to this paper 
describing its use. 
  
Monte Carlo adjusted profile likelihood estimation (Ionides et al, 2017)4 has some favorable 
scaling properties (Ning et al, 2020)5 that are not shared by particle Markov chain Monte Carlo 
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(Doucet et al, 2015)6. For analysis that stretches available computational resources, 
computational scaling may be another reason to consider likelihood-based inference. 
  
We hope that our additions to the text and the addition of the iterated filtering algorithm 
now allow likelihood-based inference in our packages. Although we have not added the 
MCAP algorithm to the package code, we have added this point and associated references 
to the text, as is done in pomp. 
 
I agree with the authors on the importance of developing software accessible to a broad 
technical audience. The DSL written by the authors builds on the success of packages such as 
WinBUGS, JAGS, and stan. The Csnippet approach used by pomp is somewhat different: it gives 
the users the full flexibility of C while hiding certain details such as variable definitions for latent 
states, observations and parameters. For simple models, pomp Csnippet code can look very much 
like WinBUGS DSL code. For more complex models, the user may start needing to use increasingly 
esoteric properties of C, but this is a strength as well as a weakness, since it is hard to anticipate 
and encode in a DSL all the features one might want in a simulation model. The Csnippet 
framework is simple enough that it is accessible to students in a Masters level time series course 
where students with no prior C experience develop and fit their own pomp analysis. 
  
Thank you for this perspective on the Csnippet approach. We have expanded our discussion 
of the DSL to note the strengths and weaknesses of either approach from a user point of 
view. 
 
If greater flexibility is required, we also note that it is possible to directly write C/C++ code to 
be used as a dust model (and therefore with the rest of our framework). The easiest way of 
doing this is by modifying one of our examples – by just changing single sections of the 
model definition this ends up being somewhat similar to the Csnippet approach. For testing 
some models and new features of dust, this is the route we took. Our experience with real-
life complex models has been that the odin DSL was greatly preferred due to its built-in 
bookkeeping of model indices, and did not limit any of the required features. 
 
As a further alternative, we have also added the ability to the odin DSL to call arbitrary C++ 
functions – essentially imitating the Csnippet approach where the DSL may prove limiting. 
 
The benefits of parallelizing the particle filter depend on the purpose to which it is put. If it is used 
in a single, long, particle Monte Carlo Markov chain calculation then parallelization may help. 
However, in practice, one should carry out many replications of the inferential algorithm while 
varying the starting point and the seed of the random number generator. In a likelihood-based 
framework, one may want to evaluate and maximize the likelihood at a range of profile points. In 
these cases, parallelizing within the particle filter can be inferior to parallelizing over the 
embarassingly parallel replicated filters. 
 
This is an excellent point, and as such we have now expanded the flexibility of the 
parallelisation. Users can now parallelise both over particles and over filters independently, 
and choose how to do so depending on their problem. The interface is straightforward – 
between chain parallelism is enabled by increasing the number of workers, and specifying a 
total number of threads available. 
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The issue of varying the starting point is addressed by the ‘initial’ argument to the particle 
filter, through which the user can specify an arbitrary R function to generate the initial 
conditions for the filter. 
 
We have added the pmcmc_chains_prepare() function to address the issue of varying the 
starting seed. This uses the ‘long jump’ feature of the Xoshiro random number generator to 
generate streams which are uncorrelated even when further parallelisation is used within 
them. This function automates both the process of initialising a set of chains with different 
(and uncorrelated) seeds and initial conditions. 
 
We concur that parallelising within the particle filter can be inferior to parallelising chains – 
in some cases we have observed up to a 40% loss of efficiency (mostly due to particle 
divergence). We have found the added flexibility on this matter of great practical use in 
large problems on large distributed systems. Using code to orchestrate and collect 
information from independent runs, we can now run independent particle filters on 
separate computer nodes, and nested within these parallelise further over particles on each 
shared memory node. This top level of parallelisation can also be used to run with different 
parameters, or using the same model with different data (for example, fitting a COVID-19 
model to different regions).  

Competing Interests: No competing interests were disclosed.
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Reader Comment 11 Aug 2021
Penny Hancock, University of Oxford, UK 

Dear Authors, please see below my review of this paper. Although it could not be published due to 
my new Imperial affiliation I am providing it here in case it is helpful. 
Best wishes, Penelope Hancock 
 
Fitzjohn et al. present a series of R packages that provide computational functionality for simulating 
and fitting state space models, with consideration given to computational efficiency and 
parallelization, and principled random number generation, while allowing flexible model design 
and model checking. It is very encouraging to see such advances in the computational aspects of 
state space model development, particularly aimed at epidemiological modellers, allowing 
accessible, reproducible and efficient implementation of intense computation for Bayesian and ML 
models. The methodology is timely and well thought out. On reading the ms, I did encounter a few 
issues that I would like to see addressed:
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When reading through the introduction, it is not clear to me what is meant by ‘stochastic 
model’, as there are a number of ways that epidemiological modellers might implement 
stochasticity. It might be helpful to cover the different model types mentioned on page 16 
under the section ‘Stochastic SIR model’ in the Introduction in order to clarify the main types 
of stochastic models that are supported. I find it odd that the first use case that is presented 
is a financial model, given that the package is “targeted at infectious disease modellers but 
suitable for other domain users”. Readers of this paper are likely to skim quickly to the ‘use 
case’ section, and could be put off by this. Perhaps the ODE and CTMC models should be 
presented first, and the stochastic ODE case mentioned later (with epidemiological and non-
epidemiological examples)? I think it is also worth a greater emphasis on the applicability to 
non-stochastic ODEs, which are very common in epidemiological modelling. On page 11 it is 
stated that SDEs ‘better represent the variance in real world systems’, however it is often 
difficult to find data to parameterise the form of that variance. I think this statement should 
be supported with evidence and citations, and I would avoid the implication that stochastic 
models are always better. 
 

•

I think the limitations of the methodology need to be more clearly explicated. On page 16 
there is a brief passing mention of applicability of the method to spatial models, and delay 
differential models, but this is not demonstrated or clarified by any statements about 
limitations of the method. For example, parameter inference on spatial models using MCMC 
methods is often challenging due to high correlations across inferred parameters. Methods 
such as the Hamiltonian MCMC implemented in STAN will perform better in such situations 
than standard Metropolis Hastings. I think a few sentences about the limitations, and 
avenues for future development, of this package would be helpful to aid users in selecting 
appropriate tools.

•

Other comments:

page 13. The cases_compare function is not very clear to me. Variables like 
incidence_observed are not defined. 
 

•

page 14. ‘the observations must be evenly spaced’ – many epi data sets not likely to meet this 
requirement? 
 

•

page 14. ‘the right panel of Figure 5’ – Figure 5 has 4 panels, please refer to the letter of the 
panel. 
 

•

page 16. great to see convergence diagnostics and prior predictive checks!•
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